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  The expansion of the universe is accelerating 

      - discovered by looking at distant Supernovae in 1998 

      - confirmed recently by studying the CMB, clusters. 

   Three different explanations                     

       1.  vacuum has finite (nonzero) energy density 

       2.  “dark energy”: a new uniform component of 

             the universe with large negative pressure 

       3.  general relativity fails on cosmological scales 

  Commonly regarded “most important problem in physics” 

      - accounts for ~70 percent of total energy in the universe 



  Characterizing dark energy 

      - equation of state p = w ρ 

      - vacuum:  w=-1       vs    dark energy or non-GR:  w=w(t) ≠ -1 

   Universe is “flat”:  no spatial curvature (CMB) 

      - fixes energy density ρ.   Need to measure w 

      - w affects:  (i) evolution of expansion rate 

                         (ii) growth of structure 

  Solution will come from astronomers: no small-scale effect                     







  Traditional statistic:                     

      - (tomographic) two-point correlation function Cl 

      - depends on w, linear regime analytically predictable 

  Question: is there significant information in the      

    non-linear regime beyond “usual” LSS statistics ? 

        1.  Statistical power of dN/dz (cluster counts) 

        2.  Complementarity of dN/dz and Cl 



  Several large (≳1,000 sq. deg) WL surveys forthcoming: 
     (e.g. Pan-STARRS, KIDS, DES, LSST) 

  Shear power spectrum and related large-scale statistics 
     (e.g. Kaiser 1992; Jain & Seljak 1997; Hu 1999, 2002;    
       Huterer 2002; Refregier et al. 2004; Abazajian & Dodelson 2003;         
      Takada & Jain 2004; Song & Knox 2004)       
     E.g. σ(w0)=0.06; σ(wa)=0.1 from 11-paramater fit to     
     tomographic shear power spectrum (LSST) + Planck 

  Comparable statistical errors from cluster number counts  
     (e.g. Wang et al. 2004, 2005; Fang & Haiman 2007;  
      Takada & Bridle 2007; Marian & Bernstein 2006, 2008)       
     E.g. σ(w0)=0.04; σ(wa)=0.09 from 7-paramater fit to     
     ~200,000 shear-selected cluster counts (LSST) + Planck 



  Cluster counts and shear power spectrum can be 
    considered independent observables – high synergy 
     Covariance changes parameter-estimates by < few % 
     (Fang & Haiman 2007; Takada & Bridle 2007) 

  However, selection effects are (probably) a showstopper 
   in a WL survey alone, due to projection effects 
     Filter-dependent trade-off between completeness and 
     purity:  “best compromise” values are ~70% for both 
    (e.g. White et al. 2002; Hamana et al. 2005; Hennawi & Spergel 2005) 

  Why not define observable immune to projection effects?  
     historical reason: cosmology-dependence of  
     halo mass function calculable from Press-Schechter 



  A simple statistic: one-point function of convergence 
     i.e. fraction of sky above a fixed threshold κ>κT =νσN 
     “analytically” calculable, analogous to mass function: 

Wang, Haiman & May (2009) 

Simulations by 
M.White (2005) 

(2006) 

cosmology  
dependence 
only through 
〈κ2〉 and κmin 

F=∫νσ P(κ)dκ 



  Another simple statistic: # of shear peaks, regardless of  
   whether or not they correspond to true bound objects 
       as a function of height, redshift and angular size 
       Kratochvil, Haiman, Hui & May (2009)  

  Fundamental questions about “false” (non-cluster) peaks: 
   1. How does N(peak) depend on cosmology ? 
   2. What is the field-to-field variance ΔN(peak) ? 

  Requires simulations 



     - pure DM (no baryons, neutrinos, or radiation) 
     - public code GADGET-2, modified to handle w0 ≠ -1 
     - fiducial ΛCDM cosmology from WMAP5: 
       (w0, ΩΛ, Ωm, H0, σ8, n) = (-1.0, 0.74, 0.26, 0.72, 0.79, 1.0) 
     - fix primordial amplitude Δ2

R = 2.41×10-9 at  k = 0.002 Mpc-1 

           (σ8=0.79  vs. 0.75) 
     - two alternative cosmologies, differ only in w0= -0.8 or  -1.2 
     - 5123 box, size 200h-1 Mpc, zin=60, MDM=4.3×109 M⨀ 

       - gravitational softening length εPl =  7.5h-1 kpc 
    - output particle positions every 70h-1 comoving Mpc 
     - runs performed at NSF TeraGrid and at Brookhaven 



  Ray-tracing 
     - compute 2D potential (2048×2048) in each lens plane 
     - implement algorithm to follow rays (Hamana & Mellier 2001) 
     - compute shear (γ), convergence (κ) and reduced shear (µ) 

  Mock “observational” parameters 
     - gaussian 1-component shear noise from intrinsic ellipticity:  
               σγ=0.15+0.035z (Song & Knox 2004) 
     - ngal=30 arcmin-2 background galaxies, at zs = 1, 1.5, and 2 
     - smooth κ-map with 2D finite Gaussian 0.25 - 30 arcmin 
     - use 3×3 deg2 smoothed convergence maps 

