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Climate feedback & pattern effects 

• Define climate feedback λ by ΔR = λ ΔT +εR [random, 0-mean] 

• ΔR = ΔF – ΔN : change in outgoing radiation  

• Effective sensitivity = F2xCO2/λ: ECS per transient changes 

• In AOGCMs λ ↘ over time, so ECS > Effective sensitivity 

• Linked to changing warming patterns: ‘Pattern effect’ 

• GMST impact v slow: Effective sensitivity OK for >> 100 yrs 

• Unforced historical period pattern effect alters λ estimate 
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Historical period EffCS (ECShist) 

• λhist = ΔR / ΔT = (ΔF – ΔN)/ΔT ; Δ over last ~150 yr (not 30 yr) 

• ECShist = F2xCO2/ λhist 

• Mean CMIP5 model ECShist estimate ~ 3.0 K 

• Mean CMIP5 model ECS estimate ~ 3.3 K 

• CMIP5 median ECS / ECShist ≈ 1.10 

• ECShist best estimate from observations ~ 1.7–1.8 K 

• Mauritsen’s & Lewis’s ECShist estimates now 2.3 K & 1.7-2 K 

• Substantial pattern effect, bias or random errors for >3 K 
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Historical forcing mix: no estimation bias   

So is model–obs ECShist due to different warming patterns? 
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MPI-ESM1.1: λhistorical = λCO2 for same timescale 



How/why does λ depend on ΔT pattern? 
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                                                                    Source: Mauritsen 2016 

• Temperature in tropical troposphere set by convection  
• Indian ocn/W Pacific warm-pool (IPWP) convects strongly 
• Inversion strength (EIS) affects low cloud cover 
• EIS affected by remote warming of tropical troposphere 
• So, warm-pool–elsewhere T differentials affect R 
• Also, λ weak where forced warming delayed: S Ocn + N Atl 



Emulating effect in GCMs of ΔT patterns 
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• Green’s functions (GFs) approach: linear superposition 

• Use multiple fixed SST simulations to derive GFs 

• For each, apply local ΔT to different ocean patch 

• Find global ΔT and ΔR caused by each grid cell ΔT 

• Σ (GFs x warming pattern) gives global ΔT  & ΔR 

• Zhou et al 2017: CAM5.3, 74 patches, good results 



CAM5 GFs: ΔRglobal/ΔTsglobal by location 
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Strong feedback over IPWP and other tropical ascent regions 
Global feedback in many other areas is destabilising: R as Ts 



Key region: Indo-Pacific warm pool 

• Indo-Pacific Warm Pool ~ 45E–195E, 15S–15N  

• Climate feedback λ (ΔR/ΔTs) very strong in IPWP 

• Higher IPWP ΔSST relative to elsewhere strengthens λ 

• In CO2-only runs, IPWP relative warming  over time 

• Claimed that IPWP has warmed faster to date, so λ 

• λ in 1870-on AMIP runs > λ in historical & 1pctCO2 runs 

• Did internal vary
 bias energy budget ECShist estimates low? 

• Was IPWP relative ΔSST high over historical period? 
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Feedback and excess IPWP warming 2 

SST/Ts data source and analysis period Excess 
warm 

pool vs 
30S-30N 
SST trend 

% 

Excess 
warm 

pool vs 
60S-60N 
SST trend 

% 

Greens's 
function 
feedback 

on Ts 
estimate 
Wm−2K−1 

Actual 
feedback 
on Ts in 

simulation 
Wm−2K−1 

CAM5.3 AMIPF1850 amipPiForcing simulation 1871–2010 8 –4 1.73 1.70 

CESM1-CAM5 1pctCO2 simulation – first 70 years 7 11  1.62 1.60 

CESM1-CAM5 Historical/RCP8.5 simulation 1871–2010 10 4 1.62 - 
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Green’s function emulations give accurate λ estimates 



Feedback and excess IPWP warming 3 

SST/Ts data source and analysis period Excess 
warm 

pool vs 
30S-30N 
SST trend 

% 

Excess 
warm 

pool vs 
60S-60N 
SST trend 

% 

Greens's 
function 
feedback 

on Ts 
estimate 
Wm−2K−1 

Actual 
feedback 
on Ts in 

simulation 
Wm−2K−1 

CAM5.3 AMIPF1850 amipPiForcing simulation 1871–2010 8 –4 1.73 1.70 

CESM1-CAM5 1pctCO2 simulation – first 70 years 7 11  1.62 1.60 

CESM1-CAM5 Historical/RCP8.5 simulation 1871–2010 10 4 1.62 - 

HadISST1 1871–2010 2 –7 1.61 - 

HadISST2 1871–2010 1 –3 1.60 - 
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HadISST1/2 have lowest IPWP relative SST trends, and 
estimated λ ≈ λ in Historical & 1pctCO2 CAM5 simulations 



