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Conventional source-detection algorithms in high-energy astrophysics and other fields mostly use
spherical or quadratic sliding windows of varying size on two-dimensionally binned representations
of spatial event distributions in order to detect statistically significant event enhancements (sources)
within a given field. While this is a reasonably reliable technique for nearly pointlike sources with
good statistics, poor and extended sources are likely to be incorrectly assessed or even missed at all,
as the calculations are governed by nonphysical parameters like the bin size and the window geometry
rather than by the actual data. The approach presented here does not introduce any artificial bias
but makes full use of the unbinned two-dimensional event distribution. A Voronoi tessellation on
a finite plane surface yields individual densities, or fluxes, for every single event, the distribution
of which allows the determination of the contribution from a random Poissonian background field
(noise). The application of a nonparametric percolation to the tessellation cells exceeding this noise
level leads directly to a source list which is free of any assumptions about the source geometry.
High-density fluctuations from the random background field will still be included in this tentative
source list but can be easily eliminated, in most cases, by setting a lower threshold to the required
number of events per source. Since no finite-size detection windows or the like have been used,
this analysis yields automatically straightforward fluxes for every source finally accepted. The main
disadvantage of this approach is the considerable CPU time required for the construction of the
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Voronoi tessellation—it is thus applicable only to either small fields or low-event density regions.

PACS number(s): 02.70.4+d,02.50.+s,95.75.Mn

I. INTRODUCTION

Many physical applications involve procedures which,
in a way, can be called source-detection algorithms. Al-
though we will use the most obvious case of a two-
dimensional spatial event distribution to demonstrate the
advantages of the technique described in the following, it
is, in principle, applicable to any problem where signif-
icant density enhancements are sought after in a, not
necessarily spatial, two-dimensional parameter space.

In high-energy astrophysics spatially resolved obser-
vations of astronomical objects often yield few or even
single photon counts per detection cell to begin with.
The raw data provide the highest attainable spatial res-
olution which is limited by the detector hardware only;
count statistics, on the contrary, can be extremely poor,
especially for weak extended sources.

These poor statistics are the major handicap of con-
ventional source detection algorithms which make use of
a locally determined background in order to flag possi-
bly significant density enhancements in the photon dis-
tribution. It is this concept of a local search which of-
ten makes the introduction of a coarser data binning
inevitable in order to improve the count statistics lo-
cally at the expense of spatial accuracy. So-called slid-
ing windows (mostly quadratic), of varying size are then
moved across the binned distribution marking the po-
sitions where the count rate in the central part of the
window exceeds the value expected from the background
determined in the outermost regions of the window by a
certain predetermined factor.

Using this technique it is clear that the decision
whether a source is regarded as significant or not will be
affected by several purely artificial parameters, namely

e bin sizes and positions and

e window sizes and geometries.

This well-known flaw is overcome only partially by an
additional commonly used detection algorithm which uti-
lizes the results of the local detect procedure only in as
much as it clips the detected sources and then computes
a global background map from the remainders. A maxi-
mum likelihood (ML) routine is then used to find sources
in the background subtracted distribution. However, as
the ML algorithm has to assume a model profile (most
applications use Gaussian distributions) to fit to the data,
the dependency of the decision process on an artificially
fixed geometry persists.

The method we will describe in the following shows
none of these shortcomings as, firstly, it does not sort
the photons into artificial bins but rather works on the
raw data globally, thus being limited only by the detec-
tor’s resolution, and, secondly, it does not assume any
particular source geometry for the detection process. Be-
cause of the great deal of CPU time required it should
be used only on rather small data sets in search of low-
event density sources. As a sample event distribution
photon counts as detected by the x-ray telescope aboard
the ROSAT satellite in a 1° x 1° field of the sky will be
used.
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II. DESCRIPTION OF THE ALGORITHM
BY SIMULATION DATA

The actual procedure can be briefly summarized as
follows.

(1) The Voronoi tessellation for the original raw photon
distribution is computed.

(2) The cumulative distribution of the inverse areas
of the resulting Voronoi cells is compared with that ex-
pected for a random Poisson distribution. A cutoff value
for the photon density parametrizing the global back-
ground is determined.

(3) A spatial percolation algorithm is run on the in-
dividual cells grouping cells (i.e., photons) exceeding the
background density into sources.

(4) The minimal number of photons required for a true
source is computed in order to discriminate against back-
ground fluctuations.

