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Goal 

  Understand Earth climate variability 
  Determine and predict the climate’s response to both 

natural and human-induced forcing 
  Understand the cause and effect relationships between 

different climate sub-systems 

(a) (b) 

(a) NASA  (b) William Rossow 
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Relevant Variables (Sub-systems) 
  One of the greatest challenges in the area: 

 Which climate variables are related to the 
phenomena we wish to describe or predict? 

(Top right) A Mutual Information map of Cloud Cover vs. Pacific CTI (Cold Tongue Index), which indexes ENSO  
(El Nino Southern Oscillation), (Foreground) A Mutual Information map of Cloud Cover vs. Seasonality  
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Interactions between different variables 

1)  Which variables are related? 
2)  What is the direction of the information flow (causal interactions)? 

OBJECTIVES FOR A BETTER CLIMATE MODELING AND PREDICTION 
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Outline 
  Objective: 

  Identification of relevant climate variables of a physical phenomenon 
  How can we quantify the interaction between these variables and the 

physical process? 

  Methodology: 
  Information-theoretic approaches 

  Entropy, Mutual Information and Transfer Entropy 
  Estimation of entropy and mutual information from data 

  Piecewise-constant probability density function (pdf) model 
  Continuous probability density function model 

  Estimation of Transfer Entropy methods and their comparison 

  Proposed method and demonstrations 
  Ongoing research 
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Information Theory 

  To quantify the relevance of a variable to a phenomenon, 
we use information theory 

 Entropy is used to quantify the amount of information 
provided by a single variable 

 Mutual information is used to quantify what we learn 
about one variable from the other 
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Identifying Causal Interactions 

  Another great challenge is to identify the direction and 
amount of information flow from one variable to another 

 Data-based approach: Transfer Entropy  
 (Unknown system dynamics) 
 (Schreiber, 2000) 

 Model based approaches (Known system dynamics) 
 (Majda and Harlim, 2007; Liang and Kleeman, 2005) 
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Estimation of Information-Theoretic 
Quantities from data 

  Entropy is not a property of the data set itself, rather it is a 
function of the probability density from which the data were 
sampled 

  We propose to estimate the probability density function (pdf) 
of data first, then estimate the entropy by sampling from pdf 

  Estimation through pdf allows us to calculate our uncertainty     

(provide error bars                          statistical significance of our findings) 
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Entropy 

  Average uncertainty to find the system at a particular state ‘x’ 
out of a possible set ‘X’ is (Shannon) entropy: 

  Discrete version: 

  Continuous version: 

m(x): Lebesgue measure 
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Entropy 

  If the system is described by two parameters, we can define joint 
entropy which jointly describes two sub-systems: 

  Discrete: 

  Continuous: 
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Mutual Information 
  The amount of information shared between two sub-systems X and Y: 

  Definition in terms of Kullback Leibler divergence 

  Statistical Independence:  
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OUR GOAL: 
Transfer Entropy 

  Estimation of the information flow direction between sub-
systems using data under the assumption of Markov processes 

  Consider two subsystems X and Y, with data in the form of a 
two time series of measurements 

 then the transfer entropy can be written as  

 which describes the degree to which information about Y allows 
one to predict future values of X.  This is then a measure of the 
causal influence that the subsystem Y has on the subsystem X.  

  

€ 

X = {x1, x2,, xk, xk+1,, xn}
Y = {y1, y2,, yl , yl+1,, yn}

Information Flow: Information we learn from the past state of one variable  
about the current state of the other 



TRANSFER ENTROPY (TE) 
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 TE is NOT symmetric, thus provides directionality information 

 There are several methods in the literature, which are not totally clear on  
choosing ad hoc parameters. Thus, we propose using two existing methods and 
propose our own Bayesian technique and synthesize them. 

