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Abstract

This paper presents a method for both the unsupervised partitioning of a sample of data

and the estimation of the possible number of inherent clusters which generate the data. This

work exploits the notion that performing a nonlinear data transformation into some high dimen-

sional feature space increases the probability of the linear separability of the patterns within the

transformed space and therefore simpli�es the associated data structure. It is shown that the

eigenvectors of a kernel matrix which de�nes the implicit mapping provides a means to estimate

the number of clusters inherent within the data and a computationally simple iterative procedure

is presented for the subsequent feature space partitioning of the data.

Keywords

Data Clustering, Data Partitioning, Unsupervised Learning

I. Introduction

The unsupervised partitioning of a sample of data observations into self-similar regions forms

a signi�cant area of research e�ort. As it has been noted that many data sets have ellipsoidal

clustered structure 'sum-of-squares' based methods of partitioning have proved to be e�ective

[4]. Clustering using Gaussian mixture models is also extensively employed for exploratory data

analysis. However in certain cases the number of Gaussian mixtures required to reasonably

model the data density far exceeds the natural number of clusters in the data. This is of course

the case when the clusters themselves are non-Gaussian [7].

For the purposes of classi�cation the problem of nonlinear separability of classes can be

circumvented by mapping the observed data to a higher dimensional space in a nonlinear manner

so that each cluster for each class unfolds into a simple form. This is the basis for nonlinear

classi�cation techniques such as Radial Basis Function Networks, Support Vector (SV) Machines

[11] and certain forms of nonlinear discriminant analysis [9]. If the nonlinear mapping is smooth

and continuous then the topographic ordering of the data in observation space will be preserved

in feature space, so that points clustered together in data space will necessarily be clustered

in feature space. It is therefore of interest to consider the further notion of unsupervised data

clustering in a feature space which preserves the inherent data groupings and in addition simpli�es

the associated structure of the data.

The following section reconsiders sum-of-squares clustering in data space whilst the third

section presents the clustering of data in a nonlinear feature space. The fourth section of this

paper considers how the block diagonal structure of a kernel matrix can be exploited in estimating

the number of inherent clusters within a data sample. The penultimate section provides some

demonstrative simulations and the �nal section provides conclusions and discussion.
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II. A Data-Space Clustering Criterion

The sum-of-squares cost for a sample of data forms the basis for a number of clustering

methods [4], [1]. Given a �nite set of observations of datum vector xn;n = 1; � � � ; N where

xn 2 R
D and given K cluster centers the within-group scatter matrix is de�ned as

SW =
1

N

KX
k=1

NX
n=1

zkn(xn �mk)(xn �mk)
T (1)

Where the center for each group is de�ned as mk = N
�1

k

P
N

n=1
zknxn and Nk =

P
N

n=1
zkn. The

variable zkn indicates the membership of datum xn to cluster k i.e. zkn = 1 if xn 2 Ck and

0 otherwise. One of the sum-of-squares criteria employed for central clustering is the trace of

the within-group scatter matrix Tr(SW ). This measure implicitly imposes the assumption of

hyper-spherical clusters which is inherent in methods such as the K-means algorithm [4]. The

K � N indicator matrix Z is such that each element is either of two values 1 or 0, such that

zki 2 f0; 1g 8 k; i and
P

K

k=1
zki = 1 8 i. The optimal partitioning of the data sample is

achieved by the following optimisation

Z = argmin
Z

Tr(SW ) (2)

Methods such as the K-means algorithm and its many variants are used in the optimization

of the above data space sum-of-squares clustering criterion [4]. If the separation boundaries

between clusters is nonlinear then sum-of-squares methods such as K-means will fail. Semi-

parametric mixture-decomposition methods such as the recently developed maximum-certainty

partitioning [7] have been proposed to deal with the problem of non-Gaussian clustered data. An

alternative approach to solving this problem is to adopt the strategy of nonlinearly transforming

the data into a high-dimensional feature space and then performing the clustering within this

feature space. However as the feature space may be of high and possibly in�nite dimension then

directly working with the transformed variables is an unrealistic option. However, as has been

exploited in the Kernel Principal Component Analysis (KPCA) method of feature extraction it

is unneccessary to work directly with the transformed variables [10]. It is the inner-products

between points which are used and these can be computed using a kernel function in the original

data space. This observation provides for a tractable means of working in the possibly in�nite

feature spaces [11], [10]. We now develop the feature space sum-of-squares clustering method in

the section which follows.

