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Initial-value vs. forced-boundary forecasts

lead time →

daily weather seasonal decadal century climate
forecasts outlooks predictions projections

initial-value
problem

forced boundary-
value problem

↑
regime behavior
North Atlantic
oscillation,
Pacific Decadal
oscillation, . . .

After Meehl et al. (2009), Bull. Amer. Met. Soc., 89, 303.



Pacific decadal oscillation (PDO)

A long-lived El Niño-like
pattern classified as being in
either warm or cool phases.

Cool phase (shown left) is
associated with
above-average precipitation
in the Eastern US.

Only 2–3 cycles in the last
century.

Dynamical origins and
predictability are an area of
active research.

Image sources: earthobservatory.nasa.gov/IOTD,

www.cgd.ucar.edu/cas/jhurrell/indices.info.html

earthobservatory.nasa.gov/IOTD
www.cgd.ucar.edu/cas/jhurrell/indices.info.html


Setting

High-dimensional, chaotic, and strongly mixing dynamical
system

dx
dt

= F(x, t), x ∈ RN, N � 1

Incomplete measurements

z(t) = G(x(t)), z ∈ Rn, n � N

Observable to be predicted (here assumed scalar)

A(t) = A(x(t))



Forecast probabilities

peq(A)

p(A(t) | S)
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The equilibrium
distribution peq(A)
describes our knowledge
about A assuming that
changes in the forcing are
not important.
A is said to be predictable at
time t if the distribution
p(A(t) | S) given some
initial data S differs from
peq(A).

For t′ sufficiently larger
than t, p(A(t) | S) relaxes
towards peq(A).

Need a notion of distance between probability distributions.
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What is predictability?

Revealing long-range predictability via information theory and
data clustering

Long-range forecasts in a 1.5-layer ocean model



Information theory

Pioneered by Claude Shannon in 1948 as a
mathematical theory of communication.∗
∗Bell System Technical Journal, 27, 379, 1948.
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Entropy measures the
uncertainty about a physical
system:

H = −
∑

i

pi log pi.



Relative entropy

q(A)

p(A)
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A

The relative entropy between p
and q is defined as

P(p, q) =
∫

dA p(A) log
p(A)
q(A)

.

Relative entropy describes a notion of ‘distance’ between
probability distributions:

P(p, q) is positive if p 6= q, and zero if p = q.
P(p, q) is invariant under general invertible
transformations of A.

However, P(p, q) is not symmetric under p ↔ q, and does not
obey the triangle inequality.



Interpretations of relative entropy
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p(A | S)
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1 P(pposterior, p) with
pposterior(A) = p(A | S) is the
information gain relative to the
prior distribution p(A) achieved
by a measurement S.

2 P(p, pmodel) measures the lack of
information or error in a model
that describes a system by
pmodel(A) when the outcomes are
actually generated by p(A).

Note the different position of p in the
‘slots’ of P(·, ·).



Mutual information

A

peq(A)
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p(A | S2)
Different outcomes of
experiments, S1, S2, . . ., will
give rise to different amounts
of information gain, as
measured by
P(p(A | Si), p(A)).

The expectation value of P over Si is also a relative entropy, called the
mutual information between A and S:

I(A; S) =
∫

dS p(S)
∫

dA p(A | S) log
p(A | S)

p(A)
= P(p(A, S), p(A)p(S)).

I(A; S) is non-negative, and vanishes if and only if A and S are
statistically independent, i.e., iff

p(A, S) = p(A)p(S).



Fundamental questions
Coding theory

What is the complexity of a message A?
Answer: The entropy H of the probability distribution p(A)
generating the message.

What is the ultimate rate of communication across a channel?
Answer: The maximum (over input distributions) of the mutual
information I(A; B) between the input A and output B.

Climate science
What is the uncertainty in a climate variable A?
Answer: The entropy H of the equilibrium or climatological
distribution peq(A).

What is the predictability of A(t) at time t in the future, given
initial data S?
Answer: The mutual information I(A(t); S)



Fundamental questions
Coding theory

What is the expected increase in code length when a probability
distribution q is used to encode a message when the message is
generated by a source distribution p?
Answer: The relative entropy P(p, q).

