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ABSTRACT

Studies of the growth of cosmic perturbations are typically focused on galactic scales and above. In this
paper we investigate the evolution of perturbations in baryons, photons, and dark matter for masses below
10° M, (or wavenumbers above 100 Mpc~!). Fluctuations on these scales are of interest and importance
because they grow to become the earliest collapsed objects and provide the first light sources in the so-called
dark ages. We investigate both the linear evolution and the second-order nonlinear effects arising from the
coupling of large-scale velocity fields to small-scale perturbations in the baryon density and the electron ion-
ization fraction. We find that this second-order nonlinear coupling dominates the growth of perturbations
with masses <103 M immediately after recombination, enhancing the baryon fluctuation amplitudes by a
factor of ~5, but the nonlinear effect does not persist at late times.

Subject headings: cosmology: theory — early universe — large-scale structure of universe

1. INTRODUCTION

Theories of structure formation are aimed at describing
how gravity affects the distribution of matter in the universe.
The currently accepted paradigm is that gravitational insta-
bilities amplify fluctuations imprinted in the cosmological
matter and radiation density in the early universe, and these
fluctuations eventually evolve into the observed web of cos-
mic structures. By assuming these fluctuations to be small, a
linear perturbation theory can be formulated and solved.
The linear theory for a perturbed Friedmann-Robertson-
Walker metric was developed by Lifshitz (1946). The theory
and subsequent modifications have been applied to a large
number of cosmological problems and are described in
detail in several textbooks (e.g., Weinberg 1972; Peebles
1980; Peacock 1999).

Most calculations and analyses based on the cosmologi-
cal linear perturbation theory are focused on galactic scales
or above at masses of M 2> 10° M, or wavenumbers of
k <10 Mpc~!. This is likely due to the fact that quantities
such as the mass-fluctuation power spectrum can be deter-
mined observationally only on these large scales and that
the computations become expensive at high wavenumbers
due to the rapid oscillations in the perturbed fields. The
theory, however, is equally valid for small scales, and the
evolution of M <10° M, perturbations is key to under-
standing the formation of the first-generation objects in the
high-redshift universe. A detailed study of perturbation
modes up to k ~ 1000 Mpc~! has found interesting features
in the linear baryon field (Yamamoto, Sugiyama, & Sato
1998). For example, the tight coupling between baryons and
photons, which is assumed until the epoch of recombination
in most calculations, breaks down well before recombina-
tion on these very small scales. This allows the baryon den-
sity field to grow substantially by recombination under the
influence of the cold dark matter (CDM). This behavior is
contrary to the common notion that the baryon fluctuations
are wiped out by photon diffusion or Silk damping (Silk
1968) on small scales. After recombination, on the other
hand, perturbation modes with k> 300 Mpc~! are below
the Jeans mass and exhibit oscillatory behavior, in contrast

to the lower & modes, which grow via Jeans instability
immediately after recombination. This retards the baryon
growth until the mode becomes Jeans unstable again at a
later time.

Beyond the linear order, there have been recent discus-
sions regarding nontrivial second-order effects that can
enhance the linear growth of fluctuations on very small
scales during recombination (Shaviv 1998; Liu et al. 2001).
This nonlinear effect arises from the coupling of the large-
scale velocity fields to the perturbations in the baryon den-
sity ¢, and the electron ionization fraction 9y, on small
scales. An amplification of ~10% in &, has been reported
(Shaviv 1998), although a more in-depth analysis (Liu et al.
2001) has found that the dramatic increase in the baryon
amplitude is a result of neglecting the electron-photon diffu-
sion term, which when included would reduce the nonlinear
enhancement to a factor of ~10. More specifically, Shaviv
(1998) showed that the timescale governing the growth of
small-scale perturbations in the baryon density is ~ 72 /7,
where 73 is the characteristic timescale for the second-order
terms that are important during and immediately after
recombination and 7 is the timescale for acoustic oscilla-
tions in the baryon fluid. He took the timescale 7 for
momentum transfer (or diffusion) between electrons and
photons due to Thomson scattering to be much larger than
72/70. Liu et al. (2001) pointed out that this assumption is
invalid during recombination since 7p ~ 7',% /70, and Tp can-
not be ignored. In addition, Shaviv (1998) used the Saha
equation to evaluate ¢,,, which is needed to calculate 7¢. Liu
et al. (2001) instead used a rate equation for ¢, because the
assumption of thermal equilibrium required for the validity
of the Saha equation does not hold during recombination.
They then assumed a waveform solution for the baryon den-
sity field 6, o exp(wr — ikx) and estimated the growth of 4,
from the real part of w, which they obtained from the
dispersion relation given by the baryon fluid equation.

