Reducing tropospheric ozone with methane controls:

Impact on Arctic radiative forcing

Arlene M. Fiore
(arlene.fiore@noaa.gov)

Acknowledgments:
Larry Horowitz, Dan Schwarzkopf (NOAA/GFDL)
Jason West, Vaishali Naik (Princeton University)
Ellen Baum, Joe Chaisson (Clean Air Task Force)

Funding from Luce Foundation via Clean Air Task Force

Arctic Workshop at NASA GISS, January 8, 2006
Projected changes in tropospheric O_3 burden by 2030

Stevenson et al., JGR, 2006

Multi-model mean 2000 burden is 344±39 Tg
CLE scenario: Changes in emissions and O₃ burden

Anthropogenic emission changes in CLE (2030-2005):

CH₄ +29% (+96 Tg CH₄ yr⁻¹) NOₓ +19% (+5.3 Tg N yr⁻¹)
CO -10% (-44 Tg CO yr⁻¹) VOC +3% (+3 Tg C yr⁻¹)

2005 to 2030 transient simulations in MOZART-2 CTM [Horowitz et al., 2003]
2000-2004 NCEP meteorology; 1.9°x1.9°; 28 vertical levels

ANNUAL MEAN TROPOSPHERIC O₃ COLUMNS (DU)

31 DU
340 Tg O₃
global burden

+1DU increase
in Arctic

increase from
2005 to 2030:
+1.6 DU
+18 Tg O₃
Arctic O₃ columns highest in winter and spring; Radiative forcing largest spring and summer
Apply methane controls relative to CLE baseline scenario

Anthropogenic CH$_4$ Emissions (Tg yr$^{-1}$)

Control scenarios reduce 2030 emissions relative to CLE by:
A) -75 Tg (18%)
B) -125 Tg (29%)
C) -180 Tg (42%)

+ 2030 simulation with CH$_4$ set to 700 ppb pre-industrial level
Methane controls reduce global radiative forcing

Radiative Forcing in 2030 relative to CLE 2030

Methane control scenarios:
- A
- B
- C
- Zero

Radiative forcing:
- Ozone
- Methane

Values:
- Ozone: -0.08, -0.16, -0.24, -0.75
- Methane: -0.08, -0.16, -0.24, -0.75

SCENARIO B – CLE BASE 2030
CHANGE IN TROP O$_3$ COLUMNS

TUROPOSPHERIC OZONE FORCING

DU mW m$^{-2}$
Methane Controls: Impact on Arctic O₃ radiative forcing

SCENARIO B

MAM

JJA

ZERO ANTHROP. CH₄

-19 mW m⁻²

-21 mW m⁻²

-86 mW m⁻²

-97 mW m⁻²
TF HTAP multi-model assessment: The Arctic as a receptor region?

Co-Chairs: Terry Keating (U.S. EPA), André Zuber (EC)
www.htap.org

Intercontinental Source-Receptor Regions

http://aqm.jrc.it/HTAP

20% decreases in anthrop. emissions in HTAP regions:
- NO$_x$, CO, NMVOC
- aerosols and precursors
- mercury
- POPs
Also 20% decrease in global CH$_4$ concentration

~ 13 modeling groups have already delivered results for Experiment 1

◊ Opportunity to assess impact of several species from major NH source regions on the Arctic in a consistent way across models
Summary: Impact of methane controls on Arctic ozone radiative forcing

Annual mean changes in the Arctic from 2005 to 2030

TROPOSPHERIC OZONE COLUMN (DU)

OZONE RADIATIVE FORCING (mW m⁻²)

Additional decrease in radiative forcing from lower CH₄ abundances

INCREASING METHANE CONTROL ♦