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Challenges of real data sources

We face an explosion in data!

Internet transactions
DNA sequencing

Satellite imagery
Environmental sensors

Real-world data can be:

Vast

High-dimensional

Noisy, raw

Sparse

Streaming, time-varying
Sensitive/private




Machine Learning

Given labeled data points, find a good classification rule.

Describes the data
Generalizes well

E.g. linear classifiers:




Machine Learning algorithms
for real data sources

Goal: design algorithms to detect patterns in real data sources.
Want efficient algorithms, with performance guarantees.

* Data streams
Learning algorithms for streaming, or time-varying data.

 Raw (unlabeled or partially-labeled) data

— Active learning: Algorithms for settings in which unlabeled data is
abundant, and labels are difficult to obtain.

— Clustering: Summarize data by automatically detecting “clusters” of
similar points.
* Sensitive/private data
Privacy-preserving machine learning: Algorithms to detect cumulative
patterns in real databases, while maintaining the privacy of individuals.
e Climate Informatics
Accelerating discovery in Climate Science with machine learning.



Learning from data streams
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Learning from data streams
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1. Access to the data observations is one-at-a-time.

 Once a data point has been observed, it might never be seen again.
 Optional: Learner makes a prediction on each observation.

=» Models forecasting, real-time decision making, high-dimensional,
streaming data applications.

2. Time and memory usage must not grow with data.

e Algorithms may not store all previously seen data and perform batch learning.

=» Models resource-constrained learning.



Learning from data streams

Data arrives in a stream over time.

E.g. linear classifiers:



Contributions to
Learning from data streams

Online Learning: Supervised learning from infinite data streams

[M & Jaakkola, NIPS 2003]: Online learning from time-varying data, with expert
predictors.

[M, Balakrishnan, Feamster & Jaakkola, Analytics 2007]: Application to computer
networks: real-time, adaptive energy management, for 802.11 wireless nodes.

[M, Schmidt, Saroha & Asplund, SAM 2011 (CIDU 2010)]: Tracking climate
models: application to Climate Informatics.

Online Active Learning: Active learning from infinite data streams
[Dasgupta, Kalai & M, JMLR 2009 (COLT 2005)]: Fast online active learning.

[M & Kaariainen, CVPR workshop 2007]: Application to computer vision: optical
character recognition.

Streaming Clustering: Unsupervised learning from finite data streams

[Ailon, Jaiswal & M, NIPS 2009]: Clustering data streams, with approximation
guarantees w.r.t. the k-means clustering objective.



Climate Informatics

* Climate science faces many pressing questions, with
climate change poised to impact society.

* Machine learning has made profound impacts on the
natural sciences to which it has been applied.
— Biology: Bioinformatics
— Chemistry: Computational chemistry

 Climate Informatics: collaborations between machine
learning and climate science to accelerate discovery.

— Questions in climate science also reveal new ML problems.



Climate Informatics

ML and data mining collaborations with climate science
— Atmospheric chemistry, e.g. Musicant et al. ‘07 (‘05)
— Meteorology, e.g. Fox-Rabinovitz et al. ‘06
— Seismology, e.g. Kohler et al. ‘08
— Oceanography, e.g. Lima et al. ‘09

— Mining/modeling climate data, e.g. Steinbach et al. 03,
Steinhaeuser et al. ‘10, Kumar ’10

* ML and climate modeling
— Data-driven climate models, Lozano et al. '09

— Machine learning techniqgues inside a climate model, or for
calibration, e.g. Braverman et al. 06, Krasnopolsky et al. ‘10

— ML techniques with ensembles of climate models:
* Regional models: Sain et al. ‘10
* Global Climate Models (GCM): Tracking Climate Models



What is a climate model?

A complex system of interacting mathematical models
e Not data-driven

e Based on scientific first principles

« Meteorology Horizontal Grid
(Latitude-Longitude) |~
« Oceanography

« Geophysics

Vertical Grid )
(Height or Pressure) |

Climate model differences [ physical Processes in a Model

solar  terrestrial
radiation radiation

e Assumptions LR
e Discretizations "

e Scale interactions
« Micro: rain drop
« Macro: ocean

T E
5 ,/\_/-\_’“’.._/xf\./—'




Climate models

* |PCC: Intergovernmental Panel on Climate Change

— Nobel Peace Prize 2007 (shared with Al Gore).
— Interdisciplinary scientific body, formed by UN in 1988.

— Fourth Assessment Report 2007, on global climate change
450 lead authors from 130 countries, 800 contributing authors,
over 2,500 reviewers.

— Next Assessment Report is due in 2013.

