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A Sparse Signal Model

Sparse signal models are extremely useful is a variety of
applications (e.g., image reconstruction, compression, etc.)

Let o= (u1,...,un) € R™ be a sparse vector
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signal support set

Example:

In this talk we will assume ©#* >0



Detection/Estimation of Sparse Signals

./

fMRI data Microarray data  Astronomical data

Two fundamental questions:
==) Can we efficiently detect sparse signals?
==) Can we locate sparse signals efficiently?

In this talk T will focus on the second question.




A Sparse Signal Model

Observation model:
X; = u; + 4;, iE{O,...,n},
where Z; “%% AF(0, 1) r'd

Intuitively signal components correspont to the largest
observations...

Because of noise maxX; ~ vZ2logn even if no signal is
present

How small can u” be so that we can still reliably locate the
signal components from the observations?




A Sparse Signal Model

When testing a large number of hypotheses simultaneously
we are bound to make errorsll|

Approaches:

=) Control the probability of perfect localization of the
support (Bonferroni correction) - very conservative

==) Control the relative proportion of errors
(Benjamini & Hochberg '95)



False Discovery Rate Control

Recall the definition of the signal support set
Ig={t:p; 70}

Goal: Estimate the support as well as possible. Let Ig(X)
be the outcome of a support estimation procedure.

False Discovery FOP — Is(X)\Is _ # falsely discovered components
Proportion [ |1qg(X)] # discovered components

Non Discover'y o~ _

Proportion NDP — Ig\ I¢(X) _ # missed components

1] # true components

Desirable situation: FDP,NDP =~ O

Since n is typically very large it makes sense to study
asymptotic performance, as n/ 1.



Known Results (Jin & Donoho '03)

Assume the signal is very sparse:

Is| = nl=P, where 8 € (0,1).
7

Number of signal
components

n=10000 ) |IJ=10
Example:5=3/4

n= 1000000 ) | I,|=32

Theorem: If u* > /26logn then Ben&Hoch
thresholding applied to X drives both the FDP
and NDP to zero with probability tending to
one as n — oo. Conversely if u* < +/281logn no
procedure can control simultaneously the FDP
and NDP.




Known Results (Jin & Donoho '03)

signal 1}
strength
Estimable

uw*=+/2rlogn T

Non-estimable

O >
/8 1 Sparsity

# signal components=n1-7F

These asymptotic results tell us how strong the signals
need to be for reliable signal localization



A Generalization of the Sensing Model

Allow multiple observations...
X =P p+ 29, ief1,... n)
where ZZ.(j) LLd N(0,1)

..subject to a sampling energy budget

>3 (60) <n

j i=1

p\) = (qbgj), 89 are called the sensing vectors.

(Note: in the prevuous work a sinale observation was
considered, where ¢ =1, ie{1,...,n} )



Active Sensing > 162 = n

sensing vector
(1) (2) (3)
¢ ¢ ¢

I I I
signal

7(1) 7(2) 7(3)

observation
x (1) x () x(3)

Key Idea: allow future sensing vectors to depend on past
observations:

Dependence on previous observations allows us to
focus the sampling energy in promising regions!!|




A Simple Focusing Procedure

N
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Proceeding in this fashion we gradually focus on the signal...




Main Result — Part 1

Theorem 1 (J. Haupt, RC and R. Nowak)

Consider a (k+ 1)-step approach: at each step retain only the non-
negative elements and sense at only those locations in next step
(allocate equal fraction of sensing energy to each step). Then if

. kE+1
L >\/26 Y logn

the BH thresholding procedure applied to X%*1) drives both the
FDP and the NDP to zero with probability tending to one as n — 0.

Furthermore if one does not allow an active sensing scheme
then the previous results (equivalent to k=0) cannot be
improved.

The improvement is due to the use of feedback, not the
fact that we have multiple measurementsl!!




Localization Thresholds

Best passive
sensing performance
Signal 1“ ™~ L=0
strength

w* = +/2rlogn

...... k=
/8 1 Sparsity

# signal components=n1-7F

These results suggest we might be able to estimate signal
with amplitudes growing slower than ¢* ~ +vlogn



Distilled Sensing Example
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Main Result — Part 2
Theorem 2 (J. Haupt, RC and R. Nowak)

Consider the (k + 1)-look observation model,
where k(n) = logs logn. If

w* > \/25 logs logn

a thresholding procedure applied to X (k(n)+1)
drives both the FDP and the NDP to zero with
probability tending to one as n — .

The use of sampling feedback greatly decreases
the signal strength needed for reliable
localizationl!!



Proof of Theorem 1 - Sketch

Main Idea: Quantify the effect of distillation j:

mU) = |IsN IY)| - Retained true signal locations.
¢0) = |Io N IY)| - Retained true non-signal locations.

Lemma:
LI PN ) RS EE A )
log n - -
Lo Vo < gty < (24 1 )0
2 logn - -\ 2 logn

with probability tending to one as n — o

With high probability each distillation keeps almost and the
signal components and rejects about half non-signal
components



Proof of Theorem 1 - Sketch

To prove the theorem we need to iterate the application
of the lemma. The event
4 k 3\

logn

N\
~

k
1 1 _
(3- ) n(l—n) < g

k
b < (34 5k ) (1 =079
\

holds with probability tending to one as n — oo.

/

This implies that the final measurement of distilled sensing
is essentially equivalent to the one-observation model

where ne ~ 2 - equivalent signal length
Te = frkf:l - equivalent signal magnitude
Be =0 - equivalent signal sparsity

Using BH thresholding on the above signal yields the final
result (from Donoho and Jin '03)



Extensions

The same ideas can be used to signal detection as well:

Hp - No signal present < u =20
H1 - A sparse signal is present

Signal ) | | L —0
strength o
reng = +/2rlogn
0.8r
0.6r
r
0.4r
0.2 k=5
d k=7
S.E 0.6 0.7 0.a 0.4 1

/8 Sparsity



Now you see it, now you don't...

X = i—l— i
sparse noise
signal

n x 1 vector with n1=%, 0 < 8 < 1, non-zero entries of
magnitude p > 0. Can the sparsity pattern be reliably
perceived in presense of noise?

Passive sensing: Yes, if u© > +/28logn, otherwise no.
Active sensing: Yes, if u > +/281oglogn.

Weak signals/patterns are imperceptible without
active sensingll!



Final Remarks

Sampling/ Observations
querying .
A i \
e Inference
Snmn 4.-“

Closing the loop can yield dramatic gains allowing us
to even perceive signals that were otherwise
imperceptiblelll

rmcastro@ee.columbia.edu  http://www.ee.columbia.edu/~rmcastro




Distilled Sensing (DS)

Make k + 1 observations, where k is the number of refinement steps.

Allocate equal fraction of energy to each observation.

Input: Number of refinement steps k
Initialize: Index set I = {1,2,...,n}, j=1

while: 1 <k+1
XD = 6D 2D o)

\/(k+1>u<ﬂ>\
10+ = {i: X;(:) > 0}
j=3j+1

Output: {X(’““) I<’“+1>}, (1)

Now we can apply a threshold procedure to the output signal