A. The Voronoi tessellation

For a given two-dimensional distribution of points (of-
ten also called atoms; in our application: photons) the
Voronoi tessellation [1] is a uniquely defined set of con-
vex cells, each of which encloses one and only one of
these points. Depending on the implied boundary condi-
tions the entire set of cells covers either the whole plane
or just the area enclosed by the polygon defined by the
outermost points of the distribution. In any case there
are neither gaps nor overlaps between adjacent Voronoi
cells. The algorithm used here for the construction of this
tessellation is a two-dimensional adaption of the recipe
described by Tanemura, Ogawa, and Ogita [2] for three
dimensions.

‘We use open boundaries on a plane, finite-area surface,
where the constructability of the outmost cells is guaran-
teed by restricting the tessellation to the central region
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FIG. 1. Voronoi tessellation of a sample set of 2000 ran-
domly positioned photons in a 1° x 1° field.

of the area actually covered by the photon distribution.
For the application examples presented in the following
we found a confinement to the central 81% of the field
area to be a good choice. Figure 1 illustrates the result-
ing cell distribution for the tessellation of a sample set of
2000 randomly positioned points.

B. The inverse area distribution

Let us assume for a moment that this random distri-
bution was an actual measurement of some background
radiation field: a physically interesting quantity would
then be not the area assigned to each photon by the tes-
sellation but rather the distribution of fluxes, i.e., detec-
tor counts per time interval and unit area, in order to
establish a background level to compare to the fluxes of
potential sources.

We are not aware of an analytical derivation of the cell-
area distribution function for randomly positioned points
following Poissonian statistics; numerical simulations [3],
however, suggest that the empirical results converge to-
wards the differential probability distribution

dp(@) = A —4a4a

where @ = a/(a)q is the cell area in units of the average
cell area (a), = & Zf—l_q a;. The corresponding cumula-
tive distribution is then given by

a
P(a) =/ dp
0
} ~3
=1—e-4a<3~i—a—+sa2+4a+1). 1)

As each cell contains exactly one photon the flux for this
particular photon equals the inverse of the product of
the cell area and the exposure time. Assuming a uniform
exposure of unity for the time being, Eq. (1) yields

- a7 { 32 8 4
P(f):e 4/f(§?§+-}:_;+7+1), (2)

where f = f/(f) is the inverse cell area 1 /a in units of the
inverse average cell area (f) = N/ Efil 1/fi = 1/(a)a.
This function is indeed in excellent agreement with the
cell-area distribution of the sample shown in Fig. 1 as
can be seen in Fig. 2.

Note that although the. purely random photon distri-
bution appears to reveal considerable structure in Fig. 1
which is what a local detection algorithm would look
for, the cumulative flux distribution representing a global
property of the data looks extremely smooth as statistical
fluctuations tend to cancel out on a larger scale.

However, if sources are located within the field of view
a significant deviation from the Poissonian curve is ob-
served. Figure 3 shows simulated distributions where
three sources of different extent were put on top of 2000
background photons like the ones shown in Fig. 1. Each
of the three artificial sources consists of 200 photons in
a spatial Gaussian distribution. The width of the Gaus-
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FIG. 2. Top: normalized flux distribution for the ran-
domly positioned photons of Fig. 1 assuming uniform expo-
sure of the field (solid line) and theoretical model function
according to Eq. (2) (dashed line). Bottom: residuals data
minus model.

sian varies, however, from ¢ = 1’ through ¢ = 2’ to
o = 4’ (top to bottom). Whereas the first two sources
are rather compact despite their extent, the third one
is extremely extended and poses a true challenge to any
source-detection algorithm. The resulting flux distribu-
tions, however, are in all three cases clearly inconsis-
tent with the random background curve which was fit-
ted to the data in the background-dominated low-flux
range where f < 0.8. Extensive simulations showed this
range to yield the highest accuracy and reliability in the
determination of the fit parameter, the total number of
background photons. For all three examples this number,
as determined by the fit, is within 2% of the true value.

From the residuals also presented in Fig. 3 an up-
per flux limit for background contributions can be deter-
mined in order to allow the separation of high-flux from
low-flux regions in the subsequent percolation. This cut-
off is established at the flux value where the background-
corrected cumulative distribution AP(f) [or N(< f)]
reaches its minimal value (cf. dotted lines in Fig. 3), i.e.,
where the measured flux distribution starts to rise faster
than would be expected for a purely random photon dis-
tribution. Note that for all three examples this cutoff
excludes more than two-thirds of the photons from the
percolation process.