Climate models contributing to IPCC reports include:

Bjerknes Center for Climate Research (Norway), Canadian Centre for Climate Modelling
and Analysis, Centre National de Recherches Météorologiques (France), Commonwealth
Scientific and Industrial Research Organisation (Australia), Geophysical Fluid Dynamics
Laboratory (Princeton University), Goddard Institute for Space Studies (NASA), Hadley
Centre for Climate Change (United Kingdom Meteorology Office), Institute of Atmospheric
Physics (Chinese Academy of Sciences), Institute of Numerical Mathematics Climate Model
(Russian Academy of Sciences), Istituto Nazionale di Geofisica e Vulcanologia (Italy), Max
Planck Institute (Germany), Meteorological Institute at the University of Bonn (Germany),
Meteorological Research Institute (Japan), Model for Interdisciplinary Research on Climate
(Japan), National Center for Atmospheric Research (Colorado), among others.



Glo

bal annual data

The model projections/hindcasts vary significantly from one another.
— High model complexity, Different modeling assumptions

— Different spatial discretization methods, handling of scale interactions

Global mean temperature anomalies
|

Thick blue: observed
| | Thick red: average over 20 climate model predictions
Other: climate model predictions
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Global annual data

Global mean temperature anomalies. Temperature anomaly: difference w.r.t.
the temperature at a benchmark time. Magnitude of temperature change.
Averaged over many geographical locations, per year.
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Regional annual data: Africa

2
(4]
L 151
g I
O YA
g 1 9\%&
§ I ‘/ *‘ .1‘71'
& 05| M' ‘/‘wh‘ N’ 'vu.\'// iy
. ¢ w’”’"\\'l/,m Y
g | A WY
oy N W 2
é 0f 4 "l» \‘/i’ ’ﬁ‘/ (/’/ Q,& v Y “ \%/{’ﬁ/ \\! J ¢ T
o 0 , V)

2 N "q "' W A / .‘M‘w«\x\ v (' \V/
§ 05 \/ n 0'4":' \'wéf/l/'\ Ly ]
s ‘\ /

-1 | | | | | | | |

1o 20 30 40 50 60 70 80 90
Time in years (1900-2009)

110



Regional annual data: Europe

Mean temperature anomalies for Europe
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Regional annual data: North America
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Climate model future projections

Thick blue: observed

Thick red: average over 20 climate model predictions
Black (vertical) line: separates past from future
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Regional monthly data: Africa
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Regional monthly data: Europe
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Regional monthly data: North America
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Tracking climate models

 No one model predicts best all the time.

* Average prediction over all models is best predictor over
time. [Reichler & Kim, Bull. AMS ‘08], [Reifen & Toumi, GRL ’09]

* |IPCC held 2010 Expert Meeting on how to better combine
model projections.

 Can we do better? How should we predict future climates?
— While taking into account the 20 climate models’ projections



Tracking climate models

Best Paper!

[M, Schmidt, Saroha, & Asplund, SAM 2011 (CIDU 2010)]:
e Application of Learn-a algorithm [M & Jaakkola, NIPS ‘03]

— Track a set of “expert” predictors under changing observations.

* Tracking climate models, on mean temperature anomaly
predictions.

— Experiments at global and regional scales, annual and monthly time-scales.
* Experiments on historical data

— Valid, since climate models are not data-driven.

* Future simulations using “perfect model” assumption from
climate science.



Online Learning

e Learning proceeds in stages.
— Algorithm first predicts a label for the current data point.
— Prediction loss is then computed: function of predicted and true label.
— Learner can update its hypothesis (usually taking into account loss).

 Framework models supervised learning.
— Regression, or classification (many hypothesis classes)
— Many prediction loss functions
— Problem need not be separable

* Non-stochastic setting: no statistical assumptions.

— No assumptions on observation sequence.

— Observations can even be generated online by an adaptive adversary.

* Analyze regret: difference in cumulative prediction loss from that of the
optimal (in hind-sight) comparator algorithm for the observed sequence.



Learning with ~@
expert predictors ]

p, (1)
Learner maintains oy k2 -
distribution over n “experts.” experts1...n ) [ ) ..o [ )

* Experts are black boxes: need not be good predictors, can vary with
time, and depend on one another.

* Learner predicts based on a probability distribution p,(i) over experts, i,
representing how well each expert has predicted recently.

* [{(i, t)is prediction loss of expert i at time t. Defined per problem.
o . : N\ . —L(i,t)
* Update p,(i) using Bayesian updates: DPt+1 (%) o< pe(i)e

 Multiplicative Updates algorithms (cf. “Hedge,” “Weighted Majority”),
descended from “Winnow,” [Littlestone 1988].



