Role of Black and Organic Carbon Emissions in Integrated Assessment

Benjamin DeAngelo
Climate Change Division, U.S. EPA

Air Pollution as Climate Forcing Workshop
April 6, 2005
What is the appropriate role for BC/OC in climate change mitigation?

Climate effects ‘large enough’ relative to GHGs, globally or regionally?

BC/OC sufficiently captured by air quality policies?

Most effective means of reducing residual BC/OC?

Continue treatment as air quality issue

Incorporate BC/OC in climate analyses, not as explicit climate strategy (akin to CFCs)

Climatic effects, monitoring, inventories, projections, mitigation assessment need improvement

Requires addressing key issues:
- Separate goal from basket of GHGs?
- Allow GWP-like comparisons?
- Dealing with OC?
- Synergies/tradeoffs with GHG mitigation?
Annual U.S. BC Emissions, 1999
Derived from EPA 1999 National Emissions Inventory for PM2.5

Source: Battye and Boyer, 2002
Key U.S. criteria pollutant control programs can influence BC/OC…to varying degrees

• National Ambient Air Quality Standards (NAAQS) for PM$_{2.5}$
 – At or below 65 µg/m3 over 24-hr, and at or below 15 µg/m3 on an average annual basis
 – 35% nation’s population potentially in nonattainment areas
 – States required to reach attainment by 2010, with possible extensions

• Clean Air Nonroad Diesel Rule
 – PM & NOx standards for new nonroad engines + low sulfur diesel fuel for nonroad, locomotives and marine engines
 – Phase in beginning 2008; most engines must meet PM and NOx standards by 2014

• Clean Diesel Truck and Bus Rule
 – PM & NOx standards + low highway diesel sulfur fuel phased in 2006 – 2010 estimated to result in trucks/buses 90% cleaner than today’s

• Regional Haze Rule
 – States submit and EPA approves implementation plans 2007-09

• NOx SIP Call
 – Requires 21 eastern states + District of Columbia to revise ‘State Implementation Plans’ to prohibit sources from emitting NOx in amounts that lead to non-attainment of national ambient O$_3$ standards; most states had to comply beginning 2004

• Clean Air Interstate Rule
 – Targets SO$_2$ and NOx in power sector
 – Full implementation expected to lead to 70% reduction

• Acid Rain Cap and Trade Program
 – SO$_2$ trading with phased reductions in power sector; phase I began 1995; phase II began 2000; affects existing units with greater than 25 megawatt capacity and all new units
Effects of Air Quality Policies on BC Inventory:
Some expected effects readily quantifiable, others less clear

- Non-Road Diesel
- On-Road Diesel
- Non-Road Gasoline
- Aircraft
- On-Road Gasoline
- Marine
- Misc.
- Prescribed Burning
- Land Clearing
- Residential Burning
- Wildfires
- Ag Field Burning
- Fugitive Dust
- Residential Combustion
- Industry

Nonroad Diesel Rule
Clean Diesel Truck
PM$_{2.5}$ NAAQS
Regional Haze Rule
CAIR
New PM & sulfur fuel standards expected to reduce BC emissions from largest sources: diesel vehicles

Black Carbon 1990-2030

- Super emitters not accounted for
- BC % of PM$_{2.5}$ assumed constant over time
 - 60% for diesel
 - 40% for gasoline

Derived from PM$_{2.5}$ projections by EPA OTAQ using MOBILE6.2 and NONROAD
Tightening of vehicle emission controls will affect BC in other countries... *but car population/VMT may be a different story*

![Tightening of vehicle emission controls will affect BC in other countries...*but car population/VMT may be a different story*](image)