Apart from the Voronoi cells in high-flux regions
around the sources we are actually looking for, fluctu-
ations in the random background will of course also be
found in the upper end of the flux distribution. Most of
these fluctuations consist, however, only of a couple of
adjacent cells and can therefore be eliminated by means
of a percolation algorithm accepting exclusively sources

containing more than a certain minimum number of pho-
tons.

C. The percolation

What is usually meant by “percolation” (often also
called “friends-of-friends”) algorithms is the search for
close groups of objects in a two- or three-dimensional
distribution using a maximally allowed separation dpax
between each two of these objects as the only parameter
to be set beforehand. Starting at any point all neighbor-
ing objects closer to the starting point than the specified
maximal distance are taken to be members of the agglom-
eration and become starting points in the next iteration
themselves. Algorithms of this sort are often used as
source-detection algorithms in their own right, the main
difficulty being the choice of a suitable value for dpax
which determines the scale sources are found at.

Fortunately, the percolation algorithm used here does
not need any distance parameter; dpyax is, in a way, re-
placed by the flux cutoff determined from the comparison
between the flux distributions for the data and a random
background field. As this cutoff value corresponds to an
area (namely that of the Voronoi cells) rather than a lin-
ear distance, it makes the percolation far more flexible
and less prone to erroneously taking fluctuations for true
sources.

For the simulation examples discussed in the previ-
ous sections the percolation found, in fact, more sources
per field consisting of more than ten photons each than
just the one we put in. As the background radiation
has entered only implicitly so far, namely in the flux
threshold for the percolation, we still have to correct the
source counts (i.e., the number of photons assigned to
each source) for background photons, though. Knowing
the total area covered by each source from the Voronoi
tessellation, a background correction can be applied by
simply subtracting the number of background photons
statistically expected in the same area. Doing this and
keeping only sources containing at least five “true” pho-
tons we are left with the detections depicted in Fig. 4.

In all three cases the detections of both the simu-
lated sources are accompanied by spurious detections in
the field of background photons consisting of up to 12.3
photons (number background corrected). In general one
more step is thus required in order to discriminate against
random fluctuations, namely the establishment of a value
for the minimal number of photons required for a real
source.

D. The suppression of fake sources

The normalized number of sources caused by random
fluctuations in the background field can be written as

Nsgre,fAuct (fmin ’ nph)

= TNgrc,fluct (fmim 0) exp [_b(fmin) nph], (3)

where fmin is the flux cutoff value used to separate high-
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from low-flux events for the percolation and npy is the
number of photons above the background level in the fluc-
tuation source. Ngec fiuct in Eq. (3) is normalized to the
total number of background photons in the tessellation
area, Npck so that the actual number of random sources
of size npy in a given field is

Nsrc,ﬂuct (fmim nph) = Npek Ngrc,fAuct (fmin ) nph) .

In the range 1.2 < femin < 2.2, which is where the flux
cutoff value is found to lie for almost any event distri-
bution (cf. Fig. 3), both ngrc fiuct (Fmin, 0) and b(fmin) are
reasonably well described by linear functions of fmin. Fig-
ure 5 shows the variation of both parameters as a function
of fmin as obtained in simulations of purely Poissonian
background fields containing 1000 and 2000 photons, re-
spectively. Least-squares fits yield

nsrc,ﬂuct(fmin, 0) =0.047 fmin —0.04,
b(fmin) = 0.62 fmin — 0.45.

Obviously, the statistically expected number of fluctua-
tion sources containing at least np, photons above the
mean background value is then given by

Nsre,fluct (fmim 0)
b(fmin)
X €xp [—b( fnin) Miph]- (4)

Requiring that no random source be detected in our
fields at the 90% confidence level we find values for Nph
of 9.1, 13.2, and 13.2 photons, respectively, for our three
simulated sources from Eq. (4), thus eliminating all of
the additional sources depicted in Fig. 4 leaving only the
central “true” source.

Nsrc,ﬂuct(fmim > nph) = Npck

FIG. 3. Simulated photon distributions
for a field containing an extended source
on Poissonian background and correspond-
ing normalized flux distributions (solid line:
data; dashed line: background fit) as well as
resulting residuals. From top to bottom the

1o widths of the sources are 1’,2/, and 4'.
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FIG. 4. Sources found in the simulated fields by our algorithm (left to right: o = 1’,2/,4’).

