Towards the Rebirth of the NASA GISS Land (Surface) Model: Challenges and Opportunities

Dr. Michael J. Puma
Columbia University Center for Climate Systems Research
NASA Goddard Institute for Space Studies
May 6, 2009
NASA GISS Lunch Seminar
Collaborators

NASA Goddard Institute for Space Studies
- Nancy Y. Kiang
- Igor Aleinov

NASA Goddard Space Flight Center
- Randy Koster
Motivation

• Coupling the Ent Dynamic Global Terrestrial Ecosystem model with the GISS Land Model

• Kevin Trenberth in Nov. 2008 @ GISS 3rd Floor: doesn’t trust the predictions of the GISS land model
 – Reduce confidence in modeling community
 – Marginalization of the GISS land model
Outline

• Introduction
• Existing GISS Land Model
 – Opportunities for improvement
• Current model development
 – Ecosystem-scale analyses
 – Global-scale analyses
• Development framework
Hydrologic Land Processes

- **Terrestrial hydrology**
 - 3-D land surface
 - Significant spatial heterogeneity in soil, vegetation, and topography
 - Surface runoff
 - Ecosystem dynamics

- **Fluvial hydrology**
Importance of land model

- Water cycle components interact with and affect:
 - Carbon (and nitrogen) cycle
 - Fire dynamics
 - Dust and trace gas emissions
 - Vegetation dynamics
- Partitions water & energy into storage reservoirs.
- Controls the release of water vapor and energy to the atmosphere.
Outline

• Introduction

• Existing GISS LSM
 – Opportunities for improvement

• Current model development
 – Ecosystem-scale analyses
 – Global-scale analyses

• Development framework
Current NASA GISS Land Model

- Divided into bare-soil and vegetated sections, which are conceptualized as interspersed
- A single water & energy balance for all vegetation (patches) within a grid cell
- Soil column is 3.5 m thick and 6 layers everywhere
- Explicit solution of heat & water transport in the soil column
Options for Improvement

- Continue with a one-dimensional representation (e.g. NCAR)
 - Heterogeneity (e.g. soil, topography) through statistical approaches
- Catchment-based model of GSFC (Koster et al. 2002)
- New approach to capture the heterogeneity of the land’s soil, vegetation, and topography

\[T_{1D}, R_{1D} \]
\[T_{GSFC} > T_{1D} \]
\[R_{GSFC} > R_{1D} \]
\[T_{INNOVATIVE} > T_{GSFC} \]
\[R_{INNOVATIVE} > R_{GSFC} \]
1D example: Community Land Model

- Improved canopy integration scheme (Ent DGTEM)
- Scaling of canopy interception
- TOPMODEL-based model for surface and subsurface runoff
- Groundwater model for determining water table depth
- New frozen soil scheme
- New surface data sets and parameterizations (new land-cover maps, LAI, SAI, and soil color based on MODIS products) (Lawrence and Chase, 2007)
Outline

• Introduction
• Existing GISS LSM
 – Opportunities for improvement
• Current model development
 – Ecosystem-scale analyses
 – Global-scale analyses
• Development framework
Framework

- Land model must be tested offline!!
- GISS land model needed to separated from the GISS GCM
- Setup needed to test offline at 2 spatial scales
 - Ecosystem scale
 - Global scale
- FLUXNET comparisons
- Global meteorological reanalysis datasets
 - 1986-1995 data from the GSWP2
 - 50+ years data from Princeton group
Current modifications

- Poor simulation of veg. biogeography (Oleson, 2008)
 - Global-scale: forest cover is underestimated in favor of grasses due to dry soil
 - Amazon: less broadleaf evergreen & more deciduous trees

- Problems
 - Inaccurate evapotranspiration partitioning (transpiration, soil evaporation, canopy evaporation)
 - Amazon soil moisture