€ 

TEX→Y = T Yi+1Yi
(k),Xj

(l)( ) = p yi+1,yi
(k),x j

(l)( ) log2
p yi+1 yi

(k),x j
(l)( )

p yi+1 yi
(k)( )i=1

N

∑

€ 

TEY→X = T Xi+1Xi
(k ),Yj

( l )( ) = p xi+1,xi
(k ),y j

(l )( ) log2
p xi+1 xi

(k ),y j
( l )( )

p xi+1 xi
(k )( )i=1

N

∑

where xi(k)={xi,…,xi-k+1} and yj(l)={yi,…,yi-l+1} are past states and X and Y are 
 kth and lth order Markov processes  



METHOD1: PIECEWISE-CONSTANT MODEL FOR 
PROBABILITY DENSITY FUNCTION OF DATA  
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€ 

TEY →X = T Xi+1 | X i
(k ) ,Yj

( l )( ) = H X i
(k ) ⊗ Yj

(l )( ) − H X i+1
(k+1) ⊗ Yj

( l )( ) +H X i+1
(k+1)( ) − H X i

(k )( )

where     is used to denote a composite process in higher dimensions. 

For k=l=1; 

€ 

TEY →X = T Xi+1 | Xi ,Yj( ) = H Xi+1,Xi( ) +H Xi ,Yj( ) +H Xi+1,Xi ,Yj( ) − H Xi( )

Joint Shannon entropy Shannon Entropy 

Estimate these quantities from data appropriately! 

Proposal: Piecewise-constant model for pdf, then entropy from pdf 
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Proposed Methodology: 
Estimation of entropy from data 

Infer pdf  of  data 

pdf  #1 

pdf  #2 

pdf  #N 

H1 

H2 

HN 

Data 

Sample multiple pdf ’s from the posterior Bayesian inference 
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Bayesian Modeling of probability density function 

  Bayesian modeling: 

  Update our prior belief with data 
  We infer the probability distribution of our model 

  Having a probability distribution to quantify uncertainties 

Posterior Probability Prior Probability 
Evidence 

Likelihood 

Superior to point estimations 
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Piecewise-constant pdf model 

  Identification of the optimum number of bins is important to describe the 
underlying pdf properly (Knuth et al., 2006) 

  pdf estimations: 

  Entropy calculations: 
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H1 

H2 

H3 

H4 

HN 

Estimation of entropy from data 
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Bayesian modeling of piecewise-constant pdf : 
Estimation of bin probabilities: 

Prior distribution: 

Likelihood function: 

Posterior distribution of each bin probability: 

Parameter of interest:  
Bin probabilities 

Observed data: 

€ 

π k =
nk + 12
N + M

2
, k =1,...,M

Total number of elements in data set 
Number of bins 

Number of elements in the kth bin 



Finding the optimal bin number 
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 Find the joint posterior of bin heights and bin number and maximize this 

€ 

p(π ,M | d )∝ p π( ) p M( ) p d | π ,M( )

€ 

p M |d( )∝ p(π )p(M)p(d |π ,M)
π

∫ dπ m−1

€ 

=
M
V
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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⎝ 
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⎠ 
⎟ 

Γ
1
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
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M
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1
2k=1

M

∏

Γ N +
M
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

ˆ M = argmax
M

log p M |d( ){ }



Finding the optimal bin number: General optBINS 

21 

€ 

p π | M( ) =

Γ β
i=1

M

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Γ β( )
i=1

M

∏
π1π 2...πM −1 1− π i

i=1

M −1

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

β −1

€ 

π k =
nk + β
N +Mβ

, k = 1,...,M € 

p(M |d)∝ M
V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
N Γ Mβ( )
Γ β( )M

nk + β( )
k=1

M

∏
Γ N + Mβ( )

€ 

ˆ M = argmax
M

log p(M |d){ }

Optimal bin number 

Average bin height 
(artificial effect can be decreased by small beta) 

SMALL BETA IS GOOD FOR HIGH DIMENSIONS WHEN BINS ARE EMPTY 
AND FILLED ARTIFICIALLY 

Wolpert & Wolf, 1995 
(for fixed number of bin optimizations-sample effect examinations) 



BETA EFFECT 
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Estimation of the entropy of a Gaussian distributed data using different beta values 
Htrue=1.4189 
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Piecewise constant model 
  We obtain a posterior pdf for each bin probability 

  This allows us to sample from this distribution 

  We can report our uncertainty in our pdf 
estimation 

  Therefore, we can summarize our uncertainty in 
entropy estimation by computing its mean and 
standard deviation from these samples 
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Disadvantages of piecewise-constant model 
  Uniform densities of the bins cause small biases in the 

entropy estimates 
  These biases increase as we go to higher dimensions 
  Mutual information and transfer entropy need entropy 

estimations in higher dimensions, respectively 

Advantages of piecewise-constant model 
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Continuous pdf model 