E. Comparison of input and obtained source
characteristics

Finally, it is interesting to take a closer look at the
sources’ characteristics as determined by the algorithm.
From Fig. 4 it is clear that the algorithm is not bi-
ased towards preferential detection of spherical sources
or sources of any other fixed geometry. (Note the ragged
fringes of the sources.) This is a main advantage in com-
parison with conventional window algorithms.

The accuracy of the source positions, which are com-
puted as the flux-weighted mean values of the individual
photon coordinates, depends both on extent and bright-
ness of the object. For our example the deviation of the
detection position from the coordinates specified in the
simulations amounts to 6.1”,18.1”, and 39.9” (in order
of ascending extent) which is comparable to the accuracy
attained with conventional algorithms on binned data.
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FIG. 5.

As for the total source flux we find background-
corrected values of 196.8, 197.8, and again 196.8 photons
which is to be compared to the actual number of 200 pho-
tons put into each source in the simulation. In all cases
the source’s brightness was thus found to lie less than 2%
off the true value.

III. APPLICATION TO ROSAT X-RAY DATA

Leaving the simulated and entering the real world we
applied the algorithm to a ROSAT x-ray image which
was taken during the satellite’s six months all-sky survey.
Figure 6 shows the photon distribution in a field of about
1° x 1°. It actually looks almost as blank as the third of
our simulated fields presented above and in fact no source
was found in the field by conventional source-detection
techniques.

The reason why we chose this particular field is the fact
that it is centered on the optical position of a nearby clus-
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Parameters of the distribution of sources caused by random fluctuations in a (simulated) Poissonian background field

as a function of fimin [see Eq. (3)]. The fields contained 1000 (open diamonds) and 2000 (filled circles) photons respectively—solid

lines represent linear fits to the data.
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FIG. 6. Photon distribution in a field from the ROSAT

all-sky survey.

ter of galaxies. The hot gas trapped in the potential well
of a cluster being the source of extended x-ray emission
one would expect to see an enhancement in the photon
flux on a scale of about half a degree corresponding to
the angular size of the cluster core.

The algorithm run on these data is different from the
one described above only in as much as the exposure
time which is slightly varying over the field is taken into
account by weighting the Voronoi cell areas with the local
exposure, thus converting inverse areas into true fluxes.

The expected emission is indeed detectable with the
presented algorithm. Figure 7 shows the result of the
final percolation. Three sources are found: the upper
one contains 34.5 photons more than would be expected
from the background field in the same area and is thus
clearly a real detection. (The probability for finding a
fluctuation exceeding the background by more than 19.8
photons is less than 10% for this field.) The central ex-
tremely extended source is actually split into two, the
smaller of which forms the northern bulge and consists
of 21.9 photons. All the rest of the central emission is
interconnected to build one large source with a total of
179.6 “true” photons and coincides perfectly with the
position of the cluster core as it is determined from the
galaxy distribution.

IV. CONCLUSIONS

The source-detection technique described above is
widely applicable to all sorts of two-dimensional event
distributions. Although we have restricted ourselves to
the specific problem of detecting sources in a homoge-
neous background field, the method can be used quite
generally to find any kind of structure embedded in a
noisy background field. The advantages of our alterna-
tive approach which bears importance for a great variety
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FIG. 7. Sources detected by the algorithm in the ROSAT
field.

of applications related to pattern recognition and image
processing are the following:

e It does not introduce any binning of the data, nor
does it assume anything about the shape of the
structure one is looking for.

o It allows a global and quantitative assessment
of a given distribution as background- or non-
background-like.

e Contrary to image-processing techniques like, e.g.,
maximum entropy, it yields a measure for the signif-
icance of the found structure. Different structures
can be compared and classified according to their
detection probability.

So far we have only considered a background follow-
ing Poissonian statistics. As our method only uses the
deviation of the cumulative probability distribution from
the expected noise distribution it should, however, also
be possible to discern structure from a correlated back-
ground provided that the probability distribution of the
Voronoi cells for this background is known.

The algorithm’s main advantage is its ability to de-
tect sources of almost arbitrary extent but care should be
taken to provide a large enough field in order to allow the
background fit to be as accurate as possible. If fields of
very high source densities are studied problems may arise
by the tendency of the percolation algorithm to leave fil-
amentary bridges between nearby adjacent sources lead-
ing to errors in the computation of both the position and
the brightness of the source. In cases where potential
sources are known to be rather compact and bright one
should, for CPU time’s sake, rely on conventional detec-
tion algorithms unless besides the sources detection the
determination of its brightness is an equally important
issue.
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