In this paper we investigate this small-scale nonlinear
phenomenon in its full extent by using the complete cosmo-
logical perturbation theory. Our work differs from Liu et al.
(2001) in that instead of tracking only the real part of ¢,
from the dispersion relation, we calculate the evolution of
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the perturbations in all particle species (baryons, photons,
CDM, and neutrinos) at high wavenumbers k& > 1000
Mpc~! by solving the complete set of Einstein and Boltz-
mann equations consistently. We use the linear Boltzmann
code in the COSMICS package (Ma & Bertschinger 1995;
Bertschinger 1995) and incorporate the aforementioned
nonlinear effects by adding second-order contributions to
the photon-electron momentum-transfer terms due to
Thomson scattering. For consistency, we include these
terms in the evolution equations for photons as well as bary-
ons. This approach allows us to take into account possible
nonlinear coupling effects and to calculate the growth,
decay, and oscillations in all particle species accurately.

In § 2.1 we summarize the key portions of the linear cos-
mological perturbation theory. In § 2.2 we introduce the
nonlinear coupling terms in the baryon and photon equa-
tions as well as the equations for the perturbed ionization
fraction. Numerical results for the linear and the nonlinear
evolution of four representative high-k modes, k = 1000,
2500, 5000, and 10,000 Mpc—1, are presented in § 3. The cor-
responding masses are ~1000, 64, 8, and 1 M, respectively.
Section 4 includes a discussion of the physical origin of
this phenomenon and the reason why a second-order term
could dominate the growth of perturbations at the era of
recombination.

2. COSMOLOGICAL PERTURBATION THEORY
2.1. Linear Perturbations

The discussion here is restricted to the scalar modes of
metric perturbations. We work in the conformal Newtonian
gauge

ds* = (1) [—(1 + 2¢)d7* + (1 = 2¢)dx*], (1)
where ¢ and 1) are the two scalar potentials that characterize
the perturbations, 7 is the conformal time, x are the spatial
dimensions, and « is the scale factor. The scalar potential ¢
has a simple physical interpretation of being the gravita-
tional potential in the Newtonian limit, and ¢ = ¢ in the
absence of massive neutrinos.

We solve the full set of linear evolution equations for
small perturbations in the metric and the phase-space distri-
butions of CDM, photons, baryons, and neutrinos. The full
theory in this gauge is described in detail in Mukhanov,
Feldman, & Brandenberger (1992) and Ma & Bertschinger
(1995); here we write out only the lowest two velocity
moments of the phase-space distribution for CDM (sub-
script C), baryons (b), and photons (), which are the key
quantities in this study. In k-space, we have

bc = —0¢ + 3¢,
Oc = =0+ K,

51, = —0,+ 3(1.5 ,

' : i

by = — 20, + K26y + K0 + L ar,or (0, — 0y) |

a ’ 3pp !

) 4 )

(Sry == —597 + 4(Z) B

0, =k (411 0y — aw> + k2 + anpor (0, — 6,,) (2)

where ¢ is the density fluctuation, § = ik - vis the divergence
of the fluid velocity, and o, is the sheer stress of the photon
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field, which is coupled to higher moments not written down
here. On the right-hand side, ot is the Thomson scattering
cross section, ¢, is the baryon sound speed, 7, is the mean
electron number density, and p, and p, are the mean photon
and baryon energy densities. Dots denote derivatives with
respect to the conformal time, and the densities and wave-
numbers are all comoving. Massive neutrinos have no direct
coupling to the nonlinear terms considered here, so we do
not include them.

