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Light scattering by polydispersions
of randomly oriented spheroids with sizes
comparable to wavelengths of observation

Michael I. Mishchenko and Larry D. Travis

1. Introduction

We report the results of an extensive study of the scattering of light by size and size-shape distributions of
randomly oriented prolate and oblate spheroids with the index of refraction 1.5 + 0.02i typical of some
mineral terrestrial aerosols. The scattering calculations have been carried out with Waterman’s
T-matrix approach, as developed recently by Mishchenko [J. Opt. Soc. Am. A 8, 871 (1991); Appl. Opt. 32,
4562 (1993)]. Our main interest is in light scattering by polydisperse models of nonspherical particles
because averaging over sizes provides more realistic modeling of natural ensembles of scattering particles
and washes out the interference structure and ripple typical of monodisperse scattering patterns, thus
enabling us to derive meaningful conclusions about the effects of particle nonsphericity on light
scattering. Following Hansen and Travis [Space Sci. Rev. 16, 527 (1974)], we show that scattering
properties of most physically plausible size distributions of randomly oriented nonspherical particles
depend primarily on the effective equivalent-sphere radius and effective variance of the distribution, the
actual shape of the distribution having a minor influence. To minimize the computational burden, we
have adopted a computationally convenient power law distribution of particle equivalent-sphere radii
n{r)«r=3,r; <r < ry. The effective variance of the size distribution is fixed at 0.1, and the effective size
parameter continuously varies from 0 to 15. We present results of computer calculations for 24 prolate
and oblate spheroidal shapes with aspect ratios from 1.1t0 2.2. The elements of the scattering matrix for
the whole range of size parameters and scattering angles are displayed in the form of contour
plots. Computational results are compared with analogous calculations for surface-equivalent spheres,
and the effects of particle shape on light scattering are discussed in detail.
Key words: Light scattering, nonspherical particles, aerosols, remote sensing.

sizes, shapes, and orientations. Also, the aerosol

Quantitative studies of the effects of atmospheric
aerosols on the propagation of light through the
atmosphere require accurate information regarding
scattering properties of the aerosol particles. A sub-
stantial fraction of aerosols in terrestrial and plan-
etary atmospheres can be composed of solid materi-
als, thus implying nonspherical particle shapes, and
we must expect that the particles are distributed over
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particles often have sizes comparable to the wave-
length of light, thus precluding the use of the Ray-
leigh or geometric optics approximations. As a con-
sequence the calculation of light scattering by
atmospheric aerosols is demanding and requires the
fastest possible numerical techniques for practical
applications. Of course the same problem of comput-
ing light-scattering properties of polydisperse non-
spherical particles can be important in many other
areas, such as oceanography, biology, astrophysics,
colloidal chemistry, and particle sizing.

Because of computational difficulties, the literature
in which light-scattering calculations for polydisperse
ensembles of nonspherical particles are reported and
discussed is extremely scarce, and all previous studies
of polydisperse nonspherical scattering were based on
computations for only a few tens or a few hundreds of
individual nonspherical particles.'-* Furthermore,
almost all computations of polydisperse nonspherical



scattering were restricted to photometric quantities
such as the total optical cross sections, the single-
scattering albedo, and the (1, 1) element of the scatter-
ing matrix, i.e., the phase function,'* whereas only
limited numerical data are available for other ele-
ments of the scattering matrix.5>-8

Recently an efficient method for rigorously calculat-
ing the scattering of light by randomly oriented,
rotationally symmetric particles of a size comparable
to the wavelength of radiation has been developed, as
described by Mishchenko.? This method uses the
analyticity of Waterman’s T-matrix approach®-12 and
provides analytical rather than numerical averaging
of light-scattering characteristics over particle orien-
tations. In other words the orientational averaging
step in actual computer calculations is essentially
avoided, thus making the method numerically simple
and fast. . The method has been substantially im-
proved by developing an efficient automatic conver-
gence procedure that takes into account particular
features of the T-matrix approach, as applied to
randomly oriented particles, thereby substantially
reducing computer time and storage requirements.'?
Because numerical convergence is checked automati-
cally, this procedure is especially suitable for compu-
tations of light scattering by size—shape distributions
of nonspherical particles. Furthermore, recently
Mishchenko and Travis'¢ have demonstrated that
calculating the T-matrix with extended-precision in-

stead of double-precision floating-point variables en-

ables one to suppress the numerical instability of
T-matrix computations. As a result the maximum
particle size parameter for which T-matrix computa-
tions converge increases by a factor exceeding 2.

In this paper we apply Mishchenko’s method to
extensive study of light scattering by size and size—
shape distributions of randomly oriented prolate and
oblate spheroids with sizes comparable to the wave-
length of light. Specifically, we examine how the
optical cross sections, albedo for single scattering,
asymmetry parameter of the phase function, and
elements of the scattering matrix depend on the
effective particle size and particle nonsphericity.
We emphasize here that our main interest is in light
scattering by polydisperse models of nonspherical
particles because (1) averaging over sizes provides
more realistic modeling of natural ensembles of scat-
tering particles and (2) comparing scattering proper-
ties of particles of a single size is often meaningless
because of the complicated interference structure and
high-frequency ripple of scattering patterns.215-19
Averaging over particle sizes washes out the interfer-
ence structure and ripple and, thus, permits meaning-
ful comparisons of light-scattering properties of par-
ticles with different shapes and sizes.

Our specific goal here is not to study a limited
selection of particle sizes, as was usually done in
previous investigations of nonspherical scattering,
but rather to present and analyze calculations for the
continuous range of effective size parameters from
zero to some maximum value to provide a general

picture of polydisperse spheroidal light scattering.
In displaying the computational data we use contour
plots of the elements of the scattering matrix as
functions of scattering angle and size parameter.
In conjunction with the smoothing effect of averaging
over a size distribution, this provides an efficient
display of a rather large amount of information and
permits us to make meaningful and rather general
conclusions about the effects of particle nonsphericity
on light scattering.

We had several reasons to select spheroidal shapes
for this investigation. First, the shape of a spheroid
has the advantage of being described by only one
shape parameter, specifically, the aspect ratio. By
varying this single parameter, one can model a wide
variety of nonspherical shapes ranging from spheres
toneedles and plates. Second, spheroids are rotation-
ally symmetric particles and, therefore, are especially
suitable for efficient T-matrix computations. Third,
unlike cylinders (which are also described by only one
shape parameter and can be treated by the T-matrix
method”20), the surface of spheroids is smooth, thus
permitting convergent 7T-matrix computations for
larger particle sizes and aspect ratios. Fourth, be-
fore we attempt to model more complicated shapes, it
seems useful to understand light-scattering proper-
ties of simple nonspherical particles in detail. Indeed,
some features of nonspherical scattering may be the
consequence of just the fact of particle nonsphericity
or may depend on a rather general characteristic of
particle shape such as, e.g., the ratio of the largest to
the smallest particle dimensions. On the other hand,
with a limited volume of computational data for a few
arbitrarily selected nonspherical particles, one might
be prone to erroneous interpretation of peculiarities
of the scattering pattern as specific to one particular
shape or, on the contrary, one might groundlessly
consider these peculiarities a general property of
nonspherical scattering. In this regard, an extensive
survey of spheroidal scattering seems to be rather
useful, at least in application to convex scatterers.

