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Exponential growth in 
dataset sizes 

1990 COBE             1,000 
2000 Boomerang 10,000 
2002 CBI                

50,000 
2003 WMAP      1 Million 
2008 Planck    10 Million 

Data: CMB Maps 

Data: Local Redshift Surveys 
1986 CfA         3,500 
1996 LCRS    23,000 
2003 2dF     250,000 
2005 SDSS 800,000 

Data: Angular Surveys 
1970 Lick        1M 
1990 APM       2M 
2005 SDSS  200M 
2010 LSST       2B 

Instruments 

[Science, Szalay & J. Gray, 2001] 



1993-1999: DPOSS 
1999-2008: SDSS 
Coming: Pan-STARRS, LSST 



Happening everywhere! 
Molecular biology 

(cancer) microarray chips 

Particle events (LHC) particle colliders 

microprocessors 
Simulations  
(Millennium) 

Network traffic (spam) 
fiber optics 

300M/day 

1B 

1M/sec 
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But I have 1 million points 

Astrophysicist 

Machine learning/ 
statistics guy 
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O(N3) 



State-of-the-art statistical methods… 
•  Best accuracy with fewest assumptions 

with orders-of-mag more efficiency. 
•  Large N (#data), D (#features), M (#models) 

The challenge 

D 

N 

M 

Reduce data?  Use simpler model?  

Approximation with poor/no error 
bounds? 

                 Poor results 



How to do Machine Learning on  
Massive Astronomical Datasets? 

1. Choose the appropriate 
statistical task and method 
for the scientific question 

2. Use the fastest algorithm 
and data structure for the 
statistical method 

3. Put it in software 
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10 data analysis problems, and 
scalable tools we’d like for them 
1.  Querying (e.g. characterizing a region of space):  

–  spherical range-search O(N) 
–  orthogonal range-search O(N) 
–  k-nearest-neighbors O(N) 
–  all-k-nearest-neighbors O(N2) 

2.  Density estimation (e.g. comparing galaxy types):  
–  mixture of Gaussians 
–  kernel density estimation O(N2) 
–  L2 density tree [Ram and Gray in prep] 
–  manifold kernel density estimation O(N3) [Ozakin and Gray 

2008, to be submitted] 
–  hyper-kernel density estimation O(N4) [Sastry and Gray 2008, 

submitted] 



10 data analysis problems, and 
scalable tools we’d like for them 
3. Regression (e.g. photometric redshifts):  

–  linear regression O(D2) 
–  kernel regression O(N2) 
–  Gaussian process regression/kriging O(N3) 

4. Classification (e.g. quasar detection, star-galaxy 
separation):  

–  k-nearest-neighbor classifier O(N2) 
–  nonparametric Bayes classifier O(N2) 
–  support vector machine (SVM) O(N3) 
–  non-negative SVM O(N3) [Guan and Gray, in prep] 
–  false-positive-limiting SVM O(N3) [Sastry and Gray, in prep] 
–  separation map O(N3) [Vasiloglou, Gray, and Anderson 

2008, submitted] 



10 data analysis problems, and 
scalable tools we’d like for them 
5.  Dimension reduction (e.g. galaxy or spectra 

characterization):  
–  principal component analysis O(D2) 
–  non-negative matrix factorization 
–  kernel PCA O(N3) 
–  maximum variance unfolding O(N3) 
–  co-occurrence embedding O(N3) [Ozakin and Gray, in prep] 
–  rank-based manifolds O(N3) [Ouyang and Gray 2008, ICML] 
–  isometric non-negative matrix factorization O(N3) [Vasiloglou, 

Gray, and Anderson 2008, submitted] 

6.  Outlier detection (e.g. new object types, data 
cleaning): 

–  by density estimation, by dimension reduction 
–  by robust Lp estimation [Ram, Riegel and Gray, in prep] 



10 data analysis problems, and 
scalable tools we’d like for them 
7. Clustering (e.g. automatic Hubble sequence) 

–  by dimension reduction, by density estimation 
–  k-means 
–  mean-shift segmentation O(N2) 
–  hierarchical clustering (“friends-of-friends”) O(N3) 