Additional equations are needed to calculate 7,. We
define the mean ionization fraction X, as

gz Bl _ Py G)
ng - (1—=y)ps

where 7y is the mean hydrogen number density, y is the pri-
mordial helium mass fraction, and m,, is the proton mass.
The value X, = 1 corresponds to complete hydrogen ioniza-
tion and neutral helium, and X, can exceed unity when
helium is ionized at an earlier time. We choose this conven-
tion for convenience because for the redshift of interest to
this paper, hydrogen is the dominant source of free elec-
trons. For times much before recombination, X, obeys the
equilibrium Saha equation to a good approximation:

~ 3/2
X2 1 (mekBTb) / o136V /kaT) (4)
27h?

l1—X, ny

Here T is the baryon temperature, kg is the Boltzmann con-
stant, m, is the electron mass, and 7 is Planck’s constant.
During recombination, the rapidly declining free-electron
density leads to a breakdown of ionization equilibrium, and
one must integrate the appropriate kinetic equations. We
use the recombination rate equation (Peebles 1968; Spitzer
1978),

dx, _ _ -
dr = aCi[/B(Tb)(l _xe) —I’IHOZ(2>(T},)X§] ) (5)
where the collisional ionization rate from the ground state is
mekpT) 3/2 _

and the recombination rate to the excited states is

64 & [ kpTp, \ V?
@) B/
(27m) 2 2 (13.6 eV) 2(T5)

13.6 eV
20 ) . @

Here e is the electron charge and c is the speed of light. The
net recombination rate to the ground state is reduced by the
fact that an atom in the n = 2 level may be ionized before it
decays to the ground state. The Peebles’ reduction factor C,
is the ratio of the net decay rate to the sum of the decay and
ionization rates from the n = 2 level,

Aa + AZSﬂ Ls

$2(T)) = 0.448 ln<

Cr - s 8
Aa + A2s~>ls + ﬂ<2>(Tb) ( )
where
FO(Ty) = HI)PTN, A, =2
aznls)\gz
Ao = 1216 x 1072 9)

Ass—.151s the rate at which net recombination occurs through
two-photon decay from the 2s level and is equal to 8.227
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s71, and ny, is the number density of hydrogen atoms in the
Ls state.

2.2. Second-Order Perturbations

A complete list of second-order nonlinear contributions
in perturbation theory includes many terms, but the domi-
nant contribution comes from the terms of the order of é,v,
(e.g., Hu, Scott, & Silk 1994; Dodelson & Jubas 1995). The
other second-order terms are proportional to v, which are
suppressed because vy, ~ 6, /kT < 8, for the scales of interest
here with k7> 1. It is demonstrated below in this section
that the perturbed ionization fraction 6, is of the same
order of magnitude as ¢, for the scales of interest. We there-
fore include perturbations to both the ionization fraction
and the baryon density as the terms giving rise to second-
order effects in the evolution equations.

It is easier to determine such second-order terms in real
space. The relevant first-order equations to be modified are
the 6, and 6, formulae in equation (2), which in real space
take the form

/ 4p.,
Up = _c_zvb A Vi +@aﬁe()’]‘(l}7 —Up),
a 3p»
1
vy, = — (Z 6y — Uv) — Vi + an.or(vp — vy) . (10)

Allowing for spatial fluctuations in the ionization fraction
x€5

Xe =X (1 +6y,), (11)

the perturbations in the electron density then contain two
terms arising from inhomogeneities in the baryon density
and the ionization fraction, respectively:

ne = Re(1 + 6p,) = R (1 4+ 65 + 6y,) - (12)

We obtain the second-order contributions to the Thomson
scattering terms in equation (10) by replacing 7, with n,, p
with pp, = pp(1 + &), and p, with p, = p,(1 + 6,):

ljb = —gl)b — CfV(Sb — V’(/J

45
+ gaﬁeaT(l + b, +6,)(vy —vp) ,
3p»

