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ABSTRACT

It has recently been demonstrated that one can accurately derive galaxy morphology from particular primary
and secondary isophotal shape estimates in the Sloan Digital Sky Survey (SDSS) imaging catalog. This was
accomplished by applying Machine Learning techniques to the Galaxy Zoo morphology catalog. Using the broad
bandpass photometry of the SDSS in combination with precise knowledge of galaxy morphology should help
in estimating more accurate photometric redshifts for galaxies. Using the Galaxy Zoo separation for spirals and
ellipticals in combination with SDSS photometry we attempt to calculate photometric redshifts. In the best case we
find that the root-mean-square error for luminous red galaxies classified as ellipticals is as low as 0.0118. Given
these promising results we believe better photometric redshift estimates for all galaxies in the SDSS (∼350 million)
will be feasible if researchers can also leverage their derived morphologies via Machine Learning. These initial
results look to be promising for those interested in estimating weak lensing, baryonic acoustic oscillation, and other
fields dependent upon accurate photometric redshifts.

Key words: galaxies: distances and redshifts – methods: statistical

1. INTRODUCTION

It is commonly believed that adding information about the
morphology of galaxies may help in the estimation of photo-
metric redshifts (Photo-z’s) when using training set methods.
Most of this work in recent years has utilized The Sloan Digital
Sky Survey (SDSS; York et al. 2000). For example, as discussed
in Way et al. (2009, hereafter Paper II), many groups have at-
tempted to use a number of derived primary and secondary
isophotal shape estimates in the SDSS imaging catalog to help
in estimating Photo-z’s. Some examples include using the radius
containing 50% and/or 90% of the Petrosian (1976) flux in the
SDSS r band (denoted as petroR50_r petroR90_r in the SDSS
catalog), concentration index (CI = petroR90_r/petroR50_r),
surface brightness, axial ratios, and radial profile (e.g., Collister
& Lahav 2004; Ball et al. 2004; Vanzella et al. 2004; Wadadekar
2005; Kurtz et al. 2007; Wray & Gunn 2008).

More recently, Singal et al. (2011) have attempted to
use Galaxy Shape parameters derived from Hubble Space
Telescope/Advanced Camera for Surveys imaging data using
a principal component approach and then feeding this informa-
tion into their neural network code to predict Photo-z’s, but for
samples much deeper than the SDSS. Unfortunately, they find
marginal improvement when using their morphology estimators.

Another promising approach focuses on the reddening and
inclination of galaxies. Yip et al. (2011) have attempted to
quantify these effects on a galaxy’s spectral energy distribution
(SED). The idea is to use this information to correct the
overestimation of Photo-z’s of disk galaxies.

On the other hand, attempts to morphologically classify large
numbers of galaxies in the universe have gained in accuracy
over the past 15 years as better/larger training samples from
eye classification have increased. For example, Lahav et al.
(1995) were one of the first to use an artificial neural network
trained on 830 galaxies classified by the eyes of six different
professional astronomers. In more recent years, Ball et al. (2004)
have attempted to classify galaxies by morphological type using
a neural network approach based on a sample of 1399 galaxies

(from the catalog of Nakamura et al. 2003). Cheng et al. (2011)
have used a sample of 984 non-star-forming SDSS early-type
galaxies to distinguish between E, S0, and Sa galaxies. In the
past year two new attempts at morphological classification using
Machine Learning techniques on a Galaxy Zoo (Lintott et al.
2008, 2011) training sample have been published (Banerji et al.
2010; Huertas-Company et al. 2011). The Banerji et al. (2010)
results were impressive in that they claim to obtain classification
to better than 90% for three different morphological classes
(spiral, elliptical, and point sources/artifacts).

These works are in contrast to previous work like that of
Bernardi et al. (2003) who used a classification scheme based
on SDSS spectra. However, this classification certainly missed
some early-type galaxies from their desired sample due to the
presence of star formation.

In this Letter, we will continue our use of Gaussian process
regression to calculate Photo-z’s using a variety of inputs. This
method has been discussed extensively in two previous papers
(Way & Srivastava 2006; Way et al. 2009).

We utilize the SDSS Main Galaxy Sample (MGS; Strauss
et al. 2002) and the Luminous Red Galaxy Sample (LRG;
Eisenstein et al. 2001) from the SDSS Data Release Seven (DR7;
Abazajian et al. 2009). We also utilize the Galaxy Zoo 1 survey
results (GZ1; Lintott et al. 2011). The Galaxy Zoo project4

(Lintott et al. 2008) contains a total of 900,000 SDSS galaxies
with morphological classifications (Lintott et al. 2011).

