Optimal Scheduling
of Exoplanet Observations
via Bayesian Adaptive Exploration

Tom Loredo
Dept. of Astronomy, Cornell University
http://www.astro.cornell.edu/staff/loredo/

GISS Workshop — 25 Feb 2011



First, a word from our sponsor (NASA!)

GO ( )gl_e nasa astrophysics program review Search

About 723,000 results (0.24 seconds) Advanced search

AsTRoPHYsICS REsearcH PRoGRAM REVIEW

The Astrophysics Division of NASA's Science Mission Directorate will conducta
review of its programs in Research, Analysis and Enabling Technology. This review
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Scientific method

Science is more than a body of knowledge; it is a way of thinking.
The method of science, as stodgy and grumpy as it may seem,
is far more important than the findings of science.

—=Carl Sagan

Classic hypothetico-deductive approach
® Form hypothesis (based on past observation/experiment)
® Devise experiment to test predictions of hypothesis
® Perform experiment
® Analysis —

® Devise new hypothesis if hypothesis fails
® Devise new experiment if hypothesis corroborated



Bayesian Adaptive Exploration

Prior information & data

)

Strategy Observ'n New data

Combined information~

Inference

Interim
results

»

Predictions m Strategy

® Observation — Gather new data based on observing plan

® [nference — Interim results via posterior sampling

® Design — Predict future data; explore where expected
information from new data is greatest
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Finding Exoplanets via Stellar Reflex Motion

All bodies in a planetary system orbit wrt the system’s center of
mass, including the host star.

Astrometric Method Doppler Radial Velocity (RV)
Sun’s Astrometric Wobble from 10 pc Method

Doppler Shift Along Line-of-Sight

1000

Doppler Shift due to
Stellar Wobble
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~ 490 of =~ 530 currently confirmed exoplanets found using RV method
RV method is used to confirm & measure transiting exoplanet candidates



RV Data Via Precision Spectroscopy

Millipixel spectroscopy Meter-per-second velocities
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A Variety of Related Statistical Tasks

Planet detection — |s there a planet present? Are multiple
planets present?

Orbit estimation — What are the orbital parameters? Are
planets in multiple systems interacting?

Orbit prediction — What planets will be best positioned for
follow-up observations?

Population analysis — What types of stars harbor planets?
With what frequency? What is the distribution of planetary
system properties?

Optimal scheduling — How may astronomers best use
limited, expensive observing resources to address these goals?

Bayesian approach tightly integrates these tasks
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Experimental Design as Decision Making
When we perform an experiment we have choices of actions:
® What sample size to use
® \What times or locations to probe/query

® Whether to do one sensitive, expensive experiment or several
less sensitive, less expensive experiments

® Whether to stop or continue a sequence of trials

We must choose amidst uncertainty about the data we may obtain
and the resulting consequences for our experimental results.

= Seek a principled approach for optimizing experiments,
accounting for all relevant uncertainties.



Bayesian Decision Theory

Decisions depend on consequences
Might bet on an improbable outcome provided the payoff is
large if it occurs and/or the loss is small if it doesn't.

Utility and loss functions
Compare consequences via utility quantifying the benefits of a
decision, or via loss quantifying costs.

a =Choice of action (decide b/t these)
Utility = U(a, o)
o =Outcome (what we are uncertain of)

Loss L(a,0) = Unax — U(a, 0)



Bayesian Decision Theory

Uncertainty & expected utility
We are uncertain of what the outcome will be
— average over outcomes:

ZP U(a, 0)

outcomes

The best action maximizes the expected utility:
a=argmaxEU(a)
a
l.e., minimize expected loss.

Axiomatized: von Neumann & Morgenstern; Ramsey,
de Finetti, Savage



Bayesian Experimental Design

Actions = {e}, possible experiments (sample sizes, sample
times/locations, stopping criteria . . . ).

Outcomes = {d.}, values of future data from experiment e.

Utility measures value of de for achieving experiment goals,
possibly accounting for the cost of the experiment.