Learning with experts: time-varying data

To handle changing observations, maintain p,(i) via an HMM.
Hidden state: identity of the current best expert.

. Pligyalie) —
" i ) " i, P,1) =Plly ..., Y, )

\i \J
' ' ) def _1.(i,t+1)
p(ytull.y ,---,yt) = e

- Y Y 1

t+l1
7 .

Performing Bayesian updates on this HMM vyields a family of
online Iearning algorithms.

pry1(7 ocht Je~ U0 p(il )



Learning with experts: time-varying data

. Pligylieg) —
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Transition dynamics:

e Static update, P(i | j) = 0(ij) gives [Littlestone&Warmuth‘89]
algorithm: Weighted Majority, a.k.a. Static-Expert.

* [Herbster&Warmuth‘98] model shifting concepts via Fixed-Share:

1 —a) i=
Pl ={ W= 7



Algorithm Learn-a

[M & Jaakkola, NIPS 2003]: Track the best a—expert:
sub-algorithm, each using a different o value.

—L(a,t
pry1(a) o< pr(a)e” >
o -
Pe;aP) f  /
o 45 S
Experts i=1...n| ' ) ' |
4 4 @



Performance guarantees

[M & Jaakkola, NIPS 2003]: Bounds on “regret” for using wrong
value of a for the observed sequence of length T:

Theorem. O(T) upper bound for Fixed-Share(a) algorithms.

Theorem. Q(T) sequence dependent lower bound for
Fixed-Share(a) algorithms.

Theorem. O(log T) upper bound for Learn-o algorithm.

* Regret-optimal discretization of o for fixed sequence length, T.

e Using previous algorithms with wrong o can also lead to poor
empirical performance.



Tracking climate models: application

* Experts instantiated as IPCC global climate models.

— Each year (or month), each model outputs a projection for mean
temperature anomaly.

* Prediction loss: squared loss between predicted
(projected) and observed.

* Discretization of o due to [Monteleoni & Jaakkola '03]
— optimizes regret bound for fixed sequence length.



Tracking climate models: experiments

* Model predictions from 20 climate models

— Mean temperature anomaly predictions (1900-2098)
— From CMIP3 archive

* Historical experiments with NASA temperature data.
— GISTEMP

e Future simulations with “perfect model” assumption.
— Ran 10 such global simulations to observe general trends
— Collected detailed statistics on 4 representative ones: best and worst
model on historical data, and 2 in between.
* Regional experiments: data from KNMI Climate Explorer
— Africa (-15—-55E, -40 — 40N)
— Europe (0—30E, 40 — 70N)
— North America (-60—-180E, 15— 70N)

— Annual and monthly time-scales; historical & 2 future simulations/region.



Global results

| Algorithm: | Historical | Future Sim. 1 | Future Sim. 2 | Future Sim. 3 | Future Sim. 4 |
Learn-a Algorithm 0.0119 0.0085 0.0125 0.0252 0.0401
02 =0.0002 | o2 =0.0001 02 = 0.0004 o2 = 0.0010 o2 = 0.0024
Linear Regression* 0.0158 0.0051 0.0144 0.0264 0.0498
02 =0.0005 | o2 =0.0001 02 = 0.0004 o2 = 0.0125 o2 = 0.0054
Best Climate Model 0.0112 0.0115 0.0286 0.0301 0.0559
(for the observations) | o2 =0.0002 | o2 = 0.0002 0? =0.0014 o? = 0.0018 o? = 0.0053
Average Prediction 0.0132 0.0700 0.0306 0.0623 0.0497
(over climate models) | 02 =0.0003 | o2 =0.0110 02 = 0.0016 o2 = 0.0055 o2 = 0.0036
Median Prediction 0.0136 0.0689 0.0308 0.0677 0.0527
(over climate models) | 02 =0.0003 | o2 =0.0111 02 = 0.0017 o2 = 0.0070 o2 =0.0038
Worst Climate Model 0.0726 1.0153 0.8109 0.3958 0.5004
(for the observations) | o2 =0.0068 | o2 = 2.3587 02 = 1.4109 02 = 0.5612 02 = 0.5988

TABLE 1. Mean and variance of annual losses. The best score per experiment is
in bold. The Average Prediction over climate models is the benchmark technique.
*Linear Regression cannot form predictions for the first 20 years (19 in the future
simulations), so its mean is over fewer years than all the other algorithms, starting
from the 21st (20th in future simulations) year.

On 10 future simulations (including 1-4 above), Learn-a suffers less

loss than the mean prediction (over remaining models) on 75-90% of the years.