Climate science

What is the error in a model that predicts A(t) with a
distribution pM when in reality A(t) is generated by p?
Answer: The relative entropy P(p, pM).



Quantifying predictive skill

Relative-entropy measure of skill∗

Dt =
∫

dA(t) p(A(t) | S) log
p(A(t) | S)
peq(A(t))

.

peq(A)

p(A(t) | S)
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Dt is the gain information
about A(t) beyond
climatology achieved by
observing the initial data S.
It is crucial that p(A(t) | S)
can be computed with no
model error. Otherwise, Dt
can measure false
predictive skill.

∗Kleeman (2002), J. Atmos. Sci., 59, 2057; Majda et al. (2002), Methods Appl.
Anal., 9, 425; DelSole (2002), J. Atmos. Sci., 61, 2425.



Generalized second law

forecast lead time t

D
t

The relative entropy Dt is a
non-increasing function of time
if the following conditions are
met:

1 As t →∞ the conditional probabilities p(A(t) | S) converge
to an equilibrium distribution peq(A) for all initial data S.

2 p(A(t) | S) can be uniquely determined if we know
p0(A) = p(A(0) | S).

This means that the system must be closed and A(t) has no
memory or hysteresis.



Long-range, coarse-grained forecasts

• coarse initial data
• detailed initial data

n-dim. space of initial data

range

D
t

forecast lead time t

short long
range

Due to chaotic mixing,
detailed initial data
contribute negligible
information for long-range
forecasts.

Even small uncertainties in
the initial state will
dominate the signal
beyond a period of ∼two
weeks.



Long-range, coarse-grained forecasts

regime 3

n-dim. space of initial data

regime 1

regime 2
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p(A(0) | 3)

Strategy
1 Instead of detailed initial

data, it suffices to consider
the (integer-valued)
affiliation of the system to
a coarse-grained partition of
Rn to make long-range
forecasts.

2 Determine the partition
empirically, by
data-clustering realizations
of the system in
equilibrium.



Assigning cluster affiliation
n-dim. space of initial data

z∆τ

θ3
θ2

d2

d1 d3

θ1

Each cluster is characterized by
its centroid, θk.

1 Collect observations z(t) over a time window ∆τ and
compute the average,

z∆τ =
1

∆τ

∫
∆τ

dt z(t).

2 Set S equal to the cluster that lies closest to z∆τ , i.e.,

S = argmin
k

dk, dk = ‖z∆τ − θk‖.



Evaluating the cluster coordinates
1 Collect a training time series z(t), and take the

running-average over a time window ∆t.

0 20 40 60 80 100 120 140 160 180 200
−2

0

2

4

z
(t

)

t/years

∆t=1000 days

n-dim space of initial data

θ2

θ3
θ1

2 Determine θk by K-means
clustering of z∆t(t).



Super-ensemble forecasts
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p(A(0) | 3) Predictive skill given that the
initial data lie in the k-th
coarse-grained cluster in the
partition

Dk
t = P(pk

t , peq),

where pk
t (A) = p(A(t) | S = k).

The expectation value of Dk
t over all cluster affiliations is a

super-ensemble measure of predictive skill:

Dt =
K∑

k=1

πkDk
t , πk = p(S = k).



Super-ensemble forecasts
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p(A(0) | 3) Predictive skill given that the
initial data lie in the k-th
coarse-grained cluster in the
partition

Dk
t = P(pk

t , peq),

where pk
t (A) = p(A(t) | S = k).

Interpretation
Dt is equal to the mutual information I(A(t), S) between
the coarse-grained initial data S and the value A(t) of the
prediction observable at time t.
Dt vanishes if and only if S and A(t) are statistically
independent, e.g., in the t →∞ limit.



What is predictability?