In Section 2 we introduce the definitions necessary
to describe the shape of spheroidal particles and their
distribution over sizes and briefly recapitulate basic
quantities relevant to the scattering of light by ran-
domy oriented rotationally symmetric particles.
Then we present results of extensive calculations of
light scattering by polydispersions of surface-equiva-
lent spheres and randomly oriented prolate and ob-
late spheroids with aspect ratios from 1.1 to 2.2.
Our observations and conclusions regarding the effects
of particle shape on the optical cross sections, single-
scattering albedo, asymmetry parameter of the phase
function, and elements of the scattering matrix based
on these calculations are discussed in Section 3. In
Section 4 the main results of the paper are summa-
rized. Some preliminary results of this study have
been previously reported,?' and a comprehensive study
of polydisperse nonspherical linear polarization is
presented in a separate paper.1?
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2. Calculations

The shape of a spheroid in the spherical coordinate
system is governed by the equation

a2 -1/2
r(d, ¢) = a[sln2 ¥+ o cos? ﬁ} , (1)
where 9 is the zenith angle, ¢ is the azimuth angle, b
is the rotational (vertical) semiaxis, and a is the
horizontal semiaxis. To specify the shape and size of
a prolate or an oblate spheroid, we use the couple
(e, 7), where e > 1 is the aspect ratio defined as ¢ =
b/a for prolate spheroids and as € = a/b for oblate
spheroids, and r is the radius of the equal-surface-
area sphere (or, equivalently,?2 the radius of the
sphere that has the cross-sectional area equal to the
averaged projected area of randomly oriented spher-
oids) given by

r= (2)

[ arcsin e |1/2
2a? + 2ab

1
2
for prolate spheroids and by

[ b2 (L+e
2a® + —1In
I e \1-e

1/2

DN =

for oblate spheroids, where

e2_11/2
e=(—?)—‘ O]

The single scattering of light by a small-volume
element consisting of randomly oriented, rotationally
symmetric, independently scattering particles is com-
pletely specified by the cross sections for scattering
Cs. and extinction C, and the elements of the
normalized scattering matrix F.15-17 In the stan-
dard {I, @, U, V| representation of polarization, the
scattering matrix has the form

Fi,(0) Fyiy(0) 0 0
_ F15(0) Fyn(0) 0 )
0 0 F33(0)  Fyy(0) ]|’
0 0 —F3(0) Fyu0)

where © € [0, 7] is the scattering angle and the (1, 1)
element (i.e., the phase function) satisfies the normal-
ization condition

1
- L dOF,(0) = 1. 6)

Additional important quantities describing light scat-
tering are the absorption cross section Cyps = Cop —
Cscar the single-scattering albedo w = Cyp/Cey, and
the asymmetry parameter of the phase function (or
mean cosine of the scattering angle), g = (cos 6).15-17
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To calculate the cross sections and the elements of
the scattering matrix for a size distribution of ran-
domly oriented, rotationally symmetric particles, we
used the method described in detail in Refs. 9 and 13.
In all our calculations, we used the value of the
convergence parameter A [Egs. (18) and (21) of Ref.
13] equal to 10-3,

Hansen and Travis!® (see also Refs. 23 and 24) have
shown that scattering properties of most physically
plausible size distributions of spherical particles de-
pend primarily on only two characteristics of the
distribution, the effective radius r.4 and the effective
variance v.g, the particular shape of the distribution
being of secondary importance. The effective radius
is defined as the cross-sectional-area-weighted mean
radius,

Teff = éf drrmrin(r), (7)

0

where

G= J“" drurin(r) (8)

0

is the average geometric cross-sectional area and
n{r)dr is the fraction of the particles with radii
betweenrandr + dr. Note that

f ) dra(r) = 1. 9)
0

Similarly, the width of the distribution is character-
ized by the dimensionless effective variance v de-
fined as

1 -
Vet = 2 f dr(r — reg)*wrin(r). (10)

eff Vo

Thus the result of Hansen and Travis means that if
different size distributions of spherical particles have
the same values of the effective radius and effective
variance, then their scattering properties are practi-
cally identical. To verify whether this result also
applies to nonspherical particles, we computed the
light-scattering properties of three size distributions
of randomly oriented oblate spheroids, namely, power
law, gamma, and log-normal distributions given by!6

2 24 2

:1 T2 sr8 forr <r <y,

n(r)={re —n (11)
0 otherwise,
n(r) = constant r1-3ve)/vet exp(— ) » (12)
TeffVesr

1 1 (Inr — Inry)?
o exp|— RITMT g
nir) (211')1/20g r exp[ 20'g2 (13)



respectively, where r is now the radius of the equal-
surface-area sphere. The aspect ratio of the spher-
oids is 1.7, and their refractive index is 1.5 + 0.02i.
Note that Eq. (12) for the gamma distribution uses
the effective radius and the effective variance as
formal parameters, and the formal parameters ry, r,
o, and r, for the power law and log-normal distribu-
tions correspond to r.g and v values according to the
following relations’®:

_2Tn (14)
Teft = 111("2/"1)
Iy + 181

Veft = 2(7‘2 — 7‘1) ln(’"z/ﬁ) -1, (15)

re = I'y €xp(50,%/2), (16)

ver = €xp(0,?) — 1. (17

The values of the formal parameters for all the three
size distributions were chosen such that they had the
same effective radius r,y = 1.5 pm and effective
variance vy = 0.1 (Fig. 1). Although the range of
particle radii for the gamma and log-normal distribu-
tions is, theoretically, infinite, in practical computer
calculations one must truncate the range at a maxi-
mum radius chosen such that scattering properties of
polydisperse particles are computed within a given
accuracy. Specifically, the ranges of the radii in our
calculations were [0, 4] pm and [0, 4.5] pm for the
gamma and the log-normal distributions, respec-
tively, which guaranteed the relative accuracy of
computation of the extinction and scattering cross
sections better than 10-4.  For comparison, the range
of particle radii [r,, ry] for the power law distribution
was [0.8202, 2.4799] pm. The number of Gaussian
division points used in numerical averaging over
particle radii was also chosen to provide the specified
accuracy and was 70 for the power law distribution,
100 for the gamma distribution, and 110 for the
log-normal distribution.

The results of our computations at a wavelength

102 —

100 m _

n(r)

107 S % —

w4 Voo o

1076 T R

0.1 1 10
r (microns)
Fig. 1. Power law ( ), gamma (— ——), and log-normal
(vennns ) size distributions having the same effective radius reg = 1.5
wm and effective variance veg = 0.1.

Table 1. Optical Cross Sections, Single-Scattering Albedo, and
Asymmetry Parameter of the Phase Function for Power Law, Gamma,
and Log-Normal Distributions of Equivalent-Sphere Radii for Randomly
Oriented Oblate Spheroids with Aspect Ratio 1.7¢

Size
Distribution Coxt? Coca® Caned w {cos O)
Power law 12.19 8.18 4.01 0.671 0.822
Gamma 11.94 8.06 3.88 0.675 0.825
Log-normal 12.42 8.36 4.06 0.673 0.825

2All three distributions have the same effective radius reg = 1.5
pm and effective variance ver = 0.1. The refractive index of the
spheroids is 1.5 + 0.027, and the wavelength is 0.6283 pm.