Same findings in direct simulations 
ECHAM6.3/MPI-ESM1.1 simulation data Excess 

warm pool 
vs  

30S-30N 
SST trend 

% 

Excess 
warm pool 

vs  
50S-50N 
SST trend 

% 

Feedback 
on Ts in 

simulation 
(pentadal 

regression)
Wm−2K−1 

AMIPII SST amipPiForcing simulation 1871–2010 7 0 1.92 

1pctCO2 coupled simulations years 1–100 5 7 1.54 

HadISST1 amipPiForcing simulation 1871–2010 2 –7 1.51 
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Same findings in direct simulations 
ECHAM6.3/MPI-ESM1.1 simulation data Excess 

warm pool 
vs  

30S-30N 
SST trend 

% 

Excess 
warm pool 

vs  
50S-50N 
SST trend 

% 

Feedback 
on Ts in 

simulation 
(pentadal 

regression)
Wm−2K−1 

AMIPII SST amipPiForcing simulation 1871–2010 7 0 1.92 

1pctCO2 coupled simulations years 1–100 5 7 1.54 

HadISST1 amipPiForcing simulation 1871–2010 2 –7 1.51 

AMIPII SST amipPiForcing simulation 1871–2005 5 –3 1.85 

Historical coupled simulations 1871–2005 7 12 1.58 

HadISST1 amipPiForcing simulation 1871–2005 0 –10 1.42 
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HadISST1 IPWP relative SST trends are low and estimated 
λ is < λ for AMIPII & ≈ Historical & 1pctCO2 simulations λ  



Conclusions 

• Long term pattern effect: CMIP5 (coupled) ECS/ECShist ~1.1 

•     

• But no historical pattern effect when using HadISST1, per 
CAM5 Green’s functions and ECHAM6.3 model runs 

• HadISST2 as for HadISST1, ex its stronger sea-ice feedback 

• Historical period IPWP relative ΔSST appears low, not high 

• No evidence that observational ECShist estimates biased low 

• IPWP relative ΔSST may not dominate estimated λ in GCMs 

13 



14 

References 

Andrews, T., Gregory, J.M. and Webb, M.J., 2015. The dependence of radiative forcing and feedback on evolving patterns 
of surface temperature change in climate models. Jnl of Climate, 28(4), pp.1630-1648.  

Andrews, T., Gregory, J.M., Paynter, D., Silvers, L.G., Zhou, C., Mauritsen, T., Webb, M.J., Armour, K.C., Forster, P.M. and 
Titchner, H., 2018. Accounting for changing temperature patterns increases historical estimates of climate sensitivity. 
Geophysical Research Letters, 45(16), pp.8490-8499. 

Armour, K.C., 2017. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nature 
Climate Change, 7(5), p.331. 

Dong, Y., Proistosescu, C., Armour, K.C. and Battisti, D.S., 2019. Attributing Historical and Future Evolution of Radiative 
Feedbacks to Regional Warming Patterns using a Green’s Function Approach: The Preeminence of the Western Pacific. 
Journal of Climate,  32, pp.5471-5491 

Kohyama, T., Hartmann, D.L. and Battisti, D.S., 2017. La Niña–like mean-state response to global warming and potential 
oceanic roles. Journal of Climate, 30(11), pp.4207-4225  

Lewis, N. and Curry, J., 2018. The impact of recent forcing and ocean heat uptake data on estimates of climate sensitivity. 
Jnl of Climate, 31(15), pp.6051-6071. 

Mauritsen, T., 2016. Clouds cooled the Earth. Nature Geoscience, 9(12), p.865  

Mauritsen, T. and Pincus, R., 2017. Committed warming inferred from observations. Nature Climate Change, 7(9), p.652. 

Proistosescu, C. and Huybers, P.J., 2017. Slow climate mode reconciles historical and model-based estimates of climate 
sensitivity. Science Advances, 3(7), p.e1602821 

Zhang, L., Han, W., Karnauskas, K.B., Meehl, G.A., Hu, A., Rosenbloom, N. and Shinoda, T., 2019. Indian Ocean Warming 
Trend Reduces Pacific Warming Response to Anthropogenic Greenhouse Gases: An Interbasin Thermostat Mechanism. 
Geophysical Research Letters. 

Zhou, C., Zelinka, M.D. and Klein, S.A., 2017. Analyzing the dependence of global cloud feedback on the spatial pattern of 
sea surface temperature change with a Green's function approach. Journal of Advances in Modeling Earth Systems, 
9(5), pp.2174-89 