While this study does not focus exclusively on the LRG
sample, it should be noted that if it is possible to improve the
Photo-z estimates for these objects as shown herein it could also
improve the estimation of cosmological parameters (e.g., Blake
& Bridle 2005; Padmanabhan et al. 2007; Percival et al. 2010;
Reid et al. 2010; Zunckel et al. 2011) using the SDSS as well
as upcoming surveys such as BOSS5 (Cuesta-Vazquez et al.
2011; Eisenstein et al. 2011), BigBOSS (Schlegel et al. 2009),
and possibly Euclid (Sorba & Sawicki 2011), not to mention

4 http://www.galaxyzoo.org
5 Baryon Oscillation Spectroscopic Survey.
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LSST6(Ivezic et al. 2008). It could also contribute to more
reliable Photo-z errors, as required for weak-lensing surveys
(Bernstein & Huterer 2010; Kitching et al. 2011) and baryonic
acoustic oscillation measurements, which are also dependent
upon accurate Photo-z estimation of LRGs (Roig et al. 2008).

2. DATA

All of the data used herein have been obtained via the
SDSS casjobs server.7 In order to obtain results consistent
with Paper II for both the MGS and LRG samples we use
the same photometric quality flags (!BRIGHT and !BLENDED
and !SATURATED) and redshift quality (zConf>0.95 and
zWarning = 0) but using the SDSS DR7 instead of earlier SDSS
releases. These data are cross-matched in casjobs with Columns
14–16 in Table 2 of Lintott et al. (2011) extracting the galaxies
flagged as “spiral,” “elliptical,” or “uncertain.” The galaxies
“flagged as “elliptical” or “spiral” require 80% of the vote in
that category after the debiasing procedure has been applied;
all other galaxies are flagged “uncertain” (Lintott et al. 2011).
Debiasing is the processes of correcting for small biases in spin
direction and color. See Section 3.1 in Lintott et al. (2011) for
more details on debiasing.

Note that the GZ1 sample is based upon the MGS, but the
MGS contains LRGs as well. This is why we can analyze both
of these samples. However, the actual LRG survey goes fainter
than the MGS and so we do not find LRG galaxies fainter than
the MGS limit of rpetrosian �17.77. See Strauss et al. (2002)
and Eisenstein et al. (2001) for details on the MGS and LRG
samples.

A number of points from both the LRG and MGS were elim-
inated because of either bad values (e.g., −9999) or because
they were considered outliers from the main distribution of
points. The former offenders included petroR90_i (13 points
in the MGS sample, 1 point in the LRG), mE1_i (43 points,
5 points), petroR90Err_i (7177 points, 1262 points), and mR-
rCcErr_i (22 points, 12 points). The reason for eliminating
bad mE1_i points is that we use it for calculating aE_i from
Table 2 of Banerji et al. (2010). A small number of outliers were
also removed from the MGS sample, but totaled only 27 points.
No such outlier points were removed in the LRG sample. This
leaves us with a total of 437,273 MGS and 68,996 LRG objects.
Using the GZ1 classifications in the MGS there are 45,249 el-
lipticals, 119,369 spirals, and 272,655 uncertain (∼62%). For
the LRG sample there are 27,227 ellipticals and 13,495 spirals
leaving 28,274 uncertain (∼41%).

3. DISCUSSION

Using the morphological classifications from the Galaxy Zoo
project first data release (Lintott et al. 2011) we attempt to calcu-
late Photo-z’s for four different samples and four combinations
of primary and secondary isophotal shape estimates from the
SDSS as seen in Table 1. A larger variety of input combina-
tions were tried including those in Table 1 of Banerji et al.
(2010). However, we only report those found with the lowest
root-mean-square error (rmse) in Table 1 of this Letter.

The results using the Banerji et al. (2010) suggested isophotal
shape estimates as well as others tested in Paper II are found
in Figure 1 and Table 1. In Figure 2 we also show plots of the
spectroscopic redshift versus the predicted photometric redshift

6 Large Synoptic Survey Telescope.
7 http://casjobs.sdss.org

Table 1
Results

Dataa Inputsb σrmse
c

MGS–ELL ugriz+Q+U 0.01561 0.01532 0.01620
· · · ugriz+P50+CI 0.01407 0.01400 0.01475
· · · ugriz+P50+CI+Q+U 0.01641 0.01560 0.01801
· · · ugriz+B 0.01679 0.01668 0.01683
MGS–SP ugriz+Q+U 0.01889 0.01864 0.01913
· · · ugriz+P50+CI 0.01938 0.01927 0.01947
· · · ugriz+P50+CI+Q+U 0.01751 0.01747 0.01777
· · · ugriz+B 0.02092 0.02089 0.02101
LRG–ELL ugriz+Q+U 0.01345 0.01291 0.01420
· · · ugriz+P50+CI 0.01334 0.01278 0.01426
· · · ugriz+P50+CI+Q+U 0.01584 0.01439 0.01693
· · · ugriz+B 0.01180 0.01175 0.01184
LRG–SP ugriz+Q+U 0.01520 0.01404 0.01910
· · · ugriz+P50+CI 0.01514 0.01474 0.01679
· · · ugriz+P50+CI+Q+U 0.01957 0.01870 0.02285
· · · ugriz+B 0.01737 0.01728 0.01765