In square micrometers.

A = 0.6283 pm are shown in Table 1 and Fig. 2. We
do not display the elements of the scattering matrix
for the gamma distribution because in most cases the
corresponding curves were hardly distinguishable
from those for the log-normal distribution. One can
see that despite the quite different shapes of the size
distributions (Fig. 1), the computed light-scattering
characteristics are in excellent quantitative agree-
ment. This comparison confirms and extends to
randomly oriented spheroidal particles the conclusion
of Hansen and Travis that, irrespective of the particu-
lar shape of a size distribution, its scattering proper-
ties are completely specified by only two parameters,
namely, effective radius and effective variance.

From the perspective of efficiency, however, we
note that the CPU times on an IBM RISC model 37T
workstation for the three optically equivalent size
distributions were dramatically different: 28 min
for the power law distribution, 6 h for the gamma
distribution, and 14 h for the log-normal distribution.
These big differences are explained by the fact that
the CPU time for T-matrix computations increases as
the third or even fourth power of the particle size
parameter and that convergent computations for size
parameters above some critical value can only be
performed with extended-precision arithmetic.l4
In view of similarity of the optical scattering charac-
teristics corresponding to different distributions with
equivalent r.z and v.g, the substantially greater effi-
ciency for the power law distribution makes an
obvious case for its use, especially for a survey
intended to cover a broad range of r.4 values and
aspect ratios. Although at present the T-matrix
method is by far the fastest numerical tool for
rigorously computing light scattering by randomly
oriented nonspherical particles,'® even with this
method the CPU time consumed can still be signifi-
cant, especially for big or highly aspherical scatterers.
Therefore, to minimize the computational burden, we
have adopted the power law distribution for all
further calculations reported in this paper. How-
ever, as the above comparison illustrates, it is reason-
able to presume that all our computations and conclu-
sions remain valid for any other distribution, including
gamma and log-normal distributions having the same
e and veg.
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Fig. 2. Elements of the scattering matrix for power law ( ) and log-normal (—— —) distributions of equivalent-sphere radii for

randomly oriented oblate spheroids with aspect ratio 1.7. For both distributions, the effective radius is r.q = 1.5 pm and the effective

variance is veg = 0.1.

Note that for a fixed v.g, the minimum, r;, and
maximum, 7y, radii of the power law distribution are
proportional to r.g. Defining q; = r;/rsg and q; =
ro/res, we determine these proportionality factors by
solving numerically the following system of two (non-
linear) equations [cf. Egs. (14) and (15)]:

(g2 — q1)
In(gz/q1) (18)
gs + g1 = 2(veg + 1). (19)

The values of ¢; and g, for a selection of v g values are
tabulated in Ref. 19.
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The refractive index of the spheroids is 1.5 + 0.02, and the wavelength is 0.6283 pm.

We have performed calculations for 12 prolate and
12 oblate spheroidal shapes with aspect ratios 1.1
{0.1) 2.2. - However, to keep this paper to a reason-
able size, below we display only the results for prolate
and oblate spheroids with aspect ratios 1.5 and 2.2.
These particular aspect ratios have been chosen
based on our study of polydisperse nonspherical
polarization!® and are intended to represent moder-
ately (e = 1.5) and strongly (e = 2.2) aspherical par-
ticles. In particular, although for particles with the
aspect ratio e = 1.5 the pattern of linear polarization
is already distinctly different from that for surface-
equivalent spheres, it does not show yet the pro-
nounced bridge of positive polarization at scattering
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Fig. 8. Upper graph, efficiency factor for extinction Qe versus
effective size parameter x.q¢ for surface-equivalent polydispersions

of spheres ( ), randomly oriented prolate spheroids with
aspect ratiose = 1.5 (...... yand 2.2 (— —-— ), randomly oriented
oblate spheroids with aspect ratios € = 1.5 (~—-——) and € = 2.2

(—---—), and an equiprobable mixture of 24 spheroidal shapes
( ). Lower graph, corresponding percent spherical-non-
spherical differences €. defined by Eq. (21).

angles near 120° that appears for particles with a
larger degree of nonsphericity and is definitely pres-
ent for particles with e = 2.2. We also display results
of computations for the simplest, equiprobable mix-
ture of all the 24 spheroidal shapes. Thus we as-
sume thatJ = 24 and p; = 1/24 in equations 10-13 of
Ref. 13.

Throughout this paper we use a constant effective
variance ves = 0.1, corresponding to a moderately
wide size distribution, and a refractive index N =
1.5 + 0.02;. This index of refraction is typical of
some terrestrial aerosols at visible wavelengths?® and
was used by Wiscombe and Mugnai'-326 in their
light-scattering computations for Chebyshev particles.
Note that for v.g = 0.1, r; = 0.54677 r.g and ry =
1.65324 r.g. ’

The results of our numerical calculations are pre-
sented in Figs. 3-13, below. Figures 3,4, 5, 6,and 7
show the efficiency factors for extinction (@), scatter-
ing (Qsca), and absorption (@), the albedo for single
scattering (w), and the asymmetry parameter of the
phase function, (cos ©), respectively, as functions of
the effective size parameter x4 = 2mr.s/\, with the

Qsca
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Fig. 4. Upper graph, efficiency factor for scattering Q. versus
effective size parameter x. for surface-equivalent polydispersions
of spheres ( ), randomly oriented prolate spheroids with
aspect ratiose = 1.5(...... )and 2.2 (—-—-—), randomly oriented
oblate spheroids with aspect ratios e = 1.5 (———) and e = 2.2
(—-+-—), and an equiprobable mixture of 24 spheroidal shapes
( ). Lower graph, corresponding percent spherical-non-
spherical differences.

wavelength set at A = 2w/10 = 0.6283 pm. The
efficiency factors are defined as
Cex C C b.
Qext = t2 ’ Qsca = 5C32 » Qs = : 52 : (20)
T off T et T off

In Figs. 3-7 the effective radius continuously varies
from 0 to 1.5 um. Therefore the maximum effective
size parameter is equal to 15, which, for size distribu-
tions with v, = 0.1, requires calculation for a maxi-
mum monodisperse equivalent-sphere size parameter
equal to 24.8. Also, the lower panels in Figs. 3-7
show the corresponding percent spherical-nonspheri-
cal differences, defined as

C..(spherical) — C (nonspherical)
C..(spherical)

x 100%

€ext =
(21)

for the extinction cross section and analogously for
Csca) Cabs’ w, and (COS e)
Figures 9—-13 are contour plots of the elements of
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Fig. 5. Upper graph, efficiency factor for absorption Qs versus
effective size parameter x.y for surface-equivalent polydispersions

of spheres (. ), randomly oriented prolate spheroids with
aspect ratiose = 1.5(...... yand 2.2 (= —-— ), randomly oriented
oblate spheroids with aspect ratios e = 1.5 (————) and e = 2.2

(—++—), and an equiprobable mixture of 24 spheroidal shapes
( ). Lower graph, corresponding percent spherical-non-
spherical differences.

the scattering matrix as functions of the scattering
angle 0° < © < 180° (horizontal axes) and the
effective size parameter 0 < x4 < 15 (vertical axes).
Note that for spheres )

Fy(0)/F1(0) =1, (22)

F33(0)/F11(0) = Fuy(0)/Fy,(6). (28)
Figure 8 shows a contour plot of the normalized
phase function for polydisperse spheres accompanied
by contour plots of percent spherical-nonspherical
differences in intensity for polydisperse spheroids,
defined as

\ [Fll(e)]s herical — [Fli(e)]nons her
61(6) - lEF|11(6)]spherical :

X 100%.