  In order to reduce biases arising due to local uniform approximations 
of histograms, we adopt a continuous (Mixture of Gaussians (MoG)) 
pdf model: 

  Multivariate version: 

€ 

p x |M,A,µ,σ( ) =
1

Z(A,µ,σ)
Ak exp −

x −µi( )
2σ i

2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

k=1

M

∑

p x |M,A,m,Σ( ) =
1

Z(A,m,Σ)
Ak exp −

1
2
x −mi[ ]Σ−1 x −mi[ ]T

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ k=1

M

∑
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Continuous pdf model 
  Estimate the unknown parameters of the MoG model using a Bayesian 

approach (Nested Sampling, Skilling, 2004) 

  Having obtained the pdf models from data, entropy for each model can be 
computed by integrating h(x) numerically.  

  Weighting each entropy computation by the probability of the model enables 
us to compute the mean entropy and the error bars.  

  To estimate MI between different variables, the marginal and joint H(X,Y) 
entropies are estimated as described above and used as follows: 
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Estimation of entropies using continuous pdf model 
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Experiments 

Mixture of 
Gaussians 

Procedure 
1.  Choose a pdf model and infer the probability distribution for the  

 model parameters  
2. Sample ~60 pdf’s from the posterior distribution 
3. Compute the entropy of each pdf 
4. Find mean and standard deviation of entropy estimates 

Piecewise 
continuous 
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Experiment 1 
1D Gaussian data with N = 1000 data samples (D=1,  N=1000) 

True entropy value is 1.4189 
Piecewise-constant: 

Continuous: 

Piecewise-constant: Continuous: 

Statistics of 100 experiments 

N
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Model Estimates within σ Estimates within 2σ 

Piecewise-constant 29% 62% 

Mixture of Gaussians 68% 96% 
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Experiment 2 
Results of 100 experiments on a 2D skewed Gaussian  
(D=2,  N=1000) 
True joint entropy = 2.6940 

Note that the piecewise constant model is extremely biased in the  
two dimensional case. 

Piecewise constant model Continuous model 



Method 2: Adaptive partitioning of the sample space 
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 On slide (11), MI is calculated as a sum of individual entropies. This brings artifacts. 
Grassberger has corrections for this but it is not satisfactory. 

 Using fixed bin size for the histogram to estimate pdf for individual Shannon  
entropies in (11) is done a lot in the literature. Fraser and Swinney (1986) and  
Darbellay and Vajda (1999) shows that it is not effective and propose adaptive bin  
widths to estimate mutual information. 

 Once we estimate mutual information, TE can be estimated as follows (Kaiser & 
 Schreiber, 2002):  

€ 

TE Xi+1Xi
(k ),Yj

( l )( ) = MI Xi
(k ) ⊗ Yj

(l ),Xi+1( ) −MI Xi(k ),Xi+1( )

 Here, we utilized the algorithm of Darbellay and Vajda (1999) coded by Petr 
Tichavsky and openly available on his web site. 



Method 3: Kernel Density Estimation (KDE) methods 
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 We do not divide the data range into certain bins 
 A kernel is placed on top of each data point 
 Even if rectangular kernel is utilized, the resulting entropy estimation becomes 
more successful (Prichard & Theiler, 1995) 
 TE can be written as follows:  

€ 

TEY→X = T Xi+1Xi
(k ),Yj

( l )( ) = p xi+1,xi
(k ),yi

(l )( ) log
p xi+1,xi

(k ),yi
(l )( )p xi(k )( )

p xi+1,xi
(k )( )p xi(k ),yi(l )( )i

∑

 Probabilities are estimated using generalized correlation sums from data as  
follows: 

€ 

pε xi+1,xi
(k),yi

(l)( ) ≅ 1N Θ ε −

xi+1 − x j+1

xi
(k ) − x j

(k)

yi
(l ) − y j

(l)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ j

i≠ j

∑ = C ε( )

radius 

HOW TO  
CHOOSE??? 
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Grassberger 
Procaccia 

Time-lagged 
Mutual  
information 

k=l=1 

k=10;l=1 
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As long as beta is small directionality is OK, but we have a magnitude problem. 
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Model of an atmospheric convection roll 
x – convective velocity 
y – vertical temperature difference 
z – mean convective heat flow 



