Cloud-resolving models: How good are they and what can they do for you?

Ann Fridlind

in collaboration with

Andy Ackerman
Bastiaan van Diedenhoven

with support from

NASA and DOE ARM Programs
NASA Advanced Supercomputing Division
DOE National Energy Research Scientific Computing Center

NASA GISS • 28 April 2008
What can they do for you?

- predict the weather?
- predict cloud-climate interactions?
- serve as tools for studying and improving weather and climate forecasts?
- predict cloud effects on aerosols?
- predict aerosol effects on clouds?
- predict cloud effects on tracer transport?
Cloud-resolving models

How good are they?

- clouds remain poorly resolved
- many processes are poorly parameterized, not understood, or missing
- results generally unconstrained with even basic field data
- nonetheless often used to replace real data
Dynamics framework

- large-eddy simulation [Stevens and Bretherton, 1997]
- dynamic Smagorinsky subgrid model [Kirkpatrick et al., 2006]
- doubly periodic, 250-m sponge layer at top
- $64 \times 64 \times 96$ mesh, 50 m \times 20 m uniform grid
- specified SST, similarity sensible and latent heat fluxes
- specified advective flux and subsidence profiles
- 2-stream radiative transfer, 44 wavelength bands [Toon et al., 1989]
Size-resolved microphysics

- aerosols: 20 bins, 10 nm–1 µm diameter
- liquid: 20 bins, 2 µm–2 mm
- ice: 20 bins, 2 µm–5 mm
- ice nuclei: 10 bins, most to least easily nucleated
- = 90 variables
Microphysical processes

- drop activation, condensation/evaporation
- gravitational collection [Hall, 1980; Beard and Ochs, 1984]
- particle sedimentation
- homogeneous ice formation
- heterogeneous ice formation (deposition/condensation, immersion, contact modes)
- phoretic scavenging [Young, 1974], 0.5 \(\mu \text{m} \) diameter ice nuclei [Rogers et al., 2001]
- deposition/sublimation
- multiplication
Long-lived stratocumulus deck

Image source: AVHRR, Pennsylvania State University M-PACE website
DHARMA results

Liquid Supersaturation (%)

Liquid Water Mixing Ratio (g/kg)

Ice Supersaturation (%)

Ice Water Mixing Ratio (g/kg)

Droplet Distribution

Ice Crystal Distribution

Dharmar Model

Mixed-Phase Arctic Cloud Experiment (M-PACE)
In Situ Aircraft Measurements

Source: Fridlind, Ackerman, et al. [JGR, 2007]
MMCR Doppler Velocity

Acknowledgments: DOE ARM data archive, QuickBeam radar simulator [Haynes et al., BAMS, 2007]
Joint ARM/GCSS/SPARC Monsoon Case Study

Acknowledgments: DOE ARM data archive, Shaocheng Xie (LLNL)
Tropical Warm Pool—International Cloud Experiment (TWP-ICE)

S-Band Reflectivity + Doppler Velocity

Acknowledgments: DOE ARM data archive, Christopher Williams (NOAA)
S-Band Reflectivity + Doppler Velocity

Acknowledgments: DOE ARM data archive, Christopher Williams (NOAA)
25-m/s updraft penetration
25-m/s updraft penetration

A. All aerosols included
B. No aerosols above 8 km
C. No aerosols above 6 km
D. No aerosols above 2 km
E. Clean boundary layer
F. Polluted boundary layer
Funded Projects FY08–FY10

- **Understanding tropical cumulonimbus clouds: Aerosols, updrafts, precipitation, ice crystal size, and climate** (NASA ACRM), Fridlind/Ackerman/Del Genio

- **Arctic stratus and tropical deep convection: Integrating measurements and simulations** (DOE ARM), Fridlind/Ackerman/Koch with collaborators Del Genio/Menon/Comstock/Wiliams/Eloranta/DeBoer

- Need for full-time post-doc on GCM side