(24)

The computational data displayed in Figs. 3-13
represent calculations for over 80,000 individual non-
spherical particles in random orientation and were
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Fig. 6. Upper graph, single-scattering albedo w versus effective
size parameter x.g for surface-equivalent polydispersions of spheres
( ), randomly oriented prolate spheroids with aspect ratios
e =15 (...... ) and 2.2 (—-—-—), randomly oriented oblate
spheroids with aspect ratios € = 1.5 (——-—)and e = 2.2 (—---—),
and an equiprobable mixture of 24 spheroidal shapes ( ).
Lower graph, corresponding percent spherical-nonspherical differ-
ences.

calculated in approximately 120 h of CPU time on an
IBM RISC/6000 model 37T workstation.

3. Discussion

A. Optical Cross Sections, Single-Scattering Albedo, and
Asymmetry Parameter of the Phase Function

The common feature of Figs. 3-7 is that spherical-
nonspherical differences increase in absolute value as
the aspect ratio increases and are similar for prolate
and oblate spheroids of the same aspect ratio.
Spherical extinction and scattering cross sections are
larger than nonspherical cross sections for effective
size parameters from 0 to roughly 5 but become
smaller for x.g from 5 to 13-15. Figure 5 shows that,
for the specific refractive index, effective variance,
and range of effective size parameters, spheres are
stronger absorbers than surface-equivalent spheroids.
Spherical single-scattering albedos are larger than
nonspherical single-scattering albedos for x.4 from 0
to 3.5 and are smaller for larger particles.

It is well known (see, e.g.,, van de Hulst!® and
Bohren and Huffman!?) that for particles much
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Fig. 7. Upper graph, asymmetry parameter of the phase function
(cos ©) versus effective size parameter x.q for surface-equivalent
polydispersions of spheres ( ), randomly oriented prolate

spheroids with aspect ratios e = 1.5 (...... ) and 2.2 (—-——),
randomly oriented oblate spheroids with aspect ratios ¢ = 1.5
(—-——)and e = 2.2 (—---—), and an equiprobable mixture of 24

spheroidal shapes ( ). Lower graph, corresponding per-
cent spherical-nonspherical differences.

smaller than a wavelength, the extinction cross sec-
tion is proportional to particle volume, not particle
surface or cross-sectional area. Therefore large
spherical-nonspherical differences seen in Figs. 3—-6
for small particles are partly an artifact of using the
equivalent-sphere radius rather than the equal-
volume-sphere radius to specify the size of the spher-
oids. Indeed, we have found that analogous calcula-
tions for equal-volume particles reveal smaller
spherical-nonspherical differences for the optical cross
sections and the single-scattering albedo in the region
of small size parameters (x < 5). However,
spherical-nonspherical differences in extinction and
scattering are smaller for surface-equivalent particles
than for volume-equivalent particles for x. larger
than roughly 5. We have also found that spherical—
nonspherical differences in the asymmetry parameter
of the phase function are essentially insensitive to
whether surface-equivalent or volume-equivalent par-
ticles are compared. Therefore Fig. 7 demonstrates
the limited applicability of the semiempirical theory
of Pollack and Cuzzi,?” which yields smaller asymme-
try parameters for nonspherical particles than for

their equal-volume spherical counterparts with size
parameters larger than approximately 5 (see also Ref.
28).

We have found that the integral photometric prop-
erties of the equiprobable mixture of particle shapes
can be rather accurately represented by those of a
single spheroidal shape. Specifically, for the whole
range of effective size parameters from 0 to 15, the
absolute percent difference between the equiprobable
shape mixture and an oblate spheroid with the aspect
ratioe = 1.7is less than 1.6% in C,y, less than 1.7% in
Cyca less than 1.3% in C,, less than 1.0% in the
single-scattering albedo, and less than 2.0% in {cos ©).
This result is, of course, not unexpected, because
these integral photometric quantities are relatively
simple functions of particle size parameter and shape,
are similar for prolate and oblate spheroids of the
same aspect ratio, and change smoothly with increas-
ing particle asphericity.

B. Phase Function (Fy4)

Our phase function calculations displayed in Fig. 8
show that for effective size parameters larger than
roughly 4, the following five distinct regions exist, in
order of increasing scattering angle:

- (1) sphere = nonsphere,
2) sphere < nonsphere,
3) sphere > nonsphere,
4) sphere < nonsphere,
5) sphere > nonsphere.

The first of these regions is the region of forward
scattering (© = 0° to 10-15°) that, in agreement with
the conclusions of Wiscombe and Mugnai,2 is the
least-sensitive region to particle nonsphericity. Here
the absolute value of spherical-nonspherical differ-
ences rarely exceeds 20%. In the calculations of
Wiscombe and Mugnai? for moderately aspherical
Chebyshev particles, nonspherical intensities in the
forward-scattering region were always larger than
spherical intensities. Our data show, however, that
spheroidal particles with x.¢ > 10 may scatter in this
region as much as 10% less than surface-equivalent
spheres [Fig. 8(c)].

In the second region, which, depending on effective
size parameter, extends from © = 10-20° to 30—45°,
spheroids are stronger scatterers (in terms of the
value of the normalized phase function) than surface-
equivalent spheres, spherical-nonspherical differ-
ences increasing with increasing aspect ratio and
reaching —45%. To our knowledge, the existence of
this region was not mentioned before and demon-
strates the restricted applicability of the conclusion of
Wiscombe and Mugnai? that nonspheres scatter less
than spheres in the 10-80° range of scattering angles.
Note that Wiscombe and Mugnai made that conclu-
sion on the basis of their computations for moder-
ately aspherical Chebyshev particles. In laboratory
measurements of light scattering, the range of the
smallest scattering angles is usually inaccessible.
Therefore comparisons of measured nonspherical
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polydispersions of (a) prolate and (b) oblate spheroids with the aspect ratio € = 1.5, (¢) prolate and (d) oblate spheroids with the aspect ratio
€ = 2.2, and (e) an equiprobable mixture of 24 spheroidal shapes. (f) contour plot of the normalized phase function for polydisperse

spherical particles.

phase functions and phase functions computed theo-
retically for equivalent spheres are often made on the
basis of equating the functions at a phase angle © =
10° or 20°. Our results here show that such an
approach is not necessarily an acceptable approxima-
tion and may lead to erroneous conclusions.