III. Feature Space Clustering

The implicit assumption of hyper-spherical or hyper-ellipsoidal clusters is often restrictive

and, similar to classi�cation problems, a nonlinear mapping into some higher-dimensional space
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which will provide linear separation of classes is desirable [11]. Consider then a smooth, contin-

uous nonlinear mapping from data space to feature space F such that

� : RD
�! F x 7! X

Denoting the within-group scatter matrix in feature space F as S�
W

then the trace of the feature

space scatter matrix is given by

Tr(S�
W
) = Tr

(
1

N

KX
k=1

NX
n=1

zkn(�(xn)�m�

k
)(�(xn)�m�

k
)T

)

=
1

N

KX
k=1

NX
n=1

zkn(�(xn)�m�

k
)T(�(xn)�m�

k
) (3)

The cluster centre in feature space is now denoted by the following expressionm�

k
= N

�1

k

P
N

n=1
zkn�(xn).

It is interesting, and fortuitous, to note that Tr(S�
W
) takes the form of a series of dot products

in feature space. As noted in the previous section these feature space dot products can easily be

computed using Mercer kernel [11], [10] representations in data space k(xi;xj) = �(xi):�(xj).

In other words by employing a speci�c kernel function the dot product which it returns implicitly

de�nes the nonlinear mapping � to the feature space [11], [10]. The feature space sum-of-squares

criterion can now be written solely in terms of elements of the symmetric N �N kernel matrix

K = fKijgi=1;���;N ;j=1;���;N where Kij = k(xi;xj) � �(xi):�(xj) and Kij = Kj i.

Tr(S�
W
) =

1

N

KX
k=1

NX
n=1

zknykn (4)

where

ykn = Knn �
2

Nk

NX
j=1

zkjKnj +
1

N2

k

NX
i=1

NX
l=1

zkizklKil (5)

By de�ning the following terms 
k = Nk=N and, R(xjCk) = N
�2

k

P
N

i=1

P
N

j=1
zkizkjKij where

the notation R(xjCk) denotes the quadratic sum of the elements which have been allocated to

the kth cluster, then some straightforward manipulation of (4) yields

Tr(S�
W
) =

1

N

KX
k=1

NX
n=1

zknKnn �

KX
k=1


kR(xjCk) (6)

For kernels which depend on the di�erence (xi�xj) then the �rst term in (6) will be a constant,

indeed for the widely used Radial Basis Function (RBF) kernel k(xi;xj) = expf�
1

c
kxi � xjk

2
g

the �rst term equals unity thus (6) reduces to

Tr(S�
W
) = 1�

KX
k=1


kR(xjCk) (7)

The implicit assumption of hyper-spherical clusters in the sum-of-squares criterion is now based

on the feature space representation of the data which is de�ned by the speci�c kernel chosen.
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The RBF kernel implicitly de�nes an in�nite dimensional feature space, this particular kernel has

been extensively adopted in many studies of both classi�cation [11] and unsupervised learning

[10].

If we now consider the RBF kernel speci�cally it is straightforward to see that as
P

k
zk = 1

then 0 < R(xjCk) � 1. In addition as
P

k

k = 1 then

P
K

k=1

kR(xjCk) � 1 in which case the

minimisation of Tr(S�
W
) requires the maximisation of

P
K

k=1

kR(xjCk). It is worthy of note

that for an RBF kernel the following approximation, which was originally utilised in [2], holds

due to the convolution theorem for Gaussians.

Z
x

p(x)2dx �
1

N2

NX
i=1

NX
j=1

Kij (8)

This being the case then R(xjCk) = 1

N
2

k

P
N

i=1

P
N

j=1
zkizkjKij �

R
x2Ck

p(xjCk)
2
dx. So the

term de�ned as R(xjCk) can be considered as a non-parametric approximation to the integralR
x2Ck

p(xjCk)
2
dx de�ned over the kth cluster. As already stated this was originally proposed in

[2] as a measure of distribution compactness based on a non-parametric estimate of the probabil-

ity density of the data. So in this particular case R(xjCk) provides a measure of the compactness

of the kth cluster as de�ned above. This is in contrast to the Euclidean compactness measure

de�ned by the sum-of-squares error computed in the original data space given by equation (2).

The desired sum-of-squares clustering in a feature space de�ned by an RBF kernel is therefore

represented by the following nonlinear optimisation problem.