1
Uy = — V<467 - w,) - Vo
+ aneor(l + b6y, + 6) (v — v,) . (13)

We drop the second-order term containing ¢, in the v,
equation because on small scales, ¢, < 6., ~ ¢, due to pho-
ton diffusion damping. Transforming back to k-space, the
nonlinear terms of O(év) become convolutions, and we have

o i
Oy = — 20 + K6y + Kb + 22 anoor (0, — 0)
a 3pp

+aptanork [ &K o 0) = ()8, (k= K1)
b

0, =k G 8y — aﬁ/,) + k> + anor (8 — 6,,)

—|—aﬁgaTk/d3k'{[v;,(k’) — vy (K')]
X [6x, (Ik = K']) + 6 (Jk — K'])]} (14)

We also need an evolution equation for the ionization frac-
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tion fluctuation ¢, . It can be obtained by perturbing the
zero-order ionization rate equation (5) (Liu et al. 2001),

dby, _ _
d7>f = —aC, |:,66xe + oD%, (8, + 265,)
oC, 1 dx.
s ) — , 1
+ (C,~ 5,(,) o (15)
where
6CC,, = — AanisBPnu[(1 — X0)8) — Xeby]

X [Aanls + A2s—>lsﬁH(1 - xe)]_l

x {Aanls + [Azhls +5<2>]ﬁﬂ(1 - xe)} . (16)

We have assumed that 67, = 0, i.e., there are no perturba-
tions induced in the baryon temperature. We verify this
claim by including the perturbed evolution equation for 7,
(Ma & Bertschinger 1995) in our calculations:

dén) (@ B 2_a>

dr Tb a

8. _ _
+%aneaT [6:.(T, — Tp) — Tvéz,] . (17)
Here u is the mean molecular weight (including free elec-
trons and all ions of hydrogen and helium) and
Ty = Tp(1 + 67,). We find that the value for 67, is always at
least 2 orders of magnitude smaller than 6y, because the
source term (7, — T}) for 67, is negligible until well into the
recombination era. Even after recombination, the growth is
not rapid enough to affect the evolution of ¢, .

We note that the perturbation to the ionization fraction
oy, arises naturally from the first-order cosmological equa-
tions and is not an ad hoc term. This perturbation is ignored
in standard linear calculations because its effects on the pho-
ton and baryon evolution enter only at second order, as
shown by equations (13) and (14). We show in the next sec-
tion that numerical results from the linear theory indeed
give comparable amplitudes for 6, and 6,. We are thus justi-
fied in keeping both the é,v and 6, v terms in our second-
order analysis.

3. NUMERICAL RESULTS

In this section we present results from numerical integra-
tion of the linear and second-order equations in § 2. The cal-
culations are performed with the full Boltzmann code for
the conformal Newtonian gauge in the COSMICS package
(Ma & Bertschinger 1995; Bertschinger 1995). For the sec-
ond-order results, modifications are made to this code to
include the nonlinear terms in equation (14) and the per-
turbed rate equation (15). The matter density parameter is
taken to be €, =0.35, with Q¢ =0.30 in CDM and
Q5 = 0.05 in baryons. The cosmological constant and Hub-
ble parameter are 2, = 0.65 and & = 0.75. Three species of
massless neutrinos and a helium fraction y = 0.24 are
assumed. The initial conditions are adiabatic Gaussian fluc-
tuations with a spectral index of n = 1. All results are nor-
malized to COBE.
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3.1. Linear Evolution

Figure 1 illustrates the time evolution of the linear baryon
density field 6, and CDM density field 6 for wavenumbers
k = 1000, 2500, 5000, and 10* Mpc~!. The corresponding
masses are ~1000, 64, 8, and 1 M., respectively. These
scales are much smaller than the typically studied scales of
k<10 Mpc—! or M > 10° M. We note two interesting fea-
tures that are absent in the more familiar behavior of §, at
lower k. First, even though photon diffusion damping wipes
out & very rapidly at z ~ 109-105, §, at such high k is able
to grow before recombination because of the breakdown of
photon-electron tight coupling on small scales. This rapid
regenerative growth is characterized by a (1+2z)”
dependence and can be understood in terms of the balance
achieved between the radiation drag force and the gravita-
tional force (Yamamoto et al. 1998). As a result, 6, grows by
at least 5 orders of magnitude before recombination ends at
z ~ 1000. We also note a short period during recombination
when 8, grows even more rapidly. This is because gravity is
rapidly becoming the dominant force over the decreasing
radiation drag force.

