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Abstract

Here are some notes on solving 1-D advection-diffusion equations in various guises. These types
of equations often arise in idealized analyses of tracers and first-order interpretations of
observations in various fields of the earth sciences. All of this is “standard” and can be found in
various textbooks, but it may be useful to have the techniques collected in one place. I plan to
add to this from time to time.



1. General Equation

The general advection-diffusion equation (ADE)
with constant coefficients for tracer mixing ratio ¢ =

q(z,t) is
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where u is the velocity, k the diffusivity, and S a
source term. Boundary conditions are applied on ¢
(“Dirichlet” condition), or dg/dz (“Neumann” condi-
tion), or linear combination of both (“mixed” condi-
tion). The equation is second order, so two indepen-
dent boundary conditions must be specified.

In terms of non-dimensional x and ¢, the equation

is
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Afterwords, dimensions can then be returned by z —
uz/k and t — kt/u?.

Note that the ADE is equivalent to the diffusion
equation with exponentially decreasing background
density as used by Hall and Plumb. Simply substitute
u = k/H where H is the density scale height.

2. Age Spectrum

The age spectrum is the solution with s = 0 and
time-dependent boundary condition ¢(0,t) = d(t).
(The second condition is that ¢ cannot grow expo-
nentially in space.) The solution strategy is to use
the Laplace tranform to convert the PDE (time and
space) to an ODE (space), solve the ODE in the trans-
form domain, and then perform (or look up) the in-
verse Laplace transform to get back to the time do-
main. The Laplace transform of ¢ is defined as
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where s is the transform variable. Note that the

Laplace transform of 0q/0t is s§. Therefore, the

transform of the dimensionless ADE with S =0 is
di d*§ _

sq+£—w—0. (4)

which is an ODE. The appropriate boundary condi-
tion is the Laplace transform of the time-domain con-
dition ¢(0,t) = §(t), which is §(0,s) = 1. In addition
there remains the condition of no exponential growth
in z.

2

Solutions to this ODE are of the form § = e*.
Substituting yields the “characteristic equation” s +
X — A2 =0, which has the solution
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Ay = 2 +4/s+ 1 (5)
Only the negative solution is allowed to keep growth
bounded at x = oo. This leaves the solution § =
Ae*-?, for general constant A. Applying the BC
G(0,s) = 1 implies A = 1. All told, then, the Laplace
tranform of the dimensionless age spectral solution is

Q(w,5) = e*/2e=oV/PHIA (©)

The inverse Laplace transform is obtained by the
contour integration (a “Bromwich” integral)

1 c+ioco fo e
= 2—7”,/071.00 e’g(x, s)ds.
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Reasonable tables of Laplace transforms and their
inverses (e.g., Abromowitz and Stegun) include the
cases likely to be encountered for 1-D ADE for fairly
simple boundary conditions. Using the “shift” prop-
erty L71(G(s+a)) = e~ L~=1(g(s)), leaves the inverse
transform of e=*V%_ Using the inverse transform from
Abromowitz and Stegun, and rearranging terms in the
exponent, yields

q(z,t) = L' (q(x, 5))
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Replacing dimensions, and using G for the age spec-
trum, this is

q(z,t) =

g(z.’t) — e—(z—ut)2/4kt (9)
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3. Simple “radioactive” loss term

The solution to the ADE can be extended at no
cost to include a loss term of the form —Ag; i.e.,
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when ) is constant and uniform (e.g., radioactive de-
cay of a chemically inert tracer, or dilution of a 1-D
column by relaxation to a surounding infinite reser-
voir with no tracer). Define ¢/ = ge, substitute,
and find an equation for ¢' the same as the conserved
tracer.



4. Explicit source, unbounded domain

The textbook Green’s function is the solution to
an explicit point source (as opposed to an impulse
boundary condition on mixing ratio, as treated above).
That is, in equation (2) the source term S(z,t) =
0(x — m)d(t — to). Taking zy = 0 and tg = 0, and
taking the Laplace transform gives

sG + pri q = §(x) (11)

First, we treat the “unbounded” case; that is, the
boundary conditions are that there is no exponential
growth at +oo. For z # 0, the solutions are again
of the from § = e*+?  with the same characteristic
equation for A as above. For z > 0 choose A_, and for
z < 0 choose A\, in order to have bounded solutions.
This leaves the general solution
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Two conditions provide constraints for A and B. The
first condition is continuity of § at z = 0, implying
B = A. The second condition is revealed by inte-
grating equation (11) from —e to +e€ for small . By
continuity, the first two terms on the left vanish, while
the delta function on the left gives unity, leaving

(12)
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Substituting the general solution, using B = A, and
taking the limit € — 0 gives A = 1/4/s + 1/4. There-
fore
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1 ez/2e—x\/s+1/4 x>0
s + 1/4 e—z/26+z\/s+1/4 <0

After the “shift” property is used, it remains to obtain
the inverse transform of e~1*1v#/,/5. (Now, there is
a pole at the origin.) Using a table, substituting,
rearranging terms, and replacing dimensions, yields

1
q(z,t) = me—(z_utw%t (15)

(The separate expressions for £z collapse to one in
the algebra, because (|z| +t)? = (z —t)? for z < 0.)