Choose the experiment that maximizes
OISR

To predict de we must consider various hypotheses, H;, for the
data-producing process — Average over H; uncertainty:

EU Z Zp p(de|H;,...)| U(e,de)



A Hint of Trouble Ahead

Multiple sums/integrals

EU(e) = | Y p(Hill)p(de|Hi, 1)| U(e, de)
de H;

Average over both hypothesis and data spaces

Plus an optimization
é = argmax EU(e)
e

Aside: The dual averaging—over hypothesis and data spaces—hints
(correctly!) of connections between Bayesian and frequentist approaches.



Information-Based Utility

Many scientific studies do not have a single, clear-cut goal.

Broad goal: Learn/explore, with resulting information made
available for a variety of future uses.

Example: Astronomical measurement of orbits of minor planets or
exoplanets

® Use to infer physical properties of a body (mass, habitability)

® Use to infer distributions of properties among the population
(constrains formation theories)

® Use to predict future location (collision hazard; plan future
observations)

Motivates using a “general purpose” utility that measures what is
learned about the H; describing the phenomenon



Information Gain as Entropy Change

Entropy and uncertainty
Shannon entropy = a scalar measure of the degree of
uncertainty expressed by a probability distribution

1
S = E p;log; “Average surprisal”
. 1
1

= =) pilogp;
Information gain i
Existing data D — interim posterior p(H;|D)
Information gain upon learning d = decrease in uncertainty:

Z(d) = SHp(HiID)}] - S[{p(Hild, D)}]
= Z p(Hi|d, D) log p(H;|d, D) — Const (wrt d)

1

Lindley (1956, 1972) and Bernardo (1979) advocated using
Z(d) as utility



A ‘Bit’ About Entropy
Entropy of a Gaussian
p(x) oc e=(=w)?*/20? — T x —log(o)

=

p(X) ocexp [-3%-V 1 X] — T o —log(detV)
— Asymptotically like Fisher matrix criteria

Entropy is a log-measure of “volume,” not range

p(x) p(x)

X X

These distributions have the same entropy/amount of information.



Prediction & expected information
Information gain from datum d; at time t:

I(dr) = ZP(Hi|dt, D) log p(Hi|d¢, D)

We don’t know what value d; will take — average over prediction
uncertainty

Expected information at time t:

EZ(t) = / ddy p(de| D) T(de)
Predictive distribution for value of future datum:
p(de|D) = Zp(dfa H;|D) = ZP(H,"D) p(de|Hi)
= Zlnterim posterior x Single-datum likelihood

There is a heck of a lot of averaging going on!



Computation

MaxEnt sampling for parameter estimation cases
Setting:

® \We have specified a model, M, with uncertain parameters 6
® We have data D — current posterior p(6|D, M)
® The entropy of the noise distribution doesn't depend on 6,

—EZ(t) = Const—/ddt p(d:|D, 1) log p(d:|D, I)

Maximum entropy sampling.
(Sebastiani & Wynn 1997, 2000)
To learn the most, sample where you know the least.



Nested Monte Carlo integration for EZ

Entropy of predictive dist’n:
S[d:|D,M] = - / dd; p(d:|D, My)log p(d:|D, M)

® Sample predictive via 6 ~posterior, d; ~sampling dist'n given 6

® Fvaluate predictive as 6-mixture of sampling dist'ns

Posterior sampling in parameter space

® Many models are (linearly) separable — handle linear “fast”
parameters analytically

® \When priors prevent analytical marginalization, use interim
priors & importance sampling

® Treat nonlinear “slow” parameters via adaptive or
population-based MCMC; e.g., diff'l evolution MCMC
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Locating a bump
Object is 1-d Gaussian of unknown loc'n, amplitude, and width.
True values:

x =52 FWHM=06, A=7

Initial scan with crude (o = 1) instrument provides 11 equispaced
observations over [0,20]. Subsequent observations will use a better
(0 = 1/3) instrument.
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Cycle 1 Interim Inferences

Generate {xg, FWHM, A} via posterior sampling.
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Cycle 1 Design: Predictions, Entropy