<table>
<thead>
<tr>
<th></th>
<th>GSWP2 Mean of models (Dirmeyer et al., 2005)</th>
<th>Choudhury et al. 1998</th>
<th>Old NCAR forced w/obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transpiration</td>
<td>48%</td>
<td>52%</td>
<td>13%</td>
</tr>
<tr>
<td>Soil Evap.</td>
<td>36%</td>
<td>28%</td>
<td>44%</td>
</tr>
<tr>
<td>Canopy Evap.</td>
<td>16%</td>
<td>20%</td>
<td>43%</td>
</tr>
</tbody>
</table>
Vegetation and evapotranspiration

- Poor simulation of veg. biogeography (Oleson, 2008)
 - Global-scale: forest cover is underestimated in favor of grasses due to dry soil
 - Amazon: less broadleaf evergreen & more deciduous trees
- Problems: inaccurate ET partitioning, Amazon soil moisture

<table>
<thead>
<tr>
<th></th>
<th>GSWP2 Mean of models (Dirmeyer et al., 2005)</th>
<th>Choudhury et al. 1998</th>
<th>Old NCAR forced w/obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transpiration</td>
<td>48%</td>
<td>52%</td>
<td>13%</td>
</tr>
<tr>
<td>Soil Evap.</td>
<td>36%</td>
<td>28%</td>
<td>44%</td>
</tr>
<tr>
<td>Canopy Evap.</td>
<td>16%</td>
<td>20%</td>
<td>43%</td>
</tr>
</tbody>
</table>
Modifications to GISS LM hydrology

• Evaporation from vegetated soil - previously none
 – canopy sheltering effects: modify atmospheric transfer coefficient based on leaf area index

• Temporal correlation in storm position (Koster and Suarez, 1996)
 – Increase precipitation throughfall
 – reduces wet canopy fraction

• Scheme to account for wet-layer effects (i.e. stomatal blocking) on water & carbon fluxes
 – Depends on plant functional type
Morgan Monroe State Forest

- Broadleaf deciduous forest in Indiana
- Temperate continental climate:
 - mean annual temp. ≈ 12.4 °C,
 - mean annual precipitation ≈ 1094 mm

• Total evapotranspiration is underestimated during growing season
• Different schemes have minimal effect on productivity
Outline

• Introduction

• Existing GISS LSM
 – Opportunities for improvement

• Current model development
 – Ecosystem-scale analyses
 – Global-scale analyses

• Development framework
Evapotranspiration partitioning

Original scheme
- Transpiration: 48%
- Soil Evap.: 36%
- Canopy Evap.: 16%

Modified scheme
- Transpiration: 3%
- Soil Evap.: 37%
- Canopy Evap.: 47%
Hydrologic components

Original Scheme

- Total ET: No Change
- Runoff: No change

Modified Scheme

- Total ET: No Change
- Runoff: No change
Outline

• Introduction

• Existing GISS LSM
 – Opportunities for improvement

• Current model development
 – Ecosystem-scale analyses
 – Global-scale analyses

• Development framework
Development Framework: 1D model

Surface Runoff (Topography-based TOPMODEL)

Vegetation Water Dynamics (e.g. more wet-layer extraction to compensate for dry layers)

Incorporate Irrigation; Infiltration Enhancement (Macropore Flow)??

Implicit solution of water and heat equation

Soil-column layering; Water table / groundwater

Canopy boundary layer; Surface boundary layer of the atmosphere

Update:
Soils data
Land-cover data (Ent)
LAI and SAI data
Return on Investment

\[
\text{ROI} = \frac{\text{Gain from Investment}}{\text{Cost of Investment}}
\]

- **Cost of Investment**
 - 1 or 2 additional researchers

- **Gain from Investment**
 - Increased recognition in the modeling community
 - Postdoctoral researchers
 - Better runoff predictions
 - Better carbon cycle
 - Better ecosystem dynamics
 - Better climate predictions
 - Potential to create a new, innovation land model
Questions ?