Region 3 extends from O = 40-50° to 100-105° for
spheroids with the aspect ratio 1.5 and from © =

7214 APPLIED OPTICS / Vol. 33, No. 30 / 20 October 1994

35-40° to 75-80° for spheroids with the aspect ratio
2.2. Once again the angle ranges are only nominal
and change somewhat with particle size. Here
spheres are stronger scatterers than nonspheres,
with spherical-nonspherical differences increasing as
the aspect ratio increases and exceeding +40% for
oblate spheroids with the aspect ratio 2.2.

Region 4 is the region of side scattering and,
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depending on particle size, extends from © = 100-
105° to 135-150° for spheroids with € = 1.5 and from
O = 80-90° to 120-145° for spheroids with € = 2.2.
In this region, nonspherical intensities are larger (up
to a factor of 2.3) than spherical intensities (cf. Refs.
29 and 30). Interestingly, in this region, unlike all
other regions, spherical-nonspherical differences are
larger for the less aspherical spheroids with the
aspect ratio 1.5.

The backscattering region (region 5) extends, de-
pending on x., from © = 140-160° to 180° for
spheroids with the aspect ratio 1.5 and from © =

60
Scattering Angle (deg)

Fig. 9. Contour plots of the ratio Fas/F1; X 100% as a function of
scattering angle © and effective size parameter x.q for surface-
equivalent polydispersions of (a) prolate and (b) oblate spheroids

o With the aspect ratio e = 1.5, (c) prolate and (d) oblate spheroids

with the aspect ratio e = 2.2, and (e) an equiprobable mixture of 24
spheroidal shapes.

125-155° to 180° for spheroids with the aspect ratio
2.2. As was noted by Wiscombe and Mugnai,? this
region, in which the glory occurs, is the most sensitive
to the fact of sphericity. Here spherical-nonspheri-
cal differences are in most cases positive, increase
with increasing aspect ratio, and can exceed +75%.
In other words, the ratio of spherical to nonspherical
phase functions in this region can exceed 4, which is
in agreement with laboratory measurements by Perry
et al.?® for nearly cubically shaped NaCl particles.
However, as was first pointed out by Wiscombe and
Mugnai,? the backscattering peak, usually associated
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Fig. 10. Contour plots of the ratio Fs3/F;; x 100% as a function of scattering angle © and effective size parameter xeq for
surface-equivalent polydispersions of (a) prolate and (b) oblate spheroids with the aspect ratio € = 1.5, (¢} prolate and (d) oblate spheroids
with the aspect ratio € = 2.2, (e) an equiprobable mixture of 24 spheroidal shapes, and (f) spheres.

with the glory, survives as a rise of the backscattered
intensity at © = 180° relative to that at © = 170°.
This modest backscattering peak is also seen in figure
7 of Ref. 4 and figures 2 and 3 of Ref. 13. Interest-
ingly, in the backscattering region prolate—oblate
differences are much smaller for particles with e = 2.2
than for less-irregular particles with e = 1.5. Al-
though for prolate spheroids with the aspect ratio 1.5
the backscattering peak is substantially depressed,
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Scattering Angle (deg)

for oblate spheroids with the same aspect ratio the
spherical-nonspherical differences at backscattering
angles are much smaller and even become negative at
effective size parameters near 13-15, thus indicating
that the oblate spheroids become stronger scatterers
than surface-equivalent spheres (see also figures 2
and 3 of Ref. 13).

Unlike regions 2 and 3, which become practically
indistinguishable below x. = 4, region 1 extends
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Contour plots of the ratio Fy/Fi; X 100% as a function of scattering angle © and effective size parameter x.q for

surface-equivalent polydispersions of (a) prolate and (b) oblate spheroids with the aspect ratio e = 1.5, (¢} prolate and (d) oblate spheroids
with the aspect ratio e = 2.2, (e) an equiprobable mixture of 24 spheroidal shapes, and (f) spheres.

down to x4 = 0, and regions 4 and 5 extend down to
X = 2-3. Below x4 = 2, spherical-nonspherical
differences are small, except for a region at © > 100°
for x.4 ~ 1, where nonspherical particles are stronger
scatterers than spheres by as much as several tens of
percent.

All the five regions can be clearly seen in calcula-
tions for the equiprobable shape mixture [Fig. 8(e)].
As is the case for the integral photometric quantities,

the phase function of oblate spheroids with the aspect
ratio e = 1.7 most closely resembles.that of the shape
mixture, the percent differences beingless than +30%
in most cases. These differences are relatively larger
because the dependence of the phase function on the
particle aspect ratio is not as monotonic as in the case
of the integral photometric quantities and is some-
what different for prolate and oblate spheroids of the
same aspect ratio.
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Fig. 12. Contour plots of linear polarization —F15/F1; X 100% as a function of scattering angle © and effective size parameter xq for
surface-equivalent polydispersions of (a) prolate and (b) oblate spheroids with the aspect ratio e = 1.5, (c) prolate and (d) oblate spheroids
with the aspect ratio ¢ = 2.2, (e) an equiprobable mixture of 24 spheroidal shapes, and (f) spheres.

C. F 22/ F11

Although for spheres the ratio Fy,/F), is identically
equal to 1 [Eq. (22)], for spheroids it can substantially
deviate from unity, especially at side- and backscatter-
ing angles (0 > 70°-80°), as illustrated in Fig. 9, in
which the angular dependence of Fyy/F); is rather
different for prolate and oblate spheroids of the same
aspect ratio. In particular, for prolate spheroids the
ratio Fpy /F1, is especially size and aspect ratio depen-

7218 APPLIED OPTICS / Vol. 33, No. 30 / 20 October 1994

dent. Also, for prolate spheroids the smallest Foy /F;
values are concentrated at smaller scattering angles,
and the minimum Fy,/F; values are smaller than for
oblate spheroids. As a result, measurements of the
angular behavior of Fpy /Fy; at © > 70-80° in labora-
tory experiments or bidirectional remote-sensing ob-
servations may, potentially, be used to distinguish
between prolate and oblate particles and to determine
particle size and aspect ratio. On the other hand, at
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Fig. 13. Contour plots of the ratio Fgu/Fi; X 100% as a function of scattering angle © and effective size parameter x.y for
surface-equivalent polydispersions of (a) prolate and (b) oblate spheroids with the aspect ratio e = 1.5, (c) prolate and (d) oblate spheroids
with the aspect ratio € = 2.2, (e) an equiprobable mixture of 24 spheroidal shapes, and (f) spheres.

scattering angles less than roughly 70° and in the
region of Rayleigh scattering (x.s < 1), the ratio
Fyy/Fy; is close to 1 and is practically insensitive to
particle size and shape.

The ratio Fyy/F;, for the equiprobable shape mix-
ture [Fig. 9(e)] is closer to that for oblate spheroids
than for prolate spheroids. This can be explained by
the fact that F,,/Fy; is strongly aspect ratio depen-
dent for prolates and nearly aspect ratio independent

for oblates with aspect ratios larger than roughly 1.4.
As a result, particular details specific for prolate
spheroids with different aspect ratios are averaged
out, and the shape-averaged pattern is dominated by
nearly aspect-ratio-independent features of oblate
scattering. We have found that the ratio Fy,/Fy; for
the equiprobable shape mixture is best represented
by the ratio Fgy/F;; of oblate spheroids with the
aspect ratio 1.9, percent differences being smaller
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than +18% in the whole range of scattering angles
and effective size parameters.