Z = argmin
Z

Tr(S�
W
) = argmax

Z

KX
k=1


kR(xjCk) (9)

What becomes clear is that feature space clustering achieved by employing a kernel representation

of the data removes the implicit assumption of hyper-spherical or ellipsoidal clusters in data

space. For the particular case of the popular and widely used RBF kernel then the optimization

of the feature space criterion given by equation (9) is required. In considering the optimization

of the clustering criterion (9) it is proposed that the following lemma, originally detailed in [3],

is utilized.

Lemma: If the restriction zki 2 f0; 1g 8 k; i is relaxed to 0 � zki � 1 8 k; i i.e. zki 2 [0; 1]

with the summation constraint holding then the minimum of a sum of squares clustering criterion

(Tr(SW ) or Tr(S�
W
)) is achieved with a matrix Z which has elements 0 or 1 only.

The complete proof is given in [3]. This lemma also has a probabilistic interpretation in

that the maximum certainty partitioning of data will only occur when the partition posteriors

are 0 or 1 [7]. This important lemma provides for the use of stochastic methods in optimizing

clustering criteria based on a binary indicator matrix.
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IV. Stochastic Optimisation

Stochastic methods for optimising clustering criteria over a set of binary indicator variables

have been suggested in [3], [1]. In [1] a stochastic method for minimizing the clustering cost

based on deterministic annealing was developed. Essentially the cost associated with the overall

cluster assignments of the data sample are considered as random variables which have a Gibbs

distribution. The expected values, with respect to the Gibbs distribution, of the indicator vari-

ables are then estimated in an iterative manner [1]. We de�ne the following feature space cost

or distortion Dkj = 1 � 1

Nk

P
N

l
zklKjl. The term Dkj is the distortion or penalty associated

with assigning the jth datum to the kth cluster in feature space. Note that due to the speci�c

use of the RBF kernel the term 1

Nk

P
N

l
zklKjl can be viewed as a non-parametric Parzen es-

timate of the conditional probability of the jth datum given the kth cluster i.e. p̂(xj jCk). So

the penalty or cost associated with assigning the jth datum to the kth cluster in an RBF kernel

de�ned feature space is given as Dkj = 1 � p̂(xj jCk), thus highly improbable points allocated

to a cluster will increase the overall clustering cost. Now for an RBF kernel the following holds

Tr(S�
W
) = 1� 1

N

P
N

j

P
K

k
zkj

P
N

l

zkl

Nk

Kjl =
1

N

P
N

j

P
K

k
zkjDkj and minimisation of the feature

space 'sum-of-squares' criterion Tr(S�
W
) corresponds to minimisation of

P
N

j

P
K

k
zkjDkj .

For a general data space sum-of-squares error Ekn (a squared distance of datum point n to

cluster centre k) [1] the overall clustering cost Tr(SW ) = N
�1
P

N

n

P
K

k
zknEkn can be minimised

using the following iterative procedure, which is reminiscent of an expectation maximisation (EM)

algorithm

hzkni =
exp(��Enew

kn
)P

K

k0=1
exp(��Enew

k0n
)

(10)

and each E
new

kn
=k xn � hmki k

2 is re-computed using the new estimates of the expected values

of the indicator variables hzkni where hmki =
nP

N

i=1
hzkiixi

o
=

nP
N

j=1
hzkji

o
: The parameter

� controls the softness of the assignments during optimisation [1]. The reader should refer to

[1] and the references contained therein for a detailed exposition and derivation of the iterative

optimisation of the central clustering criterion, equation(2), in data space. This can be straight-

forwardly used for the proposed feature-space criterion. Employing the distance from the cluster

center in feature space de�ned by equation (5) and noting that Knn = 1 for the RBF kernel

some straightforward manipulation yields

hzkni =
exp(��ynew

kn
)P

K

k0=1
exp(��ynew

k0n
)
=

�kexp(�2�D
new

kn
)P

K

k0=1
�k0exp(�2�Dnew

k0n
)

(11)

Where �k = exp

n
�

�

hN
2

k
i

P
N

i=1

P
N

j=1
hzkiihzkjiKij

o
= exp f��hR(xjCk)ig and as such the fol-

lowing iterative procedure (and direct feature space analogue of the data space method) will �nd

a minimum of Tr(S�
W
) (equation (4))

hzkni =
�kexp(�2�D

new

kn
)P

K

k0
=1

�k0exp(�2�Dnew

k0n
)
and D

new

kn
= 1�

1

hNki

NX
l=1

hzkliKnl (12)
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As the parameter � ! 1 then the assignments become hard such that hzkni 2 f0; 1g i.e. only

takes the values 0 or 1, in which case this becomes the standard batch form of the K-means

algorithm in the feature space de�ned by the RBF kernel K. Note that the term �k is indicative

of the compactness of the kth cluster.