<table>
<thead>
<tr>
<th>Country</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>2000</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Union</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 3</td>
<td></td>
<td>Euro 4</td>
<td></td>
<td>Euro 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bangladesh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 2 (under discussion)</td>
<td></td>
</tr>
<tr>
<td>Hong Kong, China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 2</td>
<td></td>
<td>Euro 3</td>
<td></td>
<td>Euro 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 1</td>
<td></td>
<td>Euro 2</td>
<td></td>
<td>E3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India<sup>b</sup></td>
<td></td>
<td>E1</td>
<td></td>
<td></td>
<td></td>
<td>Euro 2</td>
<td></td>
<td>Euro 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 2</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 1</td>
<td></td>
<td>Euro 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 1</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 1</td>
<td></td>
</tr>
<tr>
<td>PRC<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 1</td>
<td></td>
<td>Euro 2</td>
<td></td>
<td>Euro 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRC<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 1</td>
<td></td>
<td>Euro 2</td>
<td></td>
<td>Euro 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore<sup>e</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 1</td>
<td></td>
<td>Euro 2</td>
<td></td>
<td>Euro 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore<sup>g</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 1</td>
<td></td>
<td>Euro 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 1</td>
<td></td>
</tr>
<tr>
<td>Taipei, China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US Tier 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US Tier 2 for diesel<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 1</td>
<td></td>
<td>Euro 2</td>
<td></td>
<td>Euro 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viet Nam<sup>e</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Euro 1</td>
<td></td>
</tr>
<tr>
<td>Viet Nam<sup>f</sup></td>
<td></td>
</tr>
</tbody>
</table>

^a Entire country
^b Delhi and other cities; Euro 2 introduced in Mumbai, Kolkata and Chennai in 2001; Euro 2 in Bangalore, Hyderabad, Kharapur, Pune and Ahmedabad in 2003; Euro 3 to be introduced in Delhi, Mumbai, Kolkata, Chennai, Bangalore, Hyderabad and Ahmedabad in 2005
^c Beijing and Shanghai
^g Gasoline vehicles under consideration
^e for gasoline vehicles
^f for diesel vehicles

Source: Huizenga 2004
Example of PM$_{10}$ projections for Transport for OECD Europe

<table>
<thead>
<tr>
<th>Year</th>
<th>Road Diesel Exhaust</th>
<th>Road Gasoline Exhaust</th>
<th>Total Road Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emissions (Gg)</td>
<td>% Change from 1995</td>
<td>Emissions (Gg)</td>
</tr>
<tr>
<td>1995</td>
<td>250</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>2000</td>
<td>180</td>
<td>-28</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>2005</td>
<td>120</td>
<td>-52</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>2010</td>
<td>70</td>
<td>-72</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>2015</td>
<td>50</td>
<td>-80</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
</tbody>
</table>

Source: as Predicted by CONCAWE in Umweltbundesamt, 2004
Black Carbon Estimates by Country & Region

Open Biomass Burning Emissions of BC/OC

- Less controlled, no single policy lever

- In U.S., if diesel emissions decline as expected, open burning likely to become largest source

- Significant source in other regions (e.g., savannah burning in Africa, forest fires in Latin America)
Projecting Forward for All Sectors...general decline appears likely

Source: Streets, D. et al. 2004; Presented by D. Streets, Workshop on Global Air Pollution Trends, January, 2005
Mitigation Beyond BAU: Developing Cost Curves for BC/OC... only preliminary work to date

Figure 3. 2010 Global Marginal Abatement Cost Curve for Nitrous Oxide Emissions from Cropland Soils
Estimating BC/OC mitigation from open biomass burning with associated costs...proving difficult

Barriers to mitigating BC/OC from practice of prescribed burning in the US:

Technical
- Lack of equipment, and appropriately sized equipment
- Access to project areas due to terrain, lack of roads

Environmental
- Water quality degradation due to increased runoff from soil compaction, heavy equipment
- Removal of nutrients on-site which burning would replenish

Economic
- Lack of markets for small diameter biomass
- Equipment and labor costs
- Transportation costs moving material to market

Socio-political
- Long history of using prescribed burns; difficult to change

Source: Jones & Stokes (2004) Nonburning Alternatives to Prescribed Fire on Wildlands in the Western United States
...Now gathering preliminary, first-order estimates of BC/OC mitigation for open biomass in Latin America