Cycle 2: Inference, Design
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Cycle 3: Inference, Design
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BAE for HD 222582: Cycle 1

Prior information & data S Combined information‘

Strategy w New data Predictions m Strateg

Inference

Interim
results

HD 222582: G5V at 42 pc in Aquarius, V =7.7
Vogt™t (2000) reported planet discovery based on 24 RV
measurements
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Keplerian Radial Velocity Model

Parameters for single planet

e 7 = orbital period (days) e Argument of pericenter w
e ¢ = orbital eccentricity e Mean anomaly at t =0, My
e K = velocity amplitude (m/s) e Systemic velocity v

Requires solving Kepler's equation for every (7, e, Mo)—A strongly
nonlinear model!



Cycle 1 Interim inferences
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The next period
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The distant future
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New Data

13 subsequent observations, Butler™(2006)

Red points
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® Use 37-point best fit to simulate three new optimal observations

® Compare 24 + 3 & all-data inferences



Cycle 1 Interim inferences (24 pts)
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Cycle 2 Interim inferences (25 pts)
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Cycle 3 Interim inferences (26 pts)
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Cycle 4 Interim inferences (27 pts)
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[1oi is reduced further 30x



All-data inferences (37 pts)
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Outlook

® Explore more cases, e.g., multiple planets, marginal detections
® Explore other adaptive MCMC algorithms

® Extend to include planet detection:

® Total entropy criterion smoothly moves between
detection & estimation

® MaxEnt sampling no longer valid
® Marginal likelihood computation needed

® Non-greedy designs likely needed
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Final Provocation

Much data analysis is sequential:

® Sequential experimentation/exploration
® Chains of discovery (individual objects/events — population)

Herman Chernoff on sequential analysis (1996):

| became interested in the notion of experimental design in a
much broader context, namely: what'’s the nature of scientic
inference and how do people do science? The thought was not
all that unique that it is a sequential procedure. ..

Although | regard myself as non-Bayesian, | feel in sequential
problems it is rather dangerous to play around with
non-Bayesian procedures.... Optimality is, of course, implicit in
the Bayesian approach.



Jetsam

jetsam: material that has been thrown overboard from a ship, esp.
material discarded to lighten the vessel



Conventional RV Orbit Fitting

Analysis method: Identify best candidate period via periodogram;
fit parameters with nonlinear least squares/min x?
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Challenges for Conventional Approaches

Multimodality, nonlinearity, nonregularity, sparse data —
Asymptotic uncertainties not valid

Reporting uncertainties in derived parameters (msin i, a) and
predictions

Lomb-Scargle periodogram not optimal for eccentric orbits or
multiple planets

Accounting for marginal detections
Combining info from many systems for pop'n studies

Scheduling future observations



Periodogram-Based Bayesian Pipeline

Kepler
Periodogram

Interim
Priors

Population
Analysis

P(D),

<e>r, <M p>‘l'

Adaptive
MCMC

Importance
Weighting

Y

Adaptive
Scheduling

Detection &
Measurement



Differential Evolution MCMC
Ter Braak 2006 — Combine evolutionary computing & MCMC

Follow a population of states, where a randomly selected state is
considered for updating via the (scaled) vector difference between
two other states.

.
°
L4 __— Proposal
4

°
°
Candidate for update ~ ° °

.
\ Proposed displacement

Behaves roughly like RWM, but with a proposal distribution that
automatically adjusts to shape & scale of posterior

Step scale: Optimal v &~ 2.38/v/2d, but occassionally switch to
~ =1 for mode-swapping



Expected Information via Nested Monte Carlo
Assume we have posterior samples 0; ~ p(0|D, M)

Evaluating predictive dist'n:

p(celD. M) = [ db p(8]D. M) p(c.lo. M)
1
— p(de) = mZp(dere,-,M)
i=1

Sampling predictive dist'n:
de,j ~ P(de|07 M)

Entropy of predictive dist'n:

SldelD,M] = — / dde p(de| D, M) log p(de|D, M)
Ny
~ _Ezlogp(deg)
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