8. Time series analysis (e.g. asteroid tracking, variable 
objects):  

–  Kalman filter O(D2) 
–  hidden Markov model O(D2) 
–  trajectory tracking O(Nn) 
–  Markov matrix factorization [Tran, Wong, and Gray 2008, 

submitted] 
–  functional independent component analysis [Mehta and Gray 

2008, submitted] 



10 data analysis problems, and 
scalable tools we’d like for them 
9. Feature selection and causality (e.g. which features 

predict star/galaxy) 
–  LASSO regression 
–  L1 SVM 
–  Gaussian graphical model inference and structure search 
–  discrete graphical model inference and structure search 
–  0-1 feature-selecting SVM [Guan and Gray, in prep] 
–  L1 Gaussian graphical model inference and structure search 

[Tran, Lee, Holmes, and Gray, in prep] 

10. 2-sample testing and matching (e.g. cosmological 
validation, multiple surveys):  
–  minimum spanning tree O(N3) 
–  n-point correlation O(Nn) 
–  bipartite matching/Gaussian graphical model inference O(N3) 

[Waters and Gray, in prep] 



How to do Machine Learning on  
Massive Astronomical Datasets? 

1. Choose the appropriate 
statistical task and method 
for the scientific question 

2. Use the fastest algorithm 
and data structure for the 
statistical method 

3. Put it in software 



Core computational problems 

What are the basic mathematical 
operations, or bottleneck 
subroutines, can we focus on 
developing fast algorithms for? 
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Core computational problems 
Aggregations, GNPs, graphical models, linear algebra, optimization 

•  Querying: nearest-neighbor, sph range-search, ortho range-search, all-nn 
•  Density estimation: kernel density estimation, mixture of Gaussians 
•  Regression: linear regression, kernel regression, Gaussian process 

regression  
•  Classification: nearest-neighbor classifier, nonparametric Bayes classifier, 

support vector machine 
•  Dimension reduction: principal component analysis, non-negative matrix 

factorization, kernel PCA, maximum variance unfolding 
•  Outlier detection: by robust L2 estimation, by density estimation, by 

dimension reduction 
•  Clustering: k-means, mean-shift, hierarchical clustering (“friends-of-

friends”), by dimension reduction, by density estimation 
•  Time series analysis: Kalman filter, hidden Markov model, trajectory 

tracking 
•  Feature selection and causality: LASSO regression, L1 support vector 

machine, Gaussian graphical models, discrete graphical models 
•  2-sample testing and matching: n-point correlation, bipartite matching 



Aggregations 
•  How it appears: nearest-neighbor, sph 

range-search, ortho range-search 
•  Common methods: locality sensitive 

hashing, kd-trees, metric trees, disk-based 
trees 

•  Mathematical challenges: high 
dimensions, provable runtime, distribution-
dependent analysis, parallel indexing 

•  Mathematical topics: computational 
geometry, randomized algorithms 



kd-trees: 
most widely-used space-

partitioning tree 
[Bentley 1975], [Friedman, Bentley & 

Finkel 1977],[Moore & Lee 1995] 

How can we compute this efficiently? 



A kd-tree: level 1 



A kd-tree: level 2 



A kd-tree: level 3 



A kd-tree: level 4 



A kd-tree: level 5 



A kd-tree: level 6  



Range-count recursive algorithm 
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Pruned! 
(exclusion) 

Range-count recursive algorithm 



Range-count recursive algorithm 



Range-count recursive algorithm 



fastest 
practical 
algorithm 
[Bentley 1975] 

our  
algorithms 
can use  
any tree 

Range-count recursive algorithm 



Aggregations 
•  Interesting approach: Cover-trees [Beygelzimer et al 2004] 

–  Provable runtime 
–  Consistently good performance, even in higher dimensions 

•  Interesting approach: Learning trees [Cayton et al 2007] 
–  Learning data-optimal data structures 
–  Improves performance over kd-trees 

•  Interesting approach: MapReduce [Dean and Ghemawat 2004] 
–  Brute-force 
–  But makes HPC automatic for a certain problem form 

•  Interesting approach: approximation in rank [Ram, Ouyang and 
Gray] 
–  Approximate NN in terms of distance conflicts with known theoretical 

results 
–  Is approximation in rank feasible? 



