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MPI Grand Ensemble
• MPI-ESM 1.1 [Maher et al., JAMES, 2019]

• 100 historical runs [155 years each, 
1850-2005], each with identical historical 
forcing

• only difference is initial conditions

• calculate ECS from each ensemble 
member
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unforced pattern effectECS = −
F2×CO2

λplanck + λlapse rate + λΔRH + λalbedo + λLW cloud + λSW cloud



!11



!11

weak:  
surface albedo  

& SW cloud 
feedbacks



!11

weak:  
surface albedo  

& SW cloud 
feedbacks

strong:  
surface albedo  

& SW cloud 
feedbacks



!12

∆sea ice = 1996-2005 sea ice minus 1850-1859 sea ice



!12

∆sea ice = 1996-2005 sea ice minus 1850-1859 sea ice



!13

∆sea ice = 1996-2005 sea ice minus 1850-1859 sea ice



!13

∆sea ice = 1996-2005 sea ice minus 1850-1859 sea ice

loss of sea ice is both  
forced & due to internal variability
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∆sea ice = 1996-2005 sea ice minus 1850-1859 sea ice

mainly SH sea ice
connected to  
SAMO & AMO
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∆T500/∆TS = tropical atmospheric warming per unit of global 
avg. surface warming  
[see also: Zhou et al., 2016; Ceppi and Gregory, 2017, 2019; 
Andrews and Webb, 2018; Dessler et al., 2018]

connected to  
ENSO
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unforced pattern effect
• ECS from a single trajectory will be ±0.3 K 

(5-95%) from the ensemble average 

• due primarily to unforced variability in SH 
sea ice and tropospheric warming 

• some evidence ECS from historical record 
is low [Gregory and Andrews, 2016; Zhou et al., 
2016; Marvel et al., 2018; Andrews et al., 2018]
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calculated 
from a 2600-
year abrupt 
4xCO2 run

ensemble of 68  
150-year 1% runs
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forced pattern effect: low clouds
Senior and Mitchell, 2000; Ceppi and Gregory, 2017;  
Andrews et al., 2018
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net cloud feedback from 4xCO2 minus 
ensemble average from 1% ensemble

see also: Senior and Mitchell, 2000; Ceppi and Gregory, 2017;  
Andrews et al., 2018
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forced pattern effect
• regions where warming is delayed will see clouds 

burn off with warming, leading to a more positive 
cloud feedback

• we can be confident on direction: ensemble 
average ECS inferred from historical record will be 
lower than true equilibrium ECS

• forced pattern effect ≈ +0.2 K

• Gregory method for 4xCO2 feedbacks is 
problematic
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summary
• forced pattern effect ≈ +0.2 K (true ECS > 

historical ECS; due to changes in clouds in regions 
of delayed warming)

• unforced pattern effect ≈ ±0.3 K (variability in  
sea ice & tropospheric temperatures)

• pattern effect ≈ -0.1 to +0.5 K, more likely at high 
end

• this is a single-model study

• This work was supported by NSF grant AGS-1661861 to Texas 
A&M.  Thanks to MPI for providing access to the Grand Ensemble
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