The main point of this proposed method, and indeed most clustering methods is a knowledge

of the number of clusters K. The following section proposes a means of estimating the possible

number of clusters within the data sample based on the kernel matrix created from the sample

of points.

V. Estimating the Number of Clusters Using The Kernel Matrix

Whereas in data space a D � N dimensional data matrix requires to be manipulated for

the optimization of the sum-of-squares criterion, the feature-space counterpart now requires the

manipulation of an N�N dimensional symmetric kernel matrixK. As each element of the kernel

matrix de�nes a dot-product distance in the kernel de�ned feature space the matrix will have a

block diagonal structure when there are de�nite groupings or clusters within the data sample.

This can be clearly seen with a simple example using a two-dimensional sample of 100 datum

points of which 20 points are each drawn from �ve spherical Gaussians of variance 0.1 with mean

values f0,0;0.7,0.7;-0.7,0.7;0.7,-0.7;-0.7,-0.7g. The �rst left plot in �gure (1) shows the plot of the

data points, the contours show the lines of constant 1 � Dkj value for an RBF kernel i.e. one

minus the feature space cost. It is also worth commenting that these contours are also lines of

estimated equi-probability. The third left plot shows the structure of the 100�100 kernel matrix

using an RBF kernel of width 0.1. The block structure of the matrix is most apparent. It should

be stressed here that the ordering of the points in the �gure is purely for illustrative purposes.

However it is to be noted that the eigenvectors of a permuted matrix are the permutations of

the original matrix and therefore an indication of the number of clusters within the data may be

given from the eigenvalue decomposition of the kernel matrix.

As noted in the previous sections the following �nite sample approximation can be madeR
x
p(x)2dx �

1

N2

P
N

i=1

P
N

j=1
Kij which can be written in vector/matrix notation as 1T

N
K1N

where the N � 1 dimensional vector 1N has elements of value 1/N. An eigenvalue decomposition

on the kernel matrix gives K = U�UT where the columns of the matrix U are the individual

eigenvectors ui of K and the diagonal matrix � contains the associated eigenvalues denoted as

�i. Then we can write

1T
N
K1N = 1T

N

(
NX
i=1

�iuiu
T

i

)
1N =

NX
i=1

�i

�
1T
N
ui
	2

(13)

The �nal form of equation (13) indicates that if there are K distinct clustered regions within the

N data samples then there will be K dominant terms �i
�
1T
N
ui
	2

in the summation. Therefore

this eigenvalue decomposition method provides a means of estimating the possible number of
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clusters within the data sample.

It is noted that what has been termed the kernel or Gram matrix [10] in this paper and within

the neural computing research community is often referred to as the aÆnity or proximity matrix

within the domain of machine vision research [6]. This aÆnity matrix is directly analogous to the

kernel matrix discussed herein. The segmentation of images into, for example, foreground �gures

and background is attempted by utilizing the �rst eigenvector of the aÆnity/proximity matrix

of a particular image [6]. However no use is made of subsequent eigenvectors in determining

the possible number of distinct areas of the image in a manner akin to the cluster number

determination method proposed in this paper and so this may indeed be an interesting area of

further investigation.

The notion of clustering a data set after it has been non-linearly transformed into a possibly

in�nite dimensional feature space has been proposed. A stochastic method for minimizing the

trace of the feature space within-group scatter matrix has been suggested. In the case of the

feature space whose dot-product is de�ned by the RBF kernel then a speci�c form of stochastic

iterative update has been developed. The sum-of-squares error in the RBF de�ned feature space

can be viewed as the loss de�ned by the estimated conditional probability of the datum coming

from a particular cluster. The possible number of clusters within the data can be estimated by

considering the terms of the eigenvalue decomposition of the kernel matrix created by the data

sample. The following section provides some preliminary simulations for demonstrative purposes.