Generalized N-body Problems 
•  How it appears: kernel density estimation, mixture of 

Gaussians, kernel regression, Gaussian process 
regression, nearest-neighbor classifier, nonparametric 
Bayes classifier, support vector machine, kernel PCA, 
hierarchical clustering, trajectory tracking, n-point 
correlation   

•  Common methods: FFT, Fast Gauss Transform, Well-
Separated Pair Decomposition 

•  Mathematical challenges: high dimensions, query-
dependent relative error guarantee, parallel, beyond 
pairwise potentials 

•  Mathematical topics: approximation theory, 
computational physics, computational geometry 



Generalized N-body Problems 

•  Interesting approach: Generalized Fast 
Multipole Method, aka multi-tree methods 
[Gray and Moore 2001, NIPS; Riegel, 
Boyer and Gray] 
– Fastest practical algorithms for the problems 

to which it has been applied 
– Hard query-dependent relative error bounds 
– Automatic parallelization (THOR: Tree-based 

Higher-Order Reduce) [Boyer, Riegel and 
Gray to be submitted] 



2-point correlation 

r 

Characterization of an entire distribution? 

“How many pairs have distance < r ?” 

2-point correlation 
function 



The n-point correlation functions 
•  Spatial inferences: filaments, clusters, voids, 

homogeneity, isotropy, 2-sample testing, … 
•  Foundation for theory of point processes 

[Daley,Vere-Jones 1972], unifies spatial statistics [Ripley 
1976] 

•  Used heavily in biostatistics, cosmology, particle 
physics, statistical physics 

2pcf definition: 

3pcf definition: 



3-point correlation 
“How many triples have  
pairwise distances < r ?” 

r3 

r1 

r2 

Standard model: n>0 terms  
should be zero! 



How can we count n-tuples efficiently? 

“How many triples have  
pairwise distances < r ?” 



Use n trees! 
[Gray & Moore, NIPS 2000] 
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Exclusion 

count{A,B,C} = 

0! 



“How many valid triangles a-b-c 
(where                              )   

could there be?             

A B 

C 

count{A,B,C} = 

? 

r 



“How many valid triangles a-b-c 
(where                              )   

could there be?             

A B 

C 

Inclusion 

count{A,B,C} = 

|A| x |B| x |C| 

r 

Inclusion 

Inclusion 
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3-point runtime 

(biggest previous: 
 20K) 

VIRGO  
simulation data, 
N = 75,000,000 

naïve: 5x109 sec. 
           (~150 years) 

multi-tree: 55 sec. 
               (exact) 

n=2: O(N) 

n=3: O(Nlog3) 

n=4: O(N2) 



Generalized N-body Problems 

•  Interesting approach (for n-point): n-
tree algorithms [Gray and Moore 2001, 
NIPS; Moore et al. 2001, Mining the Sky] 
– First efficient exact algorithm for n-point 

correlations 
•  Interesting approach (for n-point): 

Monte Carlo n-tree [Waters, Riegel and 
Gray] 
– Orders of magnitude faster 



Generalized N-body Problems 

•  Interesting approach (for EMST): dual-
tree Boruvka algorithm [March and Gray] 
– Note this is a cubic problem 

•  Interesting approach (N-body decision 
problems): dual-tree bounding with hybrid 
tree expansion [Liu, Moore, and Gray 
2004; Gray and Riegel 2004, CompStat; 
Riegel and Gray 2007, SDM] 
– An exact classification algorithm 



Generalized N-body Problems 

•  Interesting approach (Gaussian kernel): 
dual-tree with multipole/Hermite 
expansions [Lee, Gray and Moore 2005, 
NIPS; Lee and Gray 2006, UAI] 
– Ultra-accurate fast kernel summations 

•  Interesting approach (arbitrary kernel): 
automatic derivation of hierarchical series 
expansions [Lee and Gray] 
– For large class of kernel functions 



Generalized N-body Problems 

•  Interesting approach (summative 
forms): multi-scale Monte Carlo [Holmes, 
Gray, Isbell 2006 NIPS; Holmes, Gray, 
Isbell 2007, UAI] 
– Very fast bandwidth learning 