D. F33/F11 andF44/F11

Whereas for spherical particles Fy3/Fy) = Fyy /Fy4, for
spheroids these ratios may be substantially different
(Figs. 10 and 11). In particular, our calculations
ShOW that unlike the ratio F33/F11, the ratio F44/F11
may be positive at © = 180°. For most effective size
parameters and scattering angles, the ratio Fy,/Fy, is
larger than Fs3/F;. This conclusion is in agree-
ment with laboratory measurements by Perry et al.2
for NaCl particles and theoretical computations for
randomly oriented monodisperse spheroids by Asano
and Sato.2® At side- and backscattering angles, these
ratios are (strongly) size and shape dependent, thus
being sensitive indicators of particle size and shape.
In particular, these ratios are appreciably different
for prolate and oblate spheroids of the same aspect
ratio and, therefore, may be used to distinguish
between prolate and oblate particles. The region of
phase angles where the ratio Fs3/F); is negative is
narrower for oblate spheroids than for prolate spher-
oids of the same aspect ratio.

For the equiprobable shape mixture [Figs. 10(e)
and 11(e)], the ratios F33/F, and F,,/F; are substan-
tially different at phase angles larger than 90°. The
ratio Fy/Fy; is systematically larger than Fyg/Fy;,
except for the region of forward and near-forward
scattering, where the ratio Fs3/F;; may be slightly
larger. Because of the strong and complicated depen-
dence of these ratios on particle shape, the shape-
averaged patterns cannot be sufficiently accurately
represented by those of a single effective spheroidal
shape.

In accordance with the general inequality3!-32

|Fgg — Fa4l = Fi1 — Fy, (25)

the difference between the ratios Fs3/Fy; and Fyy/F,;
is less than the deviation of the ratio Fp,/F;; from
unity. However, we have found from our calcula-
tions that the inequality of Eq. (25) is close to
equality, especially for prolate spheroids (cf.
Stammes®). Specifically, although for spheres the
ratio

Fiy —Fp + Fy3— Fy

A:
Fy

x 100%  (26)

is identically equal to zero, for spheroids this ratio
may be nonzero but, in the whole range of effective
size parameters and scattering angles, does not ex-
ceed 8.5% for prolate spheroids, 19% for oblate spher-
oids, and 6.8% for the shape mixture (see Table 2,
which shows the maximum A value on the interval
Xe € [0, 15] for each of the spheroidal shapes and for
the equiprobable shape mixture as well as the effec-
tive size parameter x, and scattering angle ©, at
which this maximum value is reached). At exactly
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Table 2. Maximum Values of the Ratio A and Backscattering
Depolarization Ratios 5, and 3. Along with Corresponding Values of the
Effective Size Parameter and Scattering Angle for Prolate and Oblate
Spheroids with Varying Aspect Ratios and the Equiprobable
Shape Mixture

€ Amax (g7} E Oa(deg) dpma  xp  JoMmEX o

Prolate spheroids
1.1 1.30 11.6 24 0.270 15 0.740 15
1.2 2.00 12.8 44 0475 15 1.807 15
1.3 3.53 13.8 110 0.515 10.8 2.119 108
1.4 4.67 124 98 0502 9 2014 9
1.5 591 12 91 0467 84 1.751 8.4
1.6 6.76 12.8 96 0438 7.2 1561 7.2
1.7 5.67 12 101 0403 7.2 1348 7.2
1.8 5.85 12.6 166 0369 72 1170 7.2
1.9 6.79 12.6 165 0.341 7 1.035 7
2 7.81 10.6 162 0316 6.2 0922 6.2
2.1 8.48 10.6 161 0297 78 0844 78
2.2 8.36 10.4 161 0285 8 0.798 8
Oblate spheroids
1.1 1.10 15 172 0.143 15 0.335 15
1.2 3.20 13.6 171 0.220 15 0.564 15
1.3 5.18 8.2 169 0.245 144 0.650 144
14 7.44 6.4 167 0.278 98 0.772 98
1.5 9.64 5.8 165 0.310 9.2 0900 9.2
1.6 11.5 5 163 0335 76 1.009 76
1.7 12.9 5 162 0353 7.8 1.092 178
1.8 139 4.6 160 0362 7.6 1136 7.6
1.9 14.6 3.4 150 0369 74 1168 74
2 15.9 4.2 139 0373 7.2 1191 72
2.1 17.6 3.4 131 0379 7 1.222 7
2.2 19.0 3.4 130 0.387 7 1.264 7
Equiprobable shape mixture

6.73 7.6 159 0319 178 0938 7.8

the backscattering direction,
A(180°) = 0, 27 .

which is in agreement with the general equality33
F44(180°) - F33( 1800) = FII(ISOO) - F22(180°). (28)

Because F; is always larger than or equal to Fyp, Eq.
(28) also yields
F,4(180°) > F34(180°). (29)
Note that the results of Hu et al.3® imply that, for
rotationally symmetric particles, the following equal-
ity holds at exactly the forward-scattering direction:

F11(0) — Fyy(0) — F35(0) + Fyy(0) = 0. (30)

We have verified this equality in extensive T-matrix
computations for spheroids and Chebyshev particles
and recommend that it may be used as a convenient
test in checking the accuracy of numerical calcula-
tions.

E. Linear Polarization (—F;5/Fy;)

Figure 12 demonstrates that outside the region of
Rayleigh scattering and at scattering angles larger
than roughly 60°, linear polarization is strongly as-



pect ratio dependent, spherical-nonspherical differ-
ences increasing with increasing particle asphericity
and making the Mie theory inapplicable in calcula-
tions for nonspherical particles at side- and backscat-
tering angles. However, polarization patterns for
prolate and oblate spheroids of the same aspect ratio
are similar, indicating that aspect ratio may be a
relevant shape parameter for linear polarization of
light scattered by convex bodies (cf. Refs. 13, 19, 28,
and 34). In general, linear polarization becomes
more neutral with increasing aspect ratio. The most
remarkable polarization feature of nonspherical scat-
tering is the bridge of positive polarization at scatter-
ing angles near 120°, which extends from the region
of Rayleigh scattering and may be used to distinguish
between spherical and nonspherical shapes.1%2®  This
bridge of positive polarization was first found by
Perry et al.?® in their laboratory measurements of
light scattering by submicrometer- and micrometer-
sized nearly cubical NaCl particles and then by Asano
and Sato?® in their theoretical computations for mono-
disperse randomly oriented spheroids. At small scat-
tering angles (<60°), linear polarization depends
rather weakly on particle shape. Therefore Mie
scattering computations of linear polarization for
equivalent spheres at forward- and near-forward-
scattering angles can potentially be used for sizing
nonspherical particles.

Strong and peculiar dependence of linear polariza-

tion on particle aspect ratio makes it rather difficult -

to select a single spheroidal shape reasonably accu-
rately representing the shape-averaged pattern [Fig.
12(e)]. Our calculations show that of all the 24
spheroidal shapes, an oblate spheroid with the aspect
ratio 1.4 is, apparently, the best effective shape.
However, in the regions of nearly neutral polariza-
tion, even the sign of polarization may be different for
the equiprobable shape mixture and this effective
spheroid.

