MATRIX-VBS: Condensing Organic Aerosols in a Microphysics Model Chloe Gao The condensation of organic aerosols is represented in a newly developed box- model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range. -------------------------------------------------------------------------------------------------- Evaluating Ammonium, Nitrate and Sulfate Aerosols in 3-Dimensions Keren Mezuman The spatial distribution of aerosols and their chemical composition dictates whether they would have a cooling or a warming effect on the climate system. Hence, properly modeling the 3-dimensonal distribution of aerosols is a crucial step for coherent climate simulations. Since surface networks only give 2-D data, and most satellites supply integrated column information, it is thus important to integrate aircraft measurements in climate model evaluation. In this study, the vertical distribution of ammonium, nitrate, and sulfate, is constrained against a collection of 14 AMS flight campaigns, and surface measurements from 2000-2010 in the USA and Europe. GISS modelE2, one of the only models to include nitrate aerosol in CIMP5, is used with multiple aerosol microphysics (MATRIX, OMA) and thermodynamic (ISORROPIA-II, EQSAM) configurations. Our results show that the MATRIX microphysical scheme improves the model performance for sulfate and that there is a systematic underestimation of ammonium and nitrate over the USA and Europe. In terms of gaseous precursors, underestimation of nitrate and ammonium is likely tied to ammonia emissions uncertainties, while nitric acid concentrations are largely overestimated in the higher levels of the model, influenced by strong strat-trop exchange. At high altitudes, nitrate formation is calculated to be ammonia limited, whose profile measurements are scarce.