•  Interesting approach (summative 
forms): Monte Carlo multipole methods 
[Lee and Gray 2008, NIPS] 
– Uses SVD tree 



Generalized N-body Problems 

•  Interesting approach (for multi-body 
potentials in physics): higher-order 
multipole methods [Lee, Waters, Ozakin, 
and Gray, et al.] 
– First fast algorithm for higher-order potentials 

•  Interesting approach (for quantum-level 
simulation): 4-body treatment of Hartree-
Fock [March and Gray, et al.] 



Graphical model inference 
•  How it appears: hidden Markov models, 

bipartite matching, Gaussian and discrete 
graphical models   

•  Common methods: belief propagation, 
expectation propagation 

•  Mathematical challenges: large cliques, 
upper and lower bounds, graphs with 
loops, parallel 

•  Mathematical topics: variational 
methods, statistical physics, turbo codes 



Graphical model inference 
•  Interesting method (for discrete models): 

Survey propagation [Mezard et al 2002] 
–  Good results for combinatorial optimization 
–  Based on statistical physics ideas 

•  Interesting method (for discrete models): 
Expectation propagation [Minka 2001] 
–  Variational method based on moment-matching idea 

•  Interesting method (for Gaussian models): Lp 
structure search, solve linear system for 
inference [Tran, Lee, Holmes, and Gray] 



Linear algebra 

•  How it appears: linear regression, 
Gaussian process regression, PCA, 
kernel PCA, Kalman filter  

•  Common methods: QR, Krylov, … 
•  Mathematical challenges: numerical 

stability, sparsity preservation, … 
•  Mathematical topics: linear algebra, 

randomized algorithms, Monte Carlo 



Linear algebra 
•  Interesting method (for probably-approximate k-rank 

SVD): Monte Carlo k-rank SVD [Frieze, Drineas, et al. 
1998-2008] 
–  Sample either columns or rows, from squared length distribution 
–  For rank-k matrix approx; must know k 

•  Interesting method (for probably-approximate full 
SVD): QUIC-SVD [Holmes, Gray, Isbell 2008, NIPS]; 
QUIK-SVD [Holmes and Gray] 
–  Sample using cosine trees and stratification 
–  Builds tree as needed 
–  Full SVD: automatically sets rank based on desired error 



QUIC-SVD speedup 

38 days  1.4 hrs, 10% rel. error 

40 days  2 min, 10% rel. error 



Optimization 
•  How it appears: support vector machine, 

maximum variance unfolding, robust L2 
estimation  

•  Common methods: interior point, 
Newton’s method 

•  Mathematical challenges: ML-specific 
objective functions, large number of 
variables / constraints, global optimization, 
parallel 

•  Mathematical topics: optimization theory, 
linear algebra, convex analysis 



Optimization 
•  Interesting method: Sequential minimization 

optimization (SMO) [Platt 1999] 
–  Much more efficient than interior-point, for SVM QPs 

•  Interesting method: Stochastic quasi-Newton 
[Schraudolf 2007] 
–  Does not require scan of entire data 

•  Interesting method: Sub-gradient methods 
[Vishwanathan and Smola 2006] 
–  Handles kinks in regularized risk functionals 

•  Interesting method: Approximate inverse 
preconditioning using QUIC-SVD for energy minimization 
and interior-point [March, Vasiloglou, Holmes, Gray] 
–  Could potentially treat a large number of optimization problems 



Now fast! 
very fast    as fast as possible (conjecture) 

•  Querying: nearest-neighbor, sph range-search, ortho range-search, all-nn 
•  Density estimation: kernel density estimation, mixture of Gaussians 
•  Regression: linear regression, kernel regression, Gaussian process 

regression  
•  Classification: nearest-neighbor classifier, nonparametric Bayes classifier, 

support vector machine 
•  Dimension reduction: principal component analysis, non-negative matrix 

factorization, kernel PCA, maximum variance unfolding 
•  Outlier detection: by robust L2 estimation 
•  Clustering: k-means, mean-shift, hierarchical clustering (“friends-of-

friends”) 
•  Time series analysis: Kalman filter, hidden Markov model, trajectory 

tracking 
•  Feature selection and causality: LASSO regression, L1 support vector 

machine, Gaussian graphical models, discrete graphical models 
•  2-sample testing and matching: n-point correlation, bipartite matching 