F. Fo/Fuy

Figure 13 shows that in the region of Rayleigh
scattering (x.¢ < 1), the ratio Fi3,/F, is equal or close
to zero for all the particle shapes. For larger
particles, whatever their shape is, F3,/F; is positive
at forward- and backscattering angles and negative at
side-scattering angles. The backscattering positive
branch is narrow, and the forward-scattering positive
branch, being narrow at x.y; = 15, broadens with
decreasing size parameter, extends up to © = 110° at
X = 1.5, and has a local maximum at around O = 60°
and x.g = 2.5. Thus the general pattern of the sign
of the ratio Fs,/F,, as a function of the scattering
angle and the effective size parameter is basically the
same for all the particle shapes. This conclusion is
in full agreement with laboratory measurements for
NaCl particles by Perry et al.? However, large
magnitude variations of the ratio Fa/F;; with chang-
ing shape make it sensitive to the fact of particle
nonsphericity and rather different for prolate and
oblate spheroids of the same aspect ratio. In particu-

lar, the backscattering positive branch is much weaker
for prolate than for oblate spheroids. The negative
minimum of the ratio Fi,/F;; weakens and moves
toward smaller scattering angles as the aspect ratio
increases. The minimum is deeper and is reached at
much larger size parameters for oblate spheroids
than for prolate spheroids of the same aspect ratio.
In general, prolate—spherical differences are larger
than oblate-spherical ones. Figure 13 also demon-
strates that Fyi/F); is (strongly) size dependent.
Therefore this ratio is, potentially, a sensitive indica-
tor of both particle shape and size, especially at
scattering angles larger than 60°. At scattering
angles less than 60°, F3,/F;; is much less shape
dependent, as first noticed by Perry et al.,2° thus
making the Mie theory applicable to sizing of non-
spherical particles.

Because of the strong variability of Fs,/F,; with
particle size and shape, the shape-averaged pattern of
this ratio is dissimilar to that of any of the individual
spheroidal shapes. As in the case of the ratios
F33/Fy, and Fy/F1,, this makes it practically impos-
sible to select an effective spheroidal shape that
represents the Fy,/F; pattern of the equiprobable
shape mixture reasonably well.

G. Backscattering Depolarization Ratios

Two quantities frequently measured in lidar and
radar observations are the linear, §;, and circular, 3,
backscattering depolarization ratios.3>% The first
quantity refers to the case of linearly polarized inci-
dent light and is the ratio of the cross-polarized to
copolarized components of the backscattered light.
The second quantity is relevant to the case of circu-
larly polarized incident radiation and is the ratio of
the same-helicity to opposite-helicity components of
the backscattered signal. In terms of the Stokes
scattering matrix F given by Eq. (5), the depolariza-
tion ratios can be expressed as

. F11(180°) — F,y(180°) a1

L~ F,(180°) + F,y(180°) (31)
F,,(180°) + F,,(180°

80 = 11( o) 44( 0) (32)
F,,(180°) — F,,(180°)

Because for spheres §; = 0 and 8. = 0, the depolariza-
tion ratios are usually considered sensitive indicators
of particle nonsphericity.*

Table 2 shows maximum values of the depolariza-
tion ratios on the interval x4 € [0, 15] for each of the
spheroidal shapes and for the shape mixture. Also,
the quantities x;, and x are effective size parameters
at which these maximum values are found. Several
interesting specific features are seen from Table 2.
First, for both prolate and oblate spheroids, the
depolarization ratios can substantially deviate from
zero, reaching 8; = 0.515 and &6, = 2.119 for prolate
spheroids and 5; = 0.387 and 3; = 1.264 for oblate
spheroids. Second, prolate and oblate spheroids be-
have quite differently with increasing aspect ratio:
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although the depolarization ratios for oblate spher-
oids increase monotonically, those for prolate spher-
oids have a sharp maximum at a relatively small
aspect ratio e = 1.3. Thus, for oblate spheroids, the
depolarization ratios are indicators of the degree of
particle asphericity, whereas for prolate spheroids
almost spherically shaped particles can produce much
greater depolarization than highly aspherical scatter-
ers. Third, for both prolate and oblate spheroids,
x;, = x¢ and the aspect-ratio dependence of the ratios
8z, and §¢ is fully correlated: 3. increases where 9,
increases and decreases where 3, decreases. Thus
we may conclude that both the linear and circular
backscattering depolarization ratios are produced by
exactly the same scattering mechanism. Note that
several mechanisms have been suggested to explain
depolarization of the backscattered light by nonspheri-
cal particles (see, e.g., Ref. 28). However, it is still
not clear enough whether any of the mechanisms can
explain all the specific features seen from Table 2.

4. Concluding Remarks

In this paper we have described the results of an
extensive study of light scattering by polydispersions
of randomly oriented prolate and oblate spheroids.
Our main interest has been in light scattering by
polydisperse models of nonspherical particles because
averaging over sizes provides more realistic modeling
of natural ensembles of scattering particles and washes
out the interference structure and ripple typical for
monodisperse scattering patterns, thus enabling one
to derive meaningful conclusions about the effects of
particle nonsphericity on light scattering.

Following Hansen and Travis,'® we have shown
that light-scattering properties of any physically plau-
sible distribution of equivalent-sphere radii of non-
spherical particles depend primarily on only two
parameters, namely, the effective radius and effective
variance of the distribution, the actual shape of the
distribution having a minor influence. To minimize
CPU-time consumption, we have adopted in this
paper a computationally convenient power law size
distribution. However, in accordance with the above-
mentioned result, we expect that all our computa-
tions and conclusions are valid for any other distribu-
tion, e.g., gamma and log-normal distributions, having
the same effective radius and effective variance.

To display the large volume of numerical data, we
have relied on contour plots of the elements of the
scattering matrix as functions of scattering angle and
effective size parameter following the example of
Hansen and Travisi® and Coffeen and Hansen.*
This way of representing the results permits the
economical display of the continuous sequence of
calculations for the whole range of scattering angles
and size parameters, thus illustrating the general
pattern of light scattering, while nonetheless permit-
ting values to be read off the contour plot with an
accuracy still good enough for many practical pur-
poses.

We have demonstrated on the basis of our rigorous
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computations that polydisperse spherical-nonspheri-
cal differences in the angular distribution of the
scattered intensity can be large. This result may
have important consequences for remote sensing of
tropospheric aerosols?%-4546 because a substantial frac-
tion of aerosol particles are solid and, thus, have
nonspherical shapes. As follows from our computa-
tions, even for such a modest aspect ratic as 1.5 the
scattered intensity can be smaller or larger than that
for equivalent spheres by as significant a factor as 2.5.
Therefore we must conclude that if aerosol particles
are even moderately aspherical, then the Mie theory
should not be used to interpret results of photometric
remote-sensing measurements.

Polydisperse nonspherical phase functions 'are
rather flat at side-scattering angles, especially for
larger aspect ratios, and show a modest backscatter-
ing peak, whereas phase functions for equivalent
spheres demonstrate a wide and deep side-scattering
minimum and a pronounced glory. As a result,
spherical-nonspherical differences in scattered inten-
sity are most significant at side- and backscattering
angles. However, these differences are appreciable
at near-forward-scattering angles as well, thus mak-
ing reliable comparisons of experimentally measured
nonspherical phase functions with theoretical compu-
tations for equivalent spheres difficult.