Revealing long-range predictability via information theory and
data clustering

Long-range forecasts in a 1.5-layer ocean model



Global ocean winds



Global ocean winds



The 1.5-layer model†

~v = (−∂yh, ∂xh)ρ1

ρ2

~v = 0

h(x, y, t)

Quasigeostrophic vorticity
equation for h

Interfacial friction

Subgrid-scale diffusion

Asymmetric double-gyre
forcing

†McCalpin & Haidvogel (1996), J. Phys. Oceanogr., 26, 739



Three-state phenomenology of the 1.5-layer model

3 3.5 4 4.5 5
0

0.5

1

1.5

2

Total energy/1017 J

P
ro

b
. d

en
si

ty
/

J−
1

 

 

meand.

middle

ext.

 

 

Regimes persist for
O(1000) days.
The equilibrium
distribution of
energy has no local
maxima.



EOF analysis

Decompose the
streamfunction in a basis of
empirical orthogonal
functions (EOFs):

h(r, t) =
n∑

i=1

PCi(t)EOFi(r)

+ residual.

PCi is the principal component corresponding to EOFi.
For given n, this basis minimizes the norm of the residual.



Setup

Full dynamical system x(t) = h(r, t)

Incomplete measurements z(t) = (PC1(t), . . . PC20(t))

Prediction observables E (energy), PC1, PC2

20-dimensional measurement vector
Scalar prediction observables



Coarse-grained partitions
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equilibrium

The point cloud of data in equilibrium.

Distinct regimes exist despite the lack of maxima in the
equilibrium distributions of the PCs.

Running-average smoothing of the training data and the initial
conditions is crucial to reveal regimes.



Coarse-grained partitions
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K=7 partition

 

 

equilibrium

regime 1

regime 7

Distinct regimes exist despite the lack of maxima in the
equilibrium distributions of the PCs.

Running-average smoothing of the training data and the initial
conditions is crucial to reveal regimes.



Information content in the partitions
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K = 3

K = 7

K = 8
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Optimal running-average
window ∆τ depends on
the prediction observable.

∆τ ∼ 20 days is favored
for PC1.
Optimal partitions for E
require more extensive
coarse-graining
(∆τ ∼ 1000 days).

The additional information
content in K > 7 partitions
is negligible.



Circulation regimes

Cluster-conditional mean and standard deviation of the
streamfunction anomaly.



Long-range forecasting skill

Predictive skill for energy. The relative-entropy measure Dt reveals
the optimal running-average window ∆τ to coarse-grain the initial
data for the given prediction observable and forecast lead time.



Long-range forecasting skill
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Predictive skill can decay more slowly than an exponential
decay based on τc, the longest decorrelation time of the z(t)
vector used for clustering.
Energy is predictable up to ∼ 7 years in advance.
The leading PCs governing the large-scale structure of the
flow are predictable up to ∼ 5 years in advance.



Error in Markov models
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Forecast PDFs in Markov models of
regime transitions:

pMk
t =

K∑
i=1

[exp(Lt)]kipi
0.

Discrepancy of the Markov model from
equilibrium (can convey false skill):

Dk
t =

∫
pMk

t log
pMk

t

pM
eq

.

Error in the Markov model relative to the
true model:

Ek
t =

∫
pk

t log
pk

t

pMk
t

.

Equilibrium consistency, Ek
∞ � 1, is essential for long-range

forecasts.
Persistence of imperfect models is not synonymous with fidelity.



Conclusions & outlook

Information theory provides an objective measure of
predictive skill as the relative entropy between the
distribution p(A(t) | S) conditioned on initial data S and
the equilibrium distribution peq(A).

A natural measure for model error is the relative entropy
between p(A(t) | S) and the forecast distribution
pM(A(t) | S) in an imprefect model.

For long-range forecasts it suffices to take S to be the
affiliation of the system at time t = 0 to a coarse-grained
partition of the set of possible initial data.

No need to specify detailed initial data (a major challenge
in ensemble forecasts).



Conclusions & outlook

Applied in a simple double-gyre ocean model, the
technique reveals

Circulation regimes are consistent with empirical
phenomenology of rolled-up and extensional
configurations of the jet.
Predictability in certain large-scale observables
approaching 10 years.

Error in Markov models of the low-frequency dynamics
can be assessed a posteriori.

Currently working on extensions of these methods to
comprehensive climate models featuring baroclinic effects
and time-dependent statistics.
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