Notes.
a MGS: Main Galaxy Sample (Strauss et al. 2002); LRG: luminous red galaxies
(Eisenstein et al. 2001); SP: classified as spiral by Galaxy Zoo; ELL: classified
as elliptical by Galaxy Zoo.
b u-g-r-i-z: 5 SDSS dereddened magnitudes; P50: Petrosian 50% light radius in
SDSS i band; CI: concentration index (P90/P50); Q: Stokes Q value in i band;
U: Stokes U value in i band; B: inputs from Table 2 of Banerji et al. (2010): CI,
mRrCc_i, aE_i, mCr4_i, and texture_i.
c We quote the bootstrapped 50%, 10%, and 90% confidence levels as in Paper II
for the root-mean-square error (rmse).

for the inputs that predict the lowest rmse for each of the four
data sets listed in Table 1. These are more impressive than
one might initially guess. In Paper II we showed how adding
additional bandpasses in the ultraviolet via the Galaxy Evolution
Explorer8 (GALEX; Martin et al. 2005) could naively improve
Photo-z estimation. The same was shown when using additional
bandpasses from the infrared from the Two Micron All Sky
Survey9 (2MASS; Skrutskie et al. 2006). However, the results
were biased because neither GALEX or 2MASS reach the same
magnitude or redshift depth as the full SDSS MGS or LRG
samples. It is easier to get lower rmse estimates of Photo-z
when you have a smaller range of lower redshifts to fit. For the
MGS it is clear from the top two panels in Figure 1 that the
Galaxy Zoo objects span a similar range of redshifts and r-band
magnitudes. On the other hand the situation for the luminous red
galaxies is not as straightforward. Looking at the bottom two
panels of Figure 1 the large second bump at a redshift of z ∼
0.35 and r ∼ 18 does not exist. The latter is logical because the
Galaxy Zoo catalog was drawn from the MGS and hence there
are no galaxies beyond rpetrosian =17.77 (see Petrosian 1976 for
details on Petrosian magnitudes) according to their selection
criteria (Strauss et al. 2002).

Our lowest rmse values come from galaxies categorized as
ellipticals in the Luminous Red Galaxy Sample using the SDSS
u-g-r-i-z bandpass filters and the isophotal shape estimates from
Table 2 of Banerji et al. (2010): ci, mRrCc_i, aE_i, mCr4_i,
texture_i. These yield an rmse of only 0.01180, which we believe
is the lowest calculated to date for such a large sample of galaxies
measured in the bandpasses of the SDSS while also retaining a
fairly large range of redshifts (0 � z � 0.25) and dereddened
magnitudes (12 � rpetrosian � 17.77).

8 http://www.galex.caltech.edu
9 http://www.ipac.caltech.edu/2mass
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Figure 1. Plots of root-mean-square error for a given number of galaxies per 50% bootstrap level with representative errors (10% and 90%). Top two panels: Main
Galaxy Sample (elliptical and spiral); bottom two panels: luminous red galaxies (elliptical and spiral).
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Figure 2. Plots of spectroscopic redshift vs. predicted photometric redshift for the input with the lowest rmse for each of the four given data sets shown in Table 1.

Taking a closer look at the kinds of inputs that improve the
results by galaxy type can be interesting. It is clear from Table 1
that the Stokes parameters appear to work better for spiral

than elliptical galaxies. The Stokes parameters measure the axis
ratio and position angle of galaxies as projected on the sky. In
detail they are flux-weighted second moments of a particular
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Figure 3. Redshift and r-band dereddened model magnitudes for the Main Galaxy Sample (top two panels) and luminous red galaxies (bottom two panels).

isophote:

Mxx ≡
〈
x2

r2

〉
, Myy ≡

〈
y2

r2

〉
, Mxy ≡

〈xy

r2

〉
. (1)

When the isophotes are self-similar ellipses one finds (Stoughton
et al. 2002):

Q ≡ Mxx − Myy = a − b

a + b
cos(2φ),

U ≡ Mxy = a − b

a + b
sin(2φ). (2)

The semimajor and semiminor axes are a and b while φ is the
position angle. Masters et al. (2010) demonstrates the efficacy of
using SDSS derived axis ratios in characterizing the inclinations
of spiral galaxies. This is seen in Table 1 where they offer the
second best set of inputs when determining photometric redshift
for spirals. Both Stokes Q and U parameters also display a larger
range of values in the spirals than in the ellipticals. The standard
deviations in Stokes Q and U for spirals are 0.1877 and 0.1500
while for ellipticals they are 0.0596 and 0.0459. Hence they
clearly offer more room for possible improvement in the former
than in the latter.

One of the more surprising results is the difference in using
the B inputs for the MGS versus LRG ellipticals. In the latter
case these inputs give the lowest rmse results, while in the MGS
elliptical case they give the worst. This could be due to the fact
that the surface brightness of the LRG galaxies are more easily
modeled by the B inputs than the MGS. The MGS ellipticals
may still have clumps of star formation that can make the surface
brightness more difficult to model than the more passive LRG
ellipticals.

When comparing the MGS and LRG spirals, one stark
difference is clear when utilizing the P50 (Petrosian 50% light
radius in SDSS i band) and CI (Concentration Index = P90/

P50) inputs shown in Table 1. In the MGS spiral case these
additional inputs yield worse fits, whereas they are among the
most useful in the LRG spiral case. This may indicate that MGS
spirals are