VI. Simulations

To brie
y demonstrate the feature space method presented, one toy simulation is given

along with some examples provided in [7], [5]. Figure (1) shows the results of applying the

method to a simple clustered set of data, both the estimation of the number of clusters and the

resultant partitioning highlights the e�ectiveness of this method. Figure (2) shows the results

of applying this method to the 2-D Ring data which originally appeared in [7]. This data is

particularly interesting in that the mean (or prototype) vectors in data space for each class

coincide. By performing the clustering in a kernel de�ned feature space the prototypes are

therefore calculated in this feature space, which means that they do not necessarily have a pre-

image in input space [10]. The implication of this is that the mean vectors in feature space may

not serve as representatives or prototypes of the input space clusters. Both the estimation of the

number of data generators and the eventual partitioning show the performance of the method

on distinctly non-linearly separable and non-ellipsoidal data. These results are identical to the

maximum-certainty approach proposed in [7].

Three standard test data sets1 are employed in the following simulation. The Fisher Iris

data is a well known data collection consisting of four measurements from �fty samples of three

1Iris, Wine and Crabs data sets are all available from the UCI machine learning repository.
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1
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Fig. 1. First Left : The scatter plot of 100 points, composed of 20 datums drawn from �ve compact

and well separated spherical Gaussian clusters. The iso-contours show the lines of constant value of

1�Dkj , light colours indicate high values whereas dark colours indicate low values. This was generated

using an RBF kernel of width 0.1. Second Left : This plot shows the value of the binary indicator

variables Z after convergence of the iterative routine to optimise the feature space sum-of-squares

clustering criterion. Each row corresponds to a cluster centre and the individual data points, ordered

in terms of cluster membership (purely for demonstrative purposes) run along the horizontal axis. The

bars indicate a value of zkj . It can be seen that there are no cluster assignment errors on this simple

data set. Third Left : The contour plot of the 100� 100 kernel matrix clearly showing the inherent

block structure. The speci�c ordering has been used merely for purposes of demonstration and does

not a�ect the results given by the proposed method. Extreme Right : The contribution to 1T
N
K1N

from the most signi�cant terms �i
�
1T
N
ui
	2
. It is most obvious that only �ve terms contribute to the

overall value thus indicating that there are �ve dominant generators within the data sample.

varieties of Iris (Versicolor, Virginica, Setosa). One of the classes (clusters) is linearly separable

from the other two whilst the remaining two are not linearly separable. Figure (3) shows both the

clustering achieved and the estimated number of clusters. The number of clusters is estimated

correctly and the partition error matches the state of the art results on this data reported in

[7], [5]. The next simulation uses the thirteen dimensional Wine data set. This data has three

classes, varying types of wine, and the thirteen features are then used to assign a sample to a

particular category of wine. This data has only been investigated in an unsupervised manner

in [7] where four partition errors were incurred. Figure (3) shows the estimated number of

data generators using the proposed method. There are only three signi�cant contributors thus

indicating the presence of three clusters within the data. Applying the feature space partitioning

method yields four errors. The �nal example is the Crabs data, which consists of �ve physical

measurements of the male and female of two species of crab. Employing the method proposed

in this paper correctly estimates the number of possible data clusters.

The assessment of the contribution of each term �i

�
1T
N
ui
	2

to the overall value requires

some comment. In the case where the clusters in the data are distinct then a pattern similar to

that of Figures (1 & 2) will emerge and the contribution of each term will also be distinct. If as
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Fig. 2. First Left The scatter plot of the 'Ring Data', 100 samples from a uniform distribution centered

at the origin and 100 samples uniformly drawn from an annular ring. Second Left The outcome of

the clustering method showing that there are no partition errors. Third Left The contour plot of

the associated kernel matrix (RBF width of 1.0), again note the block diagonal structure. Extreme

Right The contribution to 1T
N
K1N from the most signi�cant terms �i

�
1T
N
ui
	
2

. It is most obvious

that only two terms signi�cantly contribute to the overall value thus indicating that there are two

dominant generators within the data sample.

an example we consider the Iris data, Figure (3), it is clear that there are two dominant terms

strongly suggestive of the presence of two clusters. However the inclusion of the third smaller

term provides 99.76% of the overall value indicating the possible presence of a third and less well

de�ned cluster grouping, as indeed is the case. The assessment of the contribution of each term

therefore requires to be considered on a case by case basis.

VII. Conclusion and Discussion

This paper has explored the notion of data clustering in a kernel de�ned feature space.

This follows on from the Support Vector classi�cation methods which employ Mercer Kernel

representations of feature space dot-products and the unsupervised method for performing feature

space principal component analysis (KPCA) [11], [10]. Clustering of data in a feature space has

been previously proposed in an earlier unpublished2 version of [10] where the standard K-means

algorithm was presented in kernel space by employing the kernel trick. As the sum-of-squares

error criterion for data partitioning can also be posed in a feature space and as this contains

only dot-products of feature vectors a very simple form of feature space clustering criterion

arises. We note that the K-means algorithm is the hard-clustering limiting case, when � ! 1,

of the deterministic annealing approach adopted in this paper for optimizing the sum-of-squares

clustering criterion.