Regional results: historical

Algorithm: Africa Europe North America Africa Europe North America
Learn-a Algorithm 0.0283 0.1794 0.0407 0.0598 0.3048 0.0959
0% =0.0020 | o? =0.0520 o? = 0.0036 02 =0.0085 | o2 = 0.3006 o? =0.0311
Linear Regression*® 0.0391 38.9724** 0.0704 0.0741 1.7442 0.1119
0? =0.0039 | 02 = 134700.0 o? =0.0156 02 =0.0301 | o2 = 43.9616 o? =0.0432
Best Climate Model 0.0254 0.2752 0.0450 0.1144 2.2498 0.1629
(for the observations) | ¢2 = 0.0015 | o2 = 0.1207 o? =0.0035 0? =0.0285 | o? = 15.4041 o? =0.0935
Average Prediction 0.0331 0.2383 0.0493 0.0752 1.4781 0.1101
(over climate models) | o2 =0.0025 | o2 = 0.0868 o? = 0.0058 0% =0.0106 | o2 = 7.5964 o? =0.0417
Median Prediction 0.0291 0.2391 0.0502 0.0777 1.5001 0.1116
(over climate models) | 02 =0.0021 | o2 = 0.0964 o? = 0.0066 0? =0.0117 | o? =8.1498 o? = 0.0456
Worst Climate Model | 0.1430 1.0180 0.1593 0.2333 4.2104 1.1698
(for the observations) | o2 =0.0368 | o2 = 2.4702 o? =0.0372 02 =0.1020 | o2 = 71.2737 0?2 = 6.3192
Annual Monthly




Learning curves
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EXPERIMENTS: LEARNING CURVES
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EXPERIMENTS: LEARNING CURVES
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EXPERIMENTS: LEARNING CURVES
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Learning Curves: Africa
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Learning Curves: Europe
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Learning Curves: North America
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Regional results: future simulations

| Algorithm: | Africa 1 ] Africa 2 | Europe 1 | Europe 2 | N. Amer. 1 | N. Amer. 2 |
Learn-a Algorithm 0.0890 0.1053 0.2812 0.6624 0.0968 0.6061
02 =0.0167 | 02 =0.0249 | 02 =0.4134 | 02 =3.6678 | 02 =0.0272 | o2 =1.6429
Linear Regression* 0.0985 0.1384 1.1487 3.0836 0.0923 1.0458
02 =0.2680 | 0% =0.0455 | 02 =4.2672 | 0% =44.1931 | 0% =0.0365 | o? = 4.4447
Best Expert 0.1912 0.1967 2.1210 3.7893 0.1713 1.0478
(for the observations) | ¢2 = 0.0757 | 02 = 0.0754 | 02 = 12.6767 | 0% = 39.2087 | o2 =0.0903 | o2 = 3.9090
Average Prediction 0.1388 0.1806 1.1106 2.9353 0.1432 1.0745
(over climate models) | 02 = 0.0410 | 02 =0.0716 | 02 =4.4023 | 02 =29.9128 | 02 =0.0478 | o2 =4.1346
Median Prediction 0.1266 0.1711 1.1385 2.9093 0.1835 1.1075
02 =0.0352 | 02 =0.0637 | 02 =4.5734 | 02 =30.3332 | 02 =0.0827 | o2 =4.2544
Worst Expert 0.5236 0.5625 3.8266 5.0029 1.2311 2.2641
(for the observations) | ¢2 = 0.5782 | 02 = 0.7018 | 02 = 47.7359 | 02 = 76.7785 | 02 =3.3160 | o2 = 12.0301

TABLE 4. Regional results on two future simulations per region. Mean and variance
of monthly losses. The best score per experiment is in bold. The Average Prediction
over climate models is the benchmark technique. *Linear Regression cannot form
predictions for the first 18 months, so its mean is over fewer months than all the
other algorithms, starting from the 19th month.




Future work in Climate Informatics

 Macro-level: Combining predictions of the multi-model ensemble

— Extensions to Tracking Climate Models

» Different experts per location; spatial (in addition to temporal) transition
dynamics

* Tracking other climate benchmarks, e.g. carbon dioxide concentrations
— {Semi,un}-supervised learning with experts. Largely open in ML.

— Other ML approaches, e.g. batch, transductive regression
* Micro-level: Improving the predictions of a climate model
— Climate model parameterization: resolving scale interactions
— Hybrid models: harness both physics and data!
— Calibrating and comparing climate models in a principled manner

* Building theoretical foundations for Climate Informatics

— Coordinating on reasonable assumptions in practice, that allow for the
design of theoretically justified learning algorithms

* The First International Workshop on Climate Informatics!
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