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What index is most useful for projections?

If we want to know how much a model warms over
the 21st century* is it betterf to know its

*TCR

*ECS
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What index is most useful for projections?

If we want to know how much a model warms over
the 21st century™ is it better to know its

*TCR 59 % variance explained

eECS 90% variance explained
e

What Climate Sensitivity Index Is Most
Useful for Projections?

Michael R. Grose' |, Jonathan Gregory” |, Robert Colman®, and Timothy Andrews®*

'CSIRO Cimate Science Centre, Hobart, Tasmania, Australia, “University of Reading, Reading, UK, *Bureau of Meteorology,
Docklands, Victoria, Australia, “Met Office, Exeter, UK

Grose et al 2018



CFMIP 2019, Mykonos, Greece
Cristian Proistosescu, David Battisti, Gerard Roe, Kyle Armour, Nick Lutsko, Paol
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Q: What do | do to improve projections of 21st century warming in Greece (or lowa)?
A: Fix ECS! (...and whatever fixes ECS)

0 10 20 30 40 50 60 70 80 90 100
.7,2 (%)

e Variance of model projections of local warming explained by ECS

e Warning: do not attempt for precipitation

Grose et al 2018
Proistosescu et al in prep



Spread in ECS determines spread in regional end-of century warming.

215t century warming - RCP 8.5
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Regional warming unceriainty
determined by low-lat feedbacks

Non-diagonal: ~1 DOF in low lats
local feedback uncertainty
propagates non-locally.
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Regional warming unceriainty
determined by low-lat feedbacks

Non-diagonal: ~1 DOF in low lats
local feedback uncertainty
propagates non-locally.
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Heat uptake only dominates in
Southern Ocean
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What drives regional temperature
and warming indices?

e Low-lat feedbacks important for
ECS & 21st century warming

e Heat uptake important for TCR,
not for ECS & 21st century
warming

* Tropical feedbacks have broad
impacts: 50S-60N

e High-latitude feedbacks and
heat uptake have local impacts

Crook and Forster 2011
Grose et al 2018
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A simple model of local energy balance

Rf_QOZ;t.T_V.FCl

radiative I radiative I

forcing damping
Surface atmospheric
heat flux heat-flux div



A simple model of local energy balance:
MSE diffusion rule for atmospheric heat transport

Rf—Q0=,1-T+DV§bh

radiative I radiative I

forcing damping
Surface atmospheric
heat flux heat-flux div
MSE

prescribed from CMIP5 diffusion



A simple model of local energy balance:
Large diffusive length-scales in low-latitude

Ri—Q,=4-T+V;(D(@T)

radiative I radiative I

forcing damping
Surface atmospheric
heat flux heat-flux div
MSE

prescribed from CMIP5 diffusion



Uncertainty as perturbations o ] , . l . —r
from ensemble mean

Non-diagonal: ~1 DOF in low lafs
local feedback uncertainty
propagates non-locally.
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How does uncertainty in forcing, heat uptake and feedbacks
translate to warming uncertainty?

Uncertainty in

forcing, heat uptake, feedbacks Uncertainty in

warming

R — 6Q, — 8A(T) = (1) 6T + V D()6T



Tropical energetic perturbations have broad response
High-latitude perturbations have strong, but localized response

Uncertainty in

forcing, heat uptake, feedbacks Uncertainty in

warming

R — 6Q, — 8A(T) = (1) 6T + V D()6T
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The relative importance of feedback uncertainty
increases with ensemble mean-temperature

Uncertainty in Uncertainty in
forcing, heat uptake, feedbacks warming

OR; — 6Q, — 8A(T) = (1) 6T + V D()6T

Relative importance of heat-uptake:

I ()
op+(T)o;  (Q)Y +(T)*6?

p:



The relative importance of feedback uncertainty
increases with ensemble mean-temperature