Unlike the phase function, spherical-nonspherical
differences in polydisperse optical cross sections,
single-scattering albedo, and asymmetry parameter
of the phase function are much less pronounced.
This suggests that the effects of particle shape may be
less important for climate than for remote sensing.!
However, the final conclusion should be made on the
basis of accurate radiative transfer calculations for
nonspherical versus spherical aerosols.4” An impor-
tant result of our calculations is that polydisperse
nonspherical asymmetry factors may be larger than
spherical factors in the region of effective size param-
eters from 3 to roughly 10-13, thus demonstrating
the weakness of the semi-empirical approach?’ to
nonspherical scattering.

All the elements of the polydisperse scattering
matrix are complicated functions of particle shape
and, for different nonspherical particles of equal size,
may (substantially) differ in magnitude and even sign.
At side- and backscattering angles, the ratio Fop/F);
is much more size and aspect ratio dependent for
prolate spheroids than for oblate spheroids. Unlike
spheres, for which Fy3/Fy; = Fy/F,,, for spheroids
the ratio F44/F11 is uSually larger than F33/F11,
especially at side- and backscattering regions, and
may even be positive at 180°. A common feature of
nonspherical linear polarization is the bridge of posi-
tive polarization at 120° extending upward from the
region of Rayleigh scattering. The general pattern
of the sign of the ratio Fy,/F;; as a function of the
scattering angle and particle size is basically the same
for all particle shapes and includes two positive
branches at forward- and backscattering angles sepa-
rated by a wide negative region. However, strong



variability of the magnitude of this ratio with particle
shape makes it appreciably different for prolate and
oblate spheroids. Because all the elements of the
scattering matrix are (strongly) size and aspect ratio
dependent, they are sensitive indicators of particle
size and asphericity. Unlike the phase function and
linear polarization, the ratios Fyy/Fy;, Fs3/F1q,
F,/Fy,, and Fs,/F;; may be substantially different
for prolate and oblate spheroids of the same aspect
ratio and may be used to distinguish between prolate
and oblate particles. Generally, all the elements of
the polydisperse scattering matrix are (much) less
shape dependent at scattering angles smaller than
roughly 60° than at side- and backscattering angles.
All our conclusions are in full agreement with labora-
tory measurements by Perry et al.?® for nearly cubi-
cally shaped, micrometer- and submicrometer-sized
NaCl particles, thus suggesting that spheroids can
well represent light-scattering properties of convex
particles.

The linear and circular backscattering depolariza-
tion ratios are produced by exactly the same scatter-
ing mechanism and, depending on particle shape and
effective size parameter, can reach values as large as
8, = 0.515and 3¢ = 2.12. However, the aspect-ratio
dependence of the ratios for prolate and oblate spher-
oids is quite different and can be used to distinguish
between prolate and oblate shapes. Surprisingly, for
prolate spheroids both depolarization ratios have a

sharp maximum at the relatively small, ¢ = 1.3,

aspect ratio and thus cannot be considered a measure
of particle asphericity.

In most cases of practical interest, scattering par-
ticles are mixtures of different shapes. Unfortu-
nately, the information about the distribution of
particle shapes in natural ensembles is extremely
limited. If a particle-shape distribution has a strong
mode at a particular aspect ratio, then we can expect
that light-scattering properties of such a narrow
shape distribution are well represented by computa-
tions for a single particle shape. Another extreme
case is a flat, aspect-ratio-independent shape distribu-
tion. To model such a case, we have computed light
scattering by the simplest, equiprobable distribution
of the 24 prolate and oblate spheroidal shapes with
aspect ratios from 1.1 to 2.2. Not surprisingly, we
have found that in the whole range of effective size
parameters, the optical cross sections, single-scatter-
ing albedo, and asymmetry parameter of the phase
function for the equiprobable shape mixture are
rather accurately represented by those of a single,
effective spheroid (an oblate spheroid with the aspect
ratio 1.7). This result can be explained by the fact
that these integral photometric quantities are rela-
tively simple functions of particle size parameter and
shape. On the other hand, the elements of the
scattering matrix for the equiprobable shape mixture
may differ substantially from those of any of the
individual spheroids, thus making it difficult, if at all
possible, to select a single spheroidal shape ad-
equately representing this type of shape mixture.

We have found that the phase function and the ratio
Fa/F1, for the equiprobable shape mixture are rela-
tively close to those for oblate spheroids with aspect
ratios 1.7 and 1.9, respectively, and the shape-
averaged linear polarization qualitatively resembles
that for oblate spheroids with the aspect ratio 1.4.
As to the remaining elements of the scattering ma-
trix, it is practically impossible to select a single
effective spheroidal shape to represent the equiprob-
able shape mixture. Even the fact that the shape-
averaged phase function, the ratio Fyy/F},, and the
linear polarization are represented by different single
aspect ratios suggests that the concept of an effective
spheroidal shape hardly works in the case of the
equiprobable shape distribution. This can be ex-
plained by the fact that the elements of the scattering
matrix are (much) more complicated functions of
particle size parameter and shape than the integral
photometric quantities and may be substantially dif-
ferent for prolate and oblate spheroids of the same
aspect ratio.

We must allow, following Wiscombe,*8 that spheroi-
dal particles are special in one way: they are convex
bodies. As was pointed out in Refs. 1-3 and 19,
partial concavity of particle shape may have a pro-
nounced effect on light scattering. Because many
natural aerosol particles may have partially concave
shapes, a survey of polydisperse concave nonspherical
scattering similar to this survey of polydisperse con-
vex spheroidal scattering would be useful. Unfortu-
nately, straightforward T-matrix computations for
partially concave Chebyshev particles become very
slow for deformation parameters greater than 0.1-
0.15.26  Alternative methods for calculating non-
spherical scattering such as the discrete dipole approxi-
mation*® and the volume integral equation
formulation® are, in principle, applicable to concave
particles. However, they are much slower than the
T-matrix method”'® and may be practical only for
relatively small size parameters. Thus it does not
seem realistic to attempt a theoretical survey of
polydisperse concave scattering comparable in scope
to the present study at this time. Perhaps the most
simple and efficient way to study polydisperse con-
cave scattering extensively is to use one of the
modifications of the T-matrix method5-%3 in combina-
tion with the analytic averaging procedure® to com-
pute light scattering by polydisperse, randomly ori-
ented bispheres. Of course, controlled laboratory
experiments can also provide valuable information
about the light-scattering properties of concave par-
ticles.50:54.55

Finally, we note that the principal output of our
computational method in the form of expansion
coefficients (see equations 4-9 of Ref. 13) can be
directly used in numerical solutions of the radiative
transfer equation.’® As was demonstrated by
Hansen and Travis,'® multiple scattering does not
necessarily dilute particular features of the single-
scattering matrix, e.g., especially those of the single-
scattering polarization. Therefore the Stokes param-
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eters of multiply scattered light can be rather sensitive
to particle nonsphericity 5758
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