Chaotic Regime (r=28) 
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KDE General optBINS 

Adaptive partitioning method 

All directions between pairs AGREE! 

y 

x 

z 

velocity 

temperature  
difference 

 heat flow 



Subchaotic regime (r=24) 
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€ 

β = 0.1

KDE Generalized optBINS 

Adaptive partitioning method 

All directions between pairs AGREE! 

y 

x 

z 

velocity 

temperature  
difference 

 heat flow 
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Applications to  
International Satellite Cloud Climatology (ISCCP) data: 

Mutual Information between 
Cloud Cover and the Cold Tongue Index 

  Mutual Information map between ISCCP percent cloud cover and Cold 
Tongue Index (CTI), which describes the sea surface temperature 
anomalies in the eastern equatorial Pacific Ocean (6N-6S, 180-90W) 
and is indicative of El Nino Southern Oscillation (ENSO) variability. 

  Cloud cover data is from ISCCP climate summary product C2 
    (Schiffer and Rossow, 1983; Rossow and Schiffer, 1999) and CTI data 

is from T. Mitchell: 
 http://tao.atmos.washington.edu/pacs/additional_analyses/
sstanom6n6s18090w.html 
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Data Description 

  Cloud cover data consist of monthly averages of percent 
cloud cover resulting in a time-series of 198 months of 
6596 equal-area pixels each with side length of 280 km. 
The percent cloud cover data at each pixel can be 
thought of as a time-series of measurements of 
subsystem X: X1, X2 ,…, X6596  

  CTI data consist of the set of 198 monthly values of CTI 
constitute the sub-system Y 
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Mutual information between ISCCP cloud 
cover and CTI 

(piecewise-constant pdf method) 

Mutual information values for pixels along the equator with their error bars 
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Mutual information between ISCCP cloud 
cover and CTI 

(piecewise-constant pdf method) 

  2 sigma cut-off (regions having 2 sigma significance and higher) 
  Main effect of sea surface temperature on cloud coverage is in the 

equatorial Pacific, along with and isolated area in Indonesia (satellite 
coverage artifacts around India) 



43 

Mutual information between ISCCP cloud cover 
and CTI 

(MoG pdf model) 
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Mutual information between ISCCP cloud 
cover and CTI 

The Mixture of Gaussians model reveals a greater impact of ENSO CTI 
on global cloud cover. 

Not only are the equatorial Pacific and Indonesian areas affected, but  
ENSO activity affects cloud cover in the inter-tropical convection zones  
in Africa, India and the eastern coast of South America. 

MoG model Piecewise-constant model 



45 

Cloud Cover and Seasonality 
Mutual Information between ISCCP percent cloud cover and Seasonality. 

This method finds the Inter-Tropical Convection Zones, The Monsoon Regions, 
the Sea Ice off Antarctica, and cloud cover in the North Atlantic and Pacific.   

This figure can be directly compared to the PCA analysis performed by Rossow et 
al. 1993, J. Climate, 6:2394-2418. 
To better understand the relationships between different climate variables we are 
now working on the application of transfer entropy. 
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Our current research 
  We are trying to apply our computational tool to better 

understand the Madden-Julian Oscillation 

  We are looking at possible interactions between different 
climate variables in the following regions: 
  65E-95E, 5N-5S 
  105E-135E,5N-5S 
  145E-175E,5N-5S 

  Currently, we are analyzing vertical winds (Omega 
500mb), zonal winds (uwind 875 mb) , MJO indices and 
different cloud types 
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Data Description 

  Time series of Relative Frequency of Occurence (RFO) for each 
Weather State (WS) in Tropics 

Weather States         
  WS1 - Deep Cumulus clouds        
  WS2 - Anvil clouds         
  WS3 - Congestus clouds        
  WS4 - Cirrus clouds         
  WS5 - Shallow Cumulus clouds        
  WS6 - Stratocumulus clouds        
  WS7 - Clear sky    

  Time series of Vertical Velocity (Omega) in tropics 
  MJO Index  
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Preliminary dependency analysis for MJO  
Cloud types vs. MJO index 

Cirrus clouds-MJO 160E Stratocumulus clouds-MJO 160E 


