Ice Properties of Mixed-Phase Arctic Boundary-Layer Clouds

Ann Fridlind and Andy Ackerman, NASA GISS
Greg McFarquhar and Gong Zhang, UIUC
Mike Poellot, UND
Paul DeMott and Tony Prenni, CSU
Andy Heymsfield, NCAR

Funding and Computational Support

DOE Atmospheric Radiation Measurement Program
NASA Radiation Sciences Program
NASA Advanced Supercomputing Division
Aerosol Indirect Effects

Table 1. Overview of the different aerosol indirect effects and range of the radiative budget perturbation at the top-of-the-atmosphere (F_{TOA}) [W m$^{-2}$], at the surface (F_{SFC}) and the likely sign of the change in global mean surface precipitation (P) as estimated from Fig. 2 and from the literature cited in the text.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Cloud type</th>
<th>Description</th>
<th>F_{TOA}</th>
<th>F_{SFC}</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect aerosol effect for clouds with fixed water amounts (cloud albedo or Twomey effect)</td>
<td>All clouds</td>
<td>The more numerous smaller cloud particles reflect more solar radiation</td>
<td>-0.5 to -1.9</td>
<td>Similar to F_{TOA}</td>
<td>n/a</td>
</tr>
<tr>
<td>Indirect aerosol effect with varying water amounts (cloud lifetime effect)</td>
<td>All clouds</td>
<td>Smaller cloud particles decrease the precipitation efficiency thereby prolonging cloud lifetime</td>
<td>-0.3 to -1.4</td>
<td>Similar to F_{TOA}</td>
<td>decrease</td>
</tr>
<tr>
<td>Semi-direct effect</td>
<td>All clouds</td>
<td>Absorption of solar radiation by soot may cause evaporation of cloud particles</td>
<td>$+0.1$ to -0.5</td>
<td>Larger than F_{TOA}</td>
<td>decrease</td>
</tr>
<tr>
<td>Thermodynamic effect</td>
<td>Mixed-phase clouds</td>
<td>Smaller cloud droplets delay the onset of freezing</td>
<td>$?$</td>
<td>$?$</td>
<td>Increase or decrease</td>
</tr>
<tr>
<td>Glaciation indirect effect</td>
<td>Mixed-phase clouds</td>
<td>More ice nuclei increase the precipitation efficiency</td>
<td>$?$</td>
<td>$?$</td>
<td>Increase</td>
</tr>
<tr>
<td>Rimming indirect effect</td>
<td>Mixed-phase clouds</td>
<td>Smaller cloud droplets decrease the riming efficiency</td>
<td>$?$</td>
<td>$?$</td>
<td>Decrease</td>
</tr>
</tbody>
</table>

Source: Lohmann and Feichter, Global indirect aerosol effects: a review, ACP 5:715, 2005
Aerosol Indirect Effects

- ice clouds
 - longwave effects tend to cancel shortwave effects
 - some clouds not aerosol limited [Lohmann and Kärcher, 2002; Fridlind et al., 2004]
 - ice nuclei could play a greater role [Kärcher and Lohmann, 2003]

- caveats
 - emissions can *decrease* aerosol numbers [Singh et al., 2002; Spracklen et al., 2006]
 - indirect effect studies often not constrained by observations
 - observations difficult to screen for aerosol-meteorology covariance
 - meteorology can modulate indirect effects [e.g., Ackerman et al., 2004]
Aerosol Indirect Effects

- cloud longwave forcing implicated in sea ice loss [Francis and Hunter, 2006]
- warm clouds in the Arctic region
 - albedo effect outweighs longwave effect [Intrieri et al., 2002]
 - brighter surfaces
 - wintertime darkness
 - positive anthropogenic F_{SFC} [Garrett and Zhao, 2006; Lubin and Vogelmann, 2006]
 - thin clouds
 - concurrence with springtime pollution
Aerosol Indirect Effects