<table>
<thead>
<tr>
<th>Mitigation Target</th>
<th>Mitigation Activity</th>
<th>Applicability/Biomass Type</th>
<th>Mean Cumulative Emission Reduction (Ton BC)</th>
<th>Mean Marginal Mitigation Cost ($1996/Ton BC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land-clearing burn</td>
<td>Hay harvesting</td>
<td>Savannah</td>
<td>34,700</td>
<td>-688,000</td>
</tr>
<tr>
<td></td>
<td>Grazing</td>
<td>Savannah</td>
<td>44,400</td>
<td>-157,000</td>
</tr>
<tr>
<td></td>
<td>Timber harvesting</td>
<td>Forest</td>
<td>153,000</td>
<td>-7,450</td>
</tr>
<tr>
<td></td>
<td>Use of biomass for energy production</td>
<td>Forest</td>
<td>260,000</td>
<td>-3,170</td>
</tr>
<tr>
<td>Prescribed burn</td>
<td>Burn before large fuels cure</td>
<td>Forest</td>
<td>263,000</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Burn before precipitation</td>
<td>Forest</td>
<td>267,000</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>Burn when there is high moisture in large woody fuels</td>
<td>Forest</td>
<td>270,000</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>Backing fires</td>
<td>Forest</td>
<td>275,000</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Burn when litter and/or duff are moist</td>
<td>Forest</td>
<td>277,000</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>Burn before litter fall</td>
<td>Forest</td>
<td>279,000</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>Burn in pile</td>
<td>Forest</td>
<td>280,000</td>
<td>654</td>
</tr>
<tr>
<td>Land-clearing burn</td>
<td>Conservation</td>
<td>Forest</td>
<td>354,000</td>
<td>3580</td>
</tr>
<tr>
<td>Prescribed burn</td>
<td>Backing fires</td>
<td>Savannah</td>
<td>371,000</td>
<td>7770</td>
</tr>
<tr>
<td></td>
<td>Mosaic burning</td>
<td>Savannah</td>
<td>384,000</td>
<td>10,400</td>
</tr>
<tr>
<td></td>
<td>Thinning and cutting leaving biomass on the floor</td>
<td>Forest</td>
<td>388,000</td>
<td>29,200</td>
</tr>
<tr>
<td>Land-clearing burn</td>
<td>Conservation</td>
<td>Savannah</td>
<td>454,000</td>
<td>241,000</td>
</tr>
</tbody>
</table>
§ Improve emission projections
 • IPCC SRES did not include BC/OC
 • IPCC TAR used simplified scaling with CO/SO$_2$ emissions
 • Will unlikely be included in IPCC AR4

§ Improve understanding of synergies/tradeoffs of GHG mitigation w/ BC/OC
 • Models participating in EMF can capture multiple interactions across gases/sectors, over long term

§ Aiming for initial scenario comparison by Fall ‘05
Plan for BC/OC Subgroup in EMF-22

- Reference Case Projections; more rigor compared to SRES
- Effects on BC/OC of GHG Mitigation
- Significance (forcing/temp) of BC/OC relative to GHGs over time

Participating EMF Models:
- PNNL/MiniCAM
- IIASA/MESSAGE
- MIT/EPPA-TEM
- Jap./AIM
- ABARE
- CICERO
- RIVM/IMAGE
- IAE/GRAPE

Bond et al. 2004 global inventory
Example of MiniCAM projections

Global Black Carbon Emissions

Land-use and transportation emissions dominate by the end of the century

Source: S. Smith, PNNL, draft manuscript
Example of MESSAGE projections

(Fossil fuel and Biomass*)

*Does not include emissions from open vegetative burning

Presented by Rao et al, IIASA, 28 Jan 05
Considerations on Including BC/OC into Climate Mitigation Strategies

- Metrics comparing long-lived GHGs w/ BC/OC
 - Who needs them, for what purpose?

 - For analysis: OK
 - We need to continue to improve our understanding of relative climatic importance
 - GWPs not necessary for comparative climate modeling

 - For emissions trading/offsets w/ GHGs: Let’s Be Very Careful!!
 - Complexities of net BC effects captured in single number?
 - Localized health & climatic effects
 - Separate goal (outside trading basket of GHGs) would not require GWP-like metric (e.g., vehicle standards)
 - OC?
Considerations on Including BC/OC into Climate Mitigation Strategies

• Feasibility
 – Additional complexity
 – Emission reduction verification; inventory guidance
 – ‘Burden shifting’