The reader should note that central clustering by optimisation of the sum-of-squares criterion

(Equation. 2) has an intuitive interpretation in that the mean vectors act as representatives of

the clusters. However, when performing such clustering in a kernel de�ned feature space the

2Available at http://www.kernel-machines.org/
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Fig. 3. First Left: Clustering performance on the Iris data set indicating three partition errors. Second

Left: The contribution to 1T
N
K1N from the most signi�cant terms �i

�
1T
N
ui
	2

for the Iris data. An

RBF kernel of width 0.5 was used. The three dominant terms contribute 99.76% of the overall value

strongly indicating the existence of two highly dominant and one less dominant data generator i.e.

the existence of three possible clusters. Third Left: The values of �i
�
1T
N
ui
	
2

for the Wine data set

(RBF width equals 10). Strongly indicating the presence of only three clusters. Extreme Right:

The values of �i
�
1T
N
ui
	2

for the Crabs data set (RBF width equals 0.001). Strongly indicating the

presence of only four clusters.

associated mean vectors may not have a pre-image in the original data space (the ring-data is

such an example of this). The implication of this is that the solution may break down, if the

estimated centroid is replaced by its nearest data vector.

When speci�cally considering the RBF kernel then the feature space clustering cost has an

interpretation based on non-parametric Parzen window density estimation. It has been proposed

that the block-diagonal structure of the kernel matrix be exploited in estimating the number of

possible data generators within the sample and the subsequent eigendecompostion of the kernel

matrix can indicate the possible number of clusters. Some brief simulations have been provided

which indicate the promise of this method of data partitioning and shows that it is comparable

with current state-of-the-art partitioning methods [7], [5].

The �rst point which can be raised regarding the proposed method of data partitioning is

with regard to the choice of the type of kernel chosen in de�ning the nonlinear mapping. This is

one of the major questions which is under consideration regarding research being undertaken on

support vector and kernel methods. Clearly the choice of kernel will be data speci�c, however

in the speci�c case of data partitioning then a kernel which will have universal approximation

qualities such as the RBF is most appropriate. Indeed this paper has shown that the sum-of-

squares criterion in an RBF kernel induced feature space is equivalent to one minus the sum

of the estimated conditional probabilities of the data given the clusters. This is an appealing

interpretation as the Euclidean metric in data space is now replaced by the probability metric in

this speci�c feature space. So then the speci�c RBF kernel provides a simple and elegant method

of feature space data partitioning based on a sum-of-squares criterion as de�ned in equation (9).
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If more general nonlinear mappings are being considered (i.e. ones which do not possess Mercer

kernels) then great care must be taken to ensure that the nonlinear transformation chosen does

not introduce structure which is not intrinsically inherent in the data.

The second point which can be raised about this method is then the choice of the RBF

kernel width. This particular concern is pervasive in all methods of unsupervised learning,

the selection of an appropriate model parameter, or indeed model, in an unsupervised manner.

Clearly cross-validation and leave-one-out techniques are required to estimate the width of the

kernel in this method. The maximum certainty approach advocated in [7] requires the �tting of

a semi-parametric mixture of Gaussians to the data to be clustered, as with the method under

consideration the number of Gaussian mixtures requires to be selected a priori and heuristics or

cross-validation methods require to be employed for this matter.

The complete eigenvalue decomposition of the N �N kernel matrix scales as O(N3) and for

a reasonably large dataset this may be prohibitive. However an iterative method for extracting

M eigenvectors from an N �N dimensional kernel matrix which scales as O(MN
2) is available

[8]. As the number of possible clusters will be small in comparison to the overall size of the data

sample then computing the important terms and their percentage contribution to the overall

value of 1T
N
K1N is much less costly than the complete decomposition of the kernel matrix.

Once the kernel matrix has been de�ned then only one nonlinear optimisation is required in

de�ning the partitioning. This is in contrast to the method proposed in [7] where each candidate

partitioning, the outcome of a nonlinear optimisation routine, is used in computing the evidence

for the partition based on the data. Therefore at least as many nonlinear optimisation routines

as there are possible clusters will be required. Only one nonlinear optimisation is required in the

method proposed in this paper once the probable number of clusters has been selected.
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