The second feature special to these high-k modes is that
they undergo a second Jeans-length crossing after recombi-
nation. It is well known that the baryonic Jeans wavenum-
ber ky = \! ~ ¢ (4na? Gp)l/ % increases rapidly during
recombination, reaching Kjec = 9OO(th2)l/ 2 Mpc ! ~
370 Mpc~! shortly after recombination for our model
(Yamamoto et al. 1998). Perturbations with k > kjrec,
which were Jeans unstable before recombination, become
stable after recombination and exhibit oscillations due to
the baryon thermal pressure. The growth of ¢, is therefore

LA ey
_5 [k=1000 Mpc! _Tk=5000 Mpc-! N

L M=1000 Mg, - +M=8 M, _ -

< i 1 ]
e —10 - - .
oD L 4 4
o L 1 ]
5L b h
L H

_5 [ k=2500 Mpc~! N N

L M=64 M, ] 4

© i 1 ]
2 -10 F - .
) L J 4
2 L i i
-15 | _ |

P IR Y oA ANERIN AP IV NI | S AP

8 6 4 2 8 6 4 2
log,, 2z log,, 2z
FiG. 1.—Time evolution of the linear baryon (bottom curve) and CDM

(top curve) density field on very small scales: k& = 1000, 2500, 5000, and
10,000 Mpc~—!. The results are computed in the conformal Newtonian
gauge using the COSMICS Boltzmann code. The cosmological parameters
are Q¢ = 0.30, ©Q, = 0.05, Q4 = 0.65, and & = 0.75, and the fluctuation
amplitudes are normalized to COBE. Photon diffusion damping results in
the sharp drop in the baryon amplitude at z ~ 10107, This is followed by
a power-law growth when the photon-baryon tight coupling becomes inef-
fective. The small oscillations after recombination at z ~ 1000 in the high-k
modes are a result of the second Jeans-length crossing (see text).
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slowed down as can be seen in Figure 1. As we show below,
it is during this era when the small-scale perturbations are
relatively constant that the second-order nonlinear term
becomes important. When the Jeans wavenumber grows to
the scale of a given k-mode, eventually the growth of ¢,
picks up again.

Figure 2 shows the linear power spectrum for the velocity
difference (v, —v,) between the baryons and photons
shortly after recombination. The Thomson scattering term
is proportional to this quantity, which serves as the source
term for the second-order effect to be discussed in the next
section.

3.2. Nonlinear Evolution

We now solve the Einstein and Boltzmann equations, tak-
ing into account the second-order terms in equation (14).
Two new features must be handled: the evolution of the per-
turbed ionization fraction d,, given by equation (15) and the
k convolution in equation (14).

To compute 6,,, we add equation (15) directly in the COS-
MICS Boltzmann code. We note that even though 6., is a
first-order quantity and is of comparable amplitude to 6,
equation (15) was not included in the original linear COS-
MICS code because ¢,, contributes to the photon and
baryon evolution equations only at second order. Figure 3
illustrates our numerical result for the time evolution of ¢,
for the k = 5000 Mpc~! mode. The dashed curve is for .,
computed from the linear theory. It indeed has a similar
amplitude to 6, in Figure 1. Including the second-order
terms in the calculations enhances the amplitude of 6., (solid
curve), which peaks at a redshift of ~1000.