- mixed-phase clouds in the Arctic region
 - current level of understanding
 - common during transition seasons
 - glaciation desiccates cloud mass
 - ice initiation depends upon ice nuclei ($T > -36^\circ C$)
 - pollution aerosols not rich in ice nuclei
 - much more ice when drop numbers are low [Rangno and Hobbs, 2001]
 - field experiments
 - 2004 Mixed-Phase Arctic Cloud Experiment (M-PACE)
 - 1998 FIRE-Arctic Cloud Experiment (SHEBA)
 - 1984 Beaufort Arctic Storms Experiment (BASE)
 - conclusions
 - ice nucleation is very poorly understood
 - pollution aerosols probably suppress glaciation
 - likely additional enhancement of springtime warming
Mixed-Phase Arctic Cloud Experiment
Model Description

- Dynamics framework
 - large-eddy simulation [Stevens and Bretherton, 1997]
 - dynamic Smagorinsky subgrid model [Kirkpatrick et al., 2006]
 - 3.2 x 3.2 x 2.0 km, doubly periodic, 250-m sponge layer at top
 - 64 x 64 x 96 mesh, 50 m x 20 m uniform grid
 - 2-stream radiative transfer, 44 wavelength bands [Toon et al., 1989]
 - specified SST, advective flux and subsidence profiles, translation
 - similarity sensible and latent heat fluxes (held constant during spin-up)

- Size-resolved microphysics [Jensen et al., 1994; Ackerman et al., 1995]
 - diagnostic aerosols: 20 bins, 10 nm–1 \(\mu \)m diameter
 - liquid: 20 bins, 2 \(\mu \)m–2 mm
 - ice: 20 bins, 2 \(\mu \)m–5 mm
 - prognostic ice nuclei: 10 bins, most to least easily nucleated
 - = 90 variables
Model Results

Liquid Supersaturation (%)

Liquid Water Mixing Ratio (g/kg)

Ice Water Mixing Ratio (g/kg)

Ice Supersaturation (%)

Droplet Distribution

Residual radius (um)

SS = -0.14 %N
drops = 18.4 cm
and

Ice Crystal Distribution

Residual radius (um)

T = -12.8 C

SSi = 13.18 %N

ice = 1.88 L

and

\[r_{eff} = 169.1 \mu m \]
Model Description

- **Microphysical processes**
 - drop activation, condensation/evaporation
 - particle sedimentation
 - drop-drop gravitational collection [Hall, 1980; Beard and Ochs, 1984]
 - heterogeneous ice formation, deposition/sublimation
 - phoretic scavenging [Young, 1974], 0.5 μm diameter ice nuclei [Rogers, 2001]
 - drop-ice gravitational collection [Hall, 1980]
 - ice multiplication

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Temp, C</th>
<th>Supersat</th>
<th>Dependence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contact</td>
<td>$-4 > T > -14$</td>
<td>—</td>
<td>$f_{lin}(T)$</td>
<td>drop + $IN_{aer} \rightarrow$ ice (phoresis)</td>
</tr>
<tr>
<td>condensation</td>
<td>$-8 > T > -22$</td>
<td>$S_w < S$</td>
<td>$f_{lin}(T)$</td>
<td>$IN_{aer} \rightarrow$ ice</td>
</tr>
<tr>
<td>deposition</td>
<td>$-10 > T$</td>
<td>$S_i < S < 0.3$</td>
<td>$f_{exp}(S)$</td>
<td>$IN_{aer} \rightarrow$ ice</td>
</tr>
<tr>
<td>immersion</td>
<td>$-10 > T > -24$</td>
<td>—</td>
<td>$f_{lin}(T)$</td>
<td>drop + $IN_{drop} \rightarrow$ ice</td>
</tr>
<tr>
<td>Multiplication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rime-splintering</td>
<td>$-3 > T > -8$</td>
<td>—</td>
<td>$f_{lin}(T)$</td>
<td>one crystal per 250 collisions</td>
</tr>
</tbody>
</table>
Model Results vs Observations