Astronomical applications 

•  All-k-nearest-neighbors: O(N2)  O(N), 
exact.  Used in [Budavari et al., in prep] 

•  Kernel density estimation: O(N2)  
O(N), rel err.  Used in [Balogh et al. 2004] 

•  Nonparametric Bayes classifier (KDA): 
O(N2)  O(N), exact.  Used in [Richards et 
al. 2004,2009], [Scranton et al. 2005] 

•  n-point correlations: O(Nn)  O(Nlogn), 
exact.  Used in [Wake et al. 2004], 
[Giannantonio et al 2006],[Kulkarni et al 2007]  



Astronomical highlights 

– Dark energy evidence, Science 2003, 
Top Scientific Breakthrough of the year 
(n-point) 
• 2007 biggest 3-point calculation ever 

– Cosmic magnification verification 
Nature 2005 (nonparam. Bayes clsf) 
• 2008 largest quasar catalog ever 



A few others to note… 
very fast    as fast as possible (conjecture) 

•  Querying: nearest-neighbor, sph range-search, ortho range-search, all-nn 
•  Density estimation: kernel density estimation, mixture of Gaussians 
•  Regression: linear regression, kernel regression, Gaussian 

process regression  
•  Classification: nearest-neighbor classifier, nonparametric Bayes classifier, 

support vector machine 
•  Dimension reduction: principal component analysis, non-

negative matrix factorization, kernel PCA, maximum variance unfolding 
•  Outlier detection: by robust L2 estimation 
•  Clustering: k-means, mean-shift, hierarchical clustering 

(“friends-of-friends”) 
•  Time series analysis: Kalman filter, hidden Markov model, 

trajectory tracking 
•  Feature selection and causality: LASSO regression, L1 support vector 

machine, Gaussian graphical models, discrete graphical models 
•  2-sample testing and matching: n-point correlation, bipartite matching 



How to do Machine Learning on  
Massive Astronomical Datasets? 

1. Choose the appropriate 
statistical task and method 
for the scientific question 

2. Use the fastest algorithm 
and data structure for the 
statistical method 

3. Put it in software 



Keep in mind the machine 

• Memory hierarchy: cache, RAM, 
out-of-core 

• Dataset bigger than one machine: 
parallel/distributed 

• Everything is becoming multicore 
• Cloud computing: software as a 

service 



Keep in mind the overall system 

• Databases can be more useful 
than ASCII files (e.g. CAS) 

• Workflows can be more useful 
than brittle perl scripts 

• Visual analytics connects 
visualization/HCI with data 
analysis (e.g. In-SPIRE) 



Our upcoming products 
•  MLPACK: “the LAPACK of machine 

learning” – Dec. 2008 [FASTlab] 
•  THOR: “the MapReduce of Generalized N-

body Problems” – Apr. 2009 [Boyer, 
Riegel, Gray] 

•  CAS Analytics: fast data analysis in CAS 
(SQL Server) – Apr. 2009 [Riegel, Aditya, 
Krishnaiah, Jakka, Karnik, Gray] 

•  LogicBlox: all-in-one business 
intelligence [Kanetkar, Riegel, Gray] 



Keep in mind the software 
complexity 

• Automatic code generation (e.g. 
MapReduce) 

• Automatic tuning (e.g. OSKI) 
• Automatic algorithm derivation 

(e.g. SPIRAL, AutoBayes) [Gray 
et al. 2004; Bhat, Riegel, Gray, 
Agarwal] 



The end 

•  We have/will have fast algorithms for most data 
analysis methods in MLPACK 

•  Many opportunities for applied math and 
computer science in large-scale data analysis 

•  Caveat: Must treat the right problem 
•  Computational astronomy workshop and large-

scale data analysis workshop coming soon 

Alexander Gray agray@cc.gatech.edu 
(email is best; webpage sorely out of date) 