To handle the convolution terms in equation (14), we use
the property that the velocity difference (v, — v) in the inte-
grand has significant contributions only from &’ = 0.01 to 1
Mpc~!, as shown in Figure 2. This is much smaller than the
k > 1000 Mpc~! investigated in this paper. This allows us to

4x10°° 7T T
| 2=800 ]
3x10-10 — -
o I ]

~

" L J
’;; 2x10-10 —
| - J
S I ]
10—10 -_ _-
= {A M |

I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I

-3 -2 -1 0 1

log,, k (Mpc-t)

FIG. 2.—Linear power spectrum for the velocity difference between bary-
ons and photons at redshift z = 800. The dominant contributions come
from the modes in the range of k ~ 0.01-1 Mpc~!, which is much below the
modes of interest in Fig. 1. This feature allows us to simplify the second-
order velocity convolution terms in eq. (14).
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FIG. 3.—Perturbation to the ionization fraction 6y, as a function of red-
shift, computed without (dashed curve) and with (solid curve) the second-
order terms in eq. (14) for the velocity field 6. The peak occurs at z ~ 1000,
which is the same for all k-modes investigated.

take out dy, and 6, from the convolutions and approximate
the velocity integral as

[ @ o)~ ko k- K =8, 0) . (19)

where
02 = 4r / dIn(k" kP v, (k') — v (k)] . (19)

Figure 4 shows o, as a function of redshift. Initially, o, is
small because the tight coupling between baryons and pho-
tons keeps v, = vp. As recombination proceeds and the tight
coupling breaks down, the baryons fall into the CDM
potential well, giving rise to the rapidly growing o, during
z ~ 1500-1000. For comparison, the long-dashed curve
shows the baryon velocity alone. The agreement between
the two curves shows that the photon velocity field v, is neg-
ligible after recombination. We approximate the time
dependence of o, with the fitting formula

log,g 0, = — 3.57 4+ 9.56 x 107*z
—33x 10722 +1.126 x 107%2%,  (20)

shown as the short-dashed curve in Figure 4. This formula
is used in the numerical integration for computational
efficiency.

The results of our nonlinear calculations are illustrated in
Figures 5-7. Figure 5 shows the time evolution of the linear
versus nonlinear baryon density field ¢, for a single mode
k = 5000 Mpc~! of M ~ 10 M.,. The nonlinear 6, is calcu-
lated from the full Boltzmann code with the second-order
convolution terms. The conformal time 7 is used for the hor-
izontal axis to illustrate the postrecombination Jeans oscil-
lations that are specific to these high-k modes (see also
discussions in § 3.1). It can be seen that 6, begins to oscillate
immediately after recombination at 7~ 200 Mpc because
of the sharp decrease in the Jeans length. The time period
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FiG. 4.—Evolution of o,, the rms of the baryon velocity v, (long-dashed
curve) and the rms of the baryon and photon velocity difference (v, — v,)
(solid curve). The velocity difference is small at z > 1500 due to the tight cou-
pling, but it increases rapidly during and after recombination when baryons
and photons are no longer tightly coupled. The baryons subsequently fall
into the potential well of the CDM, resulting in an increase in v, and
(vp — v,), whereas the photon perturbations simply diffuse away. The
short-dashed curve shows the fitting formula for (v, — v,) used in our calcu-
lations.

of these oscillations is roughly 27/kc;, where the baryon
sound speed is related to the baryon temperature by
¢z =kpTy(1 —dInTy/dIna/3). For k = 5000 Mpc~!, the
baryons have 7}, ~ 2500 K at time 7 ~ 200 Mpc, giving
¢y ~ 1.5 x 1073 and A7 ~ 100 Mpc, which agrees well with

!
rk=5000 Mpc-! !
4x1079 |- ,
| !
!
| J
|
[
i 1
2x107° |- !
1
‘OD B 1
I
- 1
1
| ]
1
0
72)(10—9 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
0 200 400 600 800 1000
7(Mpc)

Fi6. 5.—Linear (solid curve) vs. nonlinear (dashed curve) baryon density
field 6 as a function of the conformal time 7 for the k = 5000 Mpc~! mode.
The Jeans oscillations discussed in the text are clearly seen. The effect of the
second-order terms is to increase the oscillation amplitude as well as to
slightly shift the position of the peaks. The oscillation period is ~90 Mpc
immediately after recombination. The conformal time is 7 ~ 200 Mpc at
recombination and 7y ~ 10* Mpc today.



