G.Projector — Global Map Projector

User's Guide: Projection List

Following is a list of the map projections included in G.Projector as of version 1.7, along with alternative names. Sample images of an Earth topographical map are linked for each unique projection.

  • Hammer: Polyconic, equal-area.
  • Hammer Oblique: Polyconic, equal-area. Alternative version of above projection allowing for oblique, transverse, and plagal aspects.
  • Hammer-Aitoff: See Hammer.
  • Hammer-Wagner: See Wagner VII.
  • Hill Eucyclic: Polyconic, equal-area. Note: identical to Eckert IV for K=∞.
  • Hölzel: Pseudocylindric.
  • Homalographic: See Mollweide.
  • Homolographic: See Mollweide.
  • Kavraisky V: Pseudocylindric, equal-area.
  • Kavraisky VI: See Wagner I.
  • Kavraisky VII: Pseudocylindric, equally spaced parallels, elliptical meridians, pole line.
  • Natural Earth: Pseudocylindric, orthophanic, pole line.
  • Nell: Pseudocylindric, pole line.
  • Nell-Hammer: Pseudocylindric, equal-area, pole line.
  • Nordic: See Hammer Oblique and apply λ0=0°, ϕ0=45°, third rotation 0°.
  • Ordinary Polyconic: See American Polyconic.
  • Ortelius Oval: Pseudocylindric, equally spaced parallels, circular meridians, pole line.
  • Orthographic: Azimuthal, perspective view.
  • Orthographic (Two-Hemisphere): Azimuthal, perspective view. Alternative version of above projection that displays entire globe as two side-by-side hemispheres.
  • Orthophanic: See Robinson.
  • Oxford Atlas: See Modified Gall.
  • Parabolic: Pseudocylindric, equal-area, parabolic meridians.
  • Pavlov: Cylindric.
  • Peters: See Gall Orthographic.
  • Plate Carrée: See Equirectangular and apply ϕts=0°.
  • Polyconic: See American Polyconic.
  • Putniņš P1: Pseudocylindric, equally spaced parallels, elliptical meridians.
  • Putniņš P1': See Wagner VI.
  • Putniņš P2: Pseudocylindric, elliptical meridians.
  • Putniņš P2': See Wagner IV.
  • Putniņš P3: Pseudocylindric, equally spaced parallels, parabolic meridians.
  • Putniņš P3': Pseudocylindric, equally spaced parallels, parabolic meridians, pole line.
  • Putniņš P4: See Parabolic.
  • Putniņš P4': Pseudocylindric, equal-area, parabolic meridians, pole line.
  • Putniņš P5: Pseudocylindric.
  • Putniņš P5': Pseudocylindric, pole line.
  • Putniņš P6: Pseudocylindric, hyperbolic meridians.
  • Putniņš P6': Pseudocylindric, hyperbolic meridians, pole line.
  • Urmayev Sinusoidal: Pseudocylindric, equal-area, sinusoidal meridians, pole line except for b=1 case. Note: identical to Wagner I if b=0.866; identical to Cylindrical Equal-Area for ϕts=28° if b=0; compressed horizontally from classic Sinusoidal if b=1.
  • Wagner I: Pseudocylindric, equal-area, sinusoidal meridians, pole line.
  • Wagner II: Pseudocylindric, sinusoidal meridians, pole line.
  • Wagner III: Pseudocylindric, equally spaced parallels, sinusoidal meridians, pole line.
  • Wagner IV: Pseudocylindric, equal-area, elliptical meridians, pole line.
  • Wagner V: Pseudocylindric, elliptical meridians, pole line.
  • Wagner VI: Pseudocylindric, equally spaced parallels, elliptical meridians, pole line.
  • Wagner VII: Polyconic, equal-area, pole line.
  • Wagner VIII: Polyconic, pole line.
  • Wagner IX: Polyconic, equally spaced parallels, pole line.
  • War Office: See Rectangular Polyconic.
  • Werenskiold I: See Putniņš P4'.
  • Werenskiold II: See Wagner I.
  • Werenskiold III: See Wagner IV.
  • Werner II: See Bonne and apply ϕ0=90°.
  • Winkel I: Pseudocylindric, equally spaced parallels, sinusoidal meridians, pole line.
  • Winkel II: Pseudocylindric, equally spaced parallels, elliptical meridians, pole line.
  • Winkel Tripel: Polyconic, equally spaced parallels, pole line.

Return to G.Projector Homepage