  Identifying peaks 
    - find all local maxima, record their height  



raw convergence map (3×3 deg2 ; 2048×2048 pixels) 

w=-1 w=-0.8 



convergence map with noise and 1-arcmin smoothing 

w=-1 w=-0.8 



  - 3×3 deg2 field, smoothing with 1-arcmin,  galaxies at zs=2 

  - Expectations based on clusters with κG≥4.5σκ  
    (Fang & Haiman 2007)    
         N(clusters) = 150 ± 25       for w=-1 
         N(clusters) = 103 ± 21       for w=-0.8 
  S/N≈2σ mostly coming from change in σ8   

  - Total peak counts above same threshold [w/no noise]  
         N(peaks) =  576 ± 86    [230 ± 42]  for w=-1 
         N(peaks) =  547 ± 85    [186 ± 37]  for w=-0.8 
      S/N≈0.3σ : (i) smaller difference, (ii) larger variance  

-   Total peak counts (all peaks): 
         N(peaks) =  11,622 ± 62     for w=-1 
         N(peaks) =  11,562 ± 62     for w=-0.8 



  Covariance matrix for number of binned, tomographic peaks: 

   - R=500 realizations in cosmology m (rotate/shift/slice box) 
   - i = 15 (height) x 3 (source redshift) = 45 bins 

  Compute “χ2 “ between test (m) and fiducial (n) cosmology:  

  Compute likelihood at which cosmology m can be 
    distinguished from cosmology n: 
   - given by overlap between two distributions χ2;m,n and χ2;n,n 
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3 redshift bins, 15 peak height bins, 0.5 arcmin smoothing 

w = -1  versus  w = -1 
〈χ2〉=44.89 

w=-0.8  versus  w=-1 
〈χ2〉=55.51 

→ Δ 〈χ2〉 ≈ 10 
     or 85% confidence 



  - smoothing with 0.5 arcmin,  galaxies at zs=2 
  - w=-1 more peaks at high+low ends (DE dominates later) 
  - w=-0.8  peaks are more sharply peaked 
  - medium height (κ≈0.04, or 2σ) peaks dominate the total χ2 

Total # of peaks 
Difference in Npeak 

Contribution to χ2 



  Number of shear peaks in 9 deg2 has statistically significant 
   (~1.5σ) difference between w=-0.8 and w=-1.0 

  Encouraging, since # of peaks is a robust observable 

  Similar to cluster dN/dz, but most of the information comes    
    from lower (non-cluster) peaks   

  Just a first step: we need suite of simulations to address 
    degeneracies when other parameters are included 



   We do not know a-priori how changes in w affect map 

   Peak counts may not capture most of the information 

   Can we use some ‘artificial neural network’ approach?  

        - simulate maps in different cosmologies “training sets” 

        - algorithm itself should come up with a discriminator 

        - problem(?): small training sets (100 realizations/model)   









  Forecast p constraint (S/N) from Fisher matrix - need: 
      cosmology-dependence (S):      d 〈F〉 / dp    
      variance (N):                                〈F2〉         ? 

  Full covariance matrix from log-normal model vs simulations 

i ∈{κ-threshold, 
     galaxy redshift}  

Cij =〈F(κi, zi) F(κj, zj) 〉 

Simulations by 
M.White (2005) 



  Fiducial 7-parameter flat ΛCDM cosmology (~WMAP): 
      (ΩDE, Ωmh2, Ωbh2, w0, wa, σ8, ns) = (0.72, 0.14, 0.024, -1, 0, 0.9, 1) 

  Assume LSST-like survey parameters: 
      * ΔΩ = 20,000 deg2 ; ng = 40 gal/deg2 ; σε= 0.3 
      * 1-arcmin smoothing 
      * three redshift bins: zg = 0.6, 1.1,  1.9 
      * seven convergence bins: ν = 2, 2.5, 3, 3.5, 4, 4.5, 5    (κ=νσG) 
  Six Nuisance parameters: 
      * σG    = free parameter in each z-bin with 0.01-1% priors 
      * κbias   = free parameter in each z-bin with 0.05-1% priors 

  Planck Priors (Ωmh2, Ωbh2, ns) 
  Ref: noise from intrinsic ellipticity (σG=0.023) vs. smoothed 
   convergence field at z=(0.6, 1.1, 1.9):  σ=0.01, 0.017, 0.025 



  Constraints approaching those expected from cluster dN/dz 
   DETF figure of merit: 
      (Δw0 Δwa)-1 =180 (pessimistic)   vs  760  (optimistic) 
   Nonlinear info - complementary to shear power spectrum 



  - w=-0.8 distinguishable at 85% confidence from w=-1.0 
       70% chance for 68% CL 
       26% chance for 95% CL   

  - covariance has small effect overall (cuts high-χ2 tail) 

  - co-adding several smoothing scales gives only 
    modest (~10%) improvement over single best 
    scale (~0.5 arcmin – smaller than best cluster case) 

  - scaling from 3×3 = 9 deg2 to 20,000  deg2 : 
       rough guess:   
       significance √(20,000/9)=50 times better 
       1.5σ constraint on w0 is Δw0 =0.2/50=0.004 