6 SINGH & MA

=

LIS L L L L L L = =

=1000 Mpec-!

I 4
(o))
(o}
o
o
=
T

1

L [}
]

6,(Linear)
IS

6,(Nonlinear)

0 T g
—zI:::}::::I::::I:::EI:::I::::|::.:|:::E
+k=2500 Mpc-! +k=10000 Mpc-! .
5 g T 7
O [~ B T b
P - + .
28 oL T ]
8l “f + ]
El=
“0“‘0‘: 0

PRI S A NS S ST IR B « o il SN T AV A R AN BB O B

1500 1000 500 1500 1000 500
z Z

|
JAv]
= B

F1G. 6.—Ratio of the nonlinear and linear baryon density field 6, for four
k-modes: 1000, 2500, 5000, and 10,000 Mpc~!. The oscillations in the ratio
are more rapid for higher k modes due to the faster Jeans oscillations. The
maximum amplitude reached by a particular k-mode is not a monotonic
function of k but peaks between k = 5000 and 10,000 Mpc~!. The oscilla-
tions die out and the effect of the nonlinear term decreases at low redshifts
when other terms begin to dominate.

the periods of oscillations shown in Figure 5. Figure 6 shows
the ratio of nonlinear and linear ¢, for four wavenumbers:
k = 1000, 2500, 5000, and 10,000 Mpc—!. Figure 7 shows
the same thing for the photon density field 6., which has a
similar behavior as the baryons.

We find that the inclusion of the second-order terms has
two main effects on the baryons: an increase in the ampli-
tude of the Jeans oscillations and a slight shift in the sound
speed, and hence the oscillation period. Both effects are
clearly seen in the figures. The nonlinear enhancement
reaches a maximum of a factor of several right after recom-
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F16. 7.—Same as Fig. 6, but for the photon density field ¢,. The behavior
is qualitatively similar to the baryons in Fig. 6.
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bination. It then decreases as the mean ionization fluctua-
tion x, decreases. The slight shift in the oscillation period is
caused by the inclusion of perturbations to the ionization
fraction. We have effectively introduced another term in the
evolution equation for 6,, which together with the linear
terms determines the period of the oscillations. The nonlin-
ear coupling thus changes the time period of these oscilla-
tions to ~27/(kc, + nonlinear effects). This slight shift in
the effective sound speed is the reason for the oscillations in
Figures 6 and 7. It is also worthwhile to note that the maxi-
mum amplitude achieved by the ratio of the baryonic per-
turbations in the nonlinear theory compared with the linear
calculation does not follow a simple relationship as a func-
tion of k. The amplitude of the ratio, for example, is larger
for k = 5000 Mpc~! than for k = 10,000 Mpc~!. This is
because the effect of the nonlinear term becomes less impor-
tant as the frequency of the Jeans oscillations increases. For
the particular cosmological model under consideration, this
occurs at a scale between k = 5000 and 10,000 Mpc~!.

4. DISCUSSION

Figures 6 and 7 show that the second-order terms arising
from the coupling of the large-scale baryon velocity fields to
the perturbation in the electron ionization fraction on small
scales dominate the evolution equation for the baryon-den-
sity perturbations ¢, at z ~ 1000. This second-order effect
dies off at lower z, however, and it does not push the small-
scale baryon fluctuations into the nonlinear regime at a sig-
nificantly earlier time, as was suggested by Shaviv (1998).