Uncertainty in Uncertainty in
forcing, heat uptake, feedbacks warming

R — 6Q, — 8A(T) = (1) 6T + V D()6T

Relative importance of heat-uptake:

I ()
op+(T)o;  (Q)Y +(T)*6?

p:

Very important initially: T~ 0

Not important at equilibrium: Q@ = 0



The relative importance of feedback uncertainty
increases with ensemble mean-temperature

Uncertainty in Uncertainty in
forcing, heat uptake, feedbacks warming

R — 6Q, — 8A(T) = (1) 6T + V D()6T

Relative importance of heat-uptake:

I ()
op+(T)o;  (Q) +(T)*o?

p:

Very important initially: 7= 0 RCP 8.5: Txt; Qo CeidT/dt

21st century warming p =0.14
Not important at equilibrium: QO =0 TCR (1pctCO2) =038



Regional energy balance & MSE diffusion reproduces the siructure of ECS/TCR &
warming
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Summary: Why does ECS become more 1
and more important for
transient, reginal warming?
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Grose et al 2018

e Relative importance of heat uptake decreases with warming.

By the end of the 21st cenfury, feedbacks matter more than heat uptake or
forcing.

e Fitfing to historical warming we may be fitting to aerosol forcing and heat uptake.
(Crook and Forster 2011). We need to fit to feedbacks

e Efforts go info understanding model-obs discrepancy in Temp and Q. Models do
poor job at reproducing radiative feedbacks (though that is not necessarily due to

cloud physics).

e Caveat: pattern effect



So what does all that teach us about how to diagnose feedbacks?

7hou et al 2015 Lutsko and Takahashi 2018, Lutsko 2018
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Correlation between local cloud feedbacks and ECS (CMIP5)
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Correlation between local cloud feedbacks and ECS (CMIP5)

500 years

different SST patterns for variability ~30 years, observed 5sT patterns.

Relative error: blue is good!




ENSO cloud changes driven by stability and at lag

Regression slope
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Correlation between local cloud feedbacks and ECS (CMIP5)

Local Cloud feedback vs ECS

ded(x, r+ T)
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Thank you!
Questions?

e Relative importance of heat uptake decreases with warming.
e By the end of the 21st century, feedbacks dominate warming uncertainty.

e Fitfing to historical warming we may be fitting to aerosol forcing and heat uptake.
(Crook and Forster 2011). We need to fit to feedbacks

e Efforts go info understanding model-obs discrepancy in Temp and Q. Models do
poor job at reproducing radiative feedbacks (though that is not necessarily due to
cloud physics).

e Caveat: pattern effect

» AMIP simulations might isolate interannual feedbacks better than piConirol
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Ensemble average local cloud feedback < A, (x) >
/\m(I) == dIzdd(I)/dT(I)m

Correlation with climate sensitivity: p{A,.(z), ECS,,)
S g j

Wim* /K

Ensemble mean of individual relative errors < o(A)/A >

What is driving cloud feedbackse Let’s

look at TAS and cloud radiative forcing
(CRF) in four regions




CCSM4: Nino3.4 CCSM4: N Decks

1F 1 I I 1 PN [ S S o 0 65 B Rl 1 J I 1 L L LA

CCSM4: Kuroshio CCSM4: Southern Ocean

F T T | S TS PSR [ o S o B 0 65 T T T T T T T TTToTTT




AMIP

CFMIP: response ’ro doubhng of CO2 Cl|m0’rologlccl CRE
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ECS and 21st century warming both
determined by low-lat feedbacks.
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Spread in heat uptake important 100 —— . . . . —
for TCR, but not for 21st century T
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Q: What do | do to improve projections of 21st century warming in Greece (or lowa)?
A: Fix ECS! (...and whatever fixes ECS)

0 10 20 30 40 50 60 70 80 90 100

or/(T) (%)

e Local processes are only important if they conftribute to fixing ECS
e Caveat: at least amongst the “known-unknowns”




