Inter-annual Variations of Air Mass Transport to the Arctic

Dr. Sunling Gong
Science and Technology Branch
Environment Canada

January 8, 2007
Observed Temporal Variation for Sulphate

Measured aerosol sulphate at Alert (1980--1995)

(Sirois and Barrie, 1999)
How to model the seasonal changes and trends?

- Emissions surrounding the Arctic.
- Removal patterns – e.g. precipitation changes
- Transport patterns.
Trajectory Calculations

- **Trajectory Model:**
 - HYSPLIT4 (NOAA Air Resources Laboratory)

- **Trajectory duration:** 10-day backward

- **Arriving at Alert (Barrow):**
 - 82.31 N, 62.31 W (71.32 N, 156.6 W)
 - 1000 m above sea level

- **Clustering Technique**
 - Based on Dorling’s Algorithm (Dorling et al., 1992)
 - Modified to handle a large number of trajectories
Wintertime Transport Patterns for 1981-2000

- 2480 trajectories in total;
- Best grouped into 7 clusters;
- Clusters 1, 2, and 6 account for ~40% of the overall air mass transport;
- The interannual variability of transport patterns were obtained by counting the number of trajectories from each year.
Cluster-mean plots for the four mid-season

Jan

Apr

Jul

Oct
Inter-annual Variations for Jan.

---|---|---|---|---|---
% Contributions | 0 | 10 | 20 | 30 | 40
Cluster 1
Cluster 2
Cluster 6

Graph showing inter-annual variations for Jan. with lines representing clusters 1, 2, and 6.
Correlation between Transport Frequency and Black Carbon Concentration

\[R_1 = 0.97 \quad R_2 = 0.61 \]
Transport Frequency ~ NAO/AO Indices at Alert

<table>
<thead>
<tr>
<th>Correlation (R)</th>
<th>AO</th>
<th>NAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>-0.545</td>
<td>-0.169</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>-0.249</td>
<td>-0.301</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>-0.485</td>
<td>-0.655</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>0.429</td>
<td>0.287</td>
</tr>
<tr>
<td>Cluster 5</td>
<td>0.570</td>
<td>0.070</td>
</tr>
<tr>
<td>Clusters 1+2+3</td>
<td>-0.677</td>
<td>-0.626</td>
</tr>
<tr>
<td>Clusters 4+5</td>
<td>0.697</td>
<td>0.271</td>
</tr>
</tbody>
</table>

Map showing Alert at Alert, 0 o 60°E 75°N, with clusters labeled 1 to 5 and their respective percentages.
Transport Frequency ~ NAO/AO Indices at Barrow

<table>
<thead>
<tr>
<th>Correlation (R)</th>
<th>AO</th>
<th>NAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>-0.718</td>
<td>-0.410</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>-0.751</td>
<td>-0.906</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>-0.482</td>
<td>0.110</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>0.411</td>
<td>-0.900</td>
</tr>
<tr>
<td>Cluster 5</td>
<td>0.682</td>
<td>0.725</td>
</tr>
<tr>
<td>Cluster 6</td>
<td>0.307</td>
<td>0.433</td>
</tr>
<tr>
<td>Clusters 5+6</td>
<td>0.825</td>
<td>0.942</td>
</tr>
</tbody>
</table>
Variations in BC Emissions

Black Carbon, Canada

30%
Questions:

- Which is the dominant factor in modeling the observed spatial and temporal distributions of pollutants?
 - Transport variations
 - Removal processes
 - Emissions