(a) Measurements

(b) Model: 0.2/L IN

(c) Model: 0.2/L IN, slow fall velocity

(d) Model: 200/L IN
Literature Survey

<table>
<thead>
<tr>
<th>TYPE IV</th>
<th>TYPE V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) Moderately Supercooled Stratiform Clouds (Tops −10° to −20°C)</td>
<td></td>
</tr>
<tr>
<td>Small droplets at cloud top, possible ice, little or no precipitation</td>
<td>Large droplets at cloud top, ice, precipitation</td>
</tr>
<tr>
<td>- Droplet concentrations > 100 cm(^{-3})</td>
<td>- Droplet concentrations typically < 100 cm(^{-3})</td>
</tr>
<tr>
<td>- Maximum effective droplet radius < 10 μm</td>
<td>- Maximum effective radius > 10 μm</td>
</tr>
<tr>
<td>- Maximum threshold droplet diameter < 20 μm</td>
<td>- Maximum threshold droplet diameter > 20 μm</td>
</tr>
<tr>
<td>- Ice concentrations nil or a few per liter</td>
<td>- Ice concentrations 10-100 per liter</td>
</tr>
</tbody>
</table>

Image source: Rangno and Hobbs, Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations, JGR 106:15,065, 2001
Model Description

- Drop shattering [Brownscombe and Thorndike, 1968; Hobbs and Alkezweeny, 1968]
- Ice fragmentation [Vardiman, 1978]
- Evaporation nuclei [Beard, 1992] and electroscavenging [Tinsley et al., 2000]
- Evaporation freezing [Cotton and Field, 2002]

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Temp, C</th>
<th>Supersat</th>
<th>Dependence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rime-splintering</td>
<td>$-3 > T > -8$</td>
<td>—</td>
<td>$f_{lin}(T)$</td>
<td>crystal per 250 collisions</td>
</tr>
<tr>
<td>drop shattering</td>
<td>$0 > T$</td>
<td>—</td>
<td>$D_{drop} > 50 \mu m$</td>
<td>multiplication factor $= 2$</td>
</tr>
<tr>
<td>ice fragmentation</td>
<td>$0 > T$</td>
<td>—</td>
<td>$f_{lin}(\Delta mom^2)$</td>
<td>up to 20–60 fragments</td>
</tr>
<tr>
<td>Other processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>evaporation nuclei</td>
<td>$0 > T$</td>
<td>$S < S_w$</td>
<td>—</td>
<td>$1/10^4$ drops \rightarrow IN$_{aer}$</td>
</tr>
<tr>
<td>charge enhancement</td>
<td>$0 > T$</td>
<td>—</td>
<td>$f(D_{drop})$</td>
<td>evaporated drop retains charge</td>
</tr>
<tr>
<td>evaporation freezing</td>
<td>$0 > T$</td>
<td>$S < S_w$</td>
<td>—</td>
<td>‘some’ drops ‘just freeze’</td>
</tr>
</tbody>
</table>
Model Results vs Observations

(a) Measurements

(b) Model: Surface source

(c) Model: Evaporation IN

(d) Model: Evaporation freezing
Conclusions from M-PACE

- measured ice nuclei do not explain observed ice
- evaporation nuclei or evaporation freezing could work
- evaporation nuclei from oceanic organic sources? [Leck and Bigg, 2005]
Source: I. V. Gorodetskaya, L.-B. Tremblay, B. Liepert, M. A. Cane, and R. I. Cullather, Modification of the Arctic Ocean short-wave radiation budget due to cloud and sea ice properties in coupled models and observations, J. Clim., submitted
Source: I. V. Gorodetskaya, L.-B. Tremblay, B. Liepert, M. A. Cane, and R. I. Cullather, Modification of the Arctic Ocean short-wave radiation budget due to cloud and sea ice properties in coupled models and observations, J. Clim., submitted