It is nevertheless interesting that for modes with &£ > 1000
Mpc~!, a second-order term can significantly alter the
growth predicted by the linear theory right after recombina-
tion. How does any second-order term at z ~ 1000 lead to
an amplification of a factor of ~5 in the linear baryon fluc-
tuations, as we have found? To understand this, we plot
in Figure 8 the time evolution of all the terms on the
right-hand side of the 6, formula from equation (14):
—aby/a  (short-dashed —curve), c2k*6, (dotted curve),
(4p/3pp)an.or (0, — 0p) (long-dashed curve), and the sec-
ond-order term ~uv6y, (dot-dashed curve). Since the poten-
tial term k2 is nearly a constant of time, it is convenient to
normalize other terms to k2¢). To contrast the scale depend-
ence of the nonlinear effect, we show two modes: k = 250
and 5000 Mpc—!. As one can see, the nonlinear effect is
important only for the higher K mode. The nonlinear term is
unimportant for the k = 250 Mpc~! mode because the pres-
sure term k2c28, is small on these scales and cannot prevent
the perturbations from growing under the influence of grav-
ity. For the k = 5000 Mpc—! mode, however, the pressure
term k2c26, keeps the perturbations in the terminal-velocity
stage for a longer period of time (see Yamamoto et al.
1998). This leads to a near cancellation of all linear terms
governing the growth of 0,. As a result, the second-order
term gains importance and through the nonlinear coupling
becomes the dominant term shortly after recombination.
The effect of the coupling on the perturbed ionization frac-
tion is shown in Figure 3, where the nonlinear coupling can
give rise to an order-of-magnitude change in the value of
by,. At late times, the second-order term becomes negligible
as the free-electron density 7, becomes very small. We note
that the Hubble drag term —a#),/a is unimportant through-
out because the scales of the perturbations under considera-
tion are so small that they are not influenced by the large-
scale expansion of the universe.
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Fic. 8.—Amplitude of the individual terms on the right-hand side of the
baryon velocity eq. (14) relative to k2¢: —ab),/a (short-dashed curve), ctk*6y
(dotted curve), (4p/3pp)an.or(0y — 0p) (long-dashed curve), and the sec-
ond-order term (dot-dashed curve). For the lower k mode, the second-order
term is never important compared to the first-order terms. For & = 5000
Mpc~!, however, the near cancellation among the first-order terms at
z ~ 1000 allows the second-order term to dominate, leading to the nonlin-
ear enhancement shown in Figs. 6 and 7. This figure illustrates how the sec-
ond-order term becomes important for high-k modes.

Our approach and results differ from the previous work
on this subject (Liu et al. 2001) in a number of ways. We
have solved the full set of Einstein and Boltzmann equations
for the metric perturbations and the perturbation field in
CDM, baryons, photons, and neutrinos. This approach has
allowed us to calculate accurately the phase-space distribu-
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tions of both baryons and photons. For the baryons, we find
that the maximum amplitude reached by the nonlinear to
linear ratio, 6p(nonlinear)/é(linear), is similar to that of Liu
et al. (2001) for k£ <5000 Mpc~!, but our results show an
oscillating ratio because the addition of the nonlinear cou-
pling causes a change in the effective speed of sound. This
effect was unnoticed in the work of Liu et al. (2001). In addi-
tion, their analysis finds a monotonic increase in the ampli-
tude of the ratio as a function of k. We find instead that the
maximum amplitude reached by the ratio for k& = 10,000
Mpc~! is less than that for & = 5000 Mpc~!. This is again
because their analysis was unable to track the Jeans oscilla-
tions after recombination accurately.

Our calculation has also included the nonlinear coupling
terms in the evolution of the photon-density perturbations.
As equations (13) and (14) show, two comparable nonlinear
terms contribute to the photon velocity field: 6., (vy — v,)
and 65(vp — vy). We have shown that the 6, (v, — v,) term
results in an initial enhancement of the amplitude for the
baryons. Momentum conservation in Thomson scattering
implies that this nonlinear term would tend to suppress the
amplitude obtained from the linear calculation for the pho-
tons. It turns out that the 6,(vy, — v,) term is generally
larger, and it acts in an opposite sense from the 6., (vp — v-)
term. The end result is an enhancement in ¢, as well, as
shown in Figure 7. It may be an interesting future study to
directly compute the angular power spectrum for the tem-
perature fluctuations in the cosmic microwave background,
but we expect the angular scales associated with the
k > 1000 Mpc~! modes to be at multipoles of / > 109, below
the scales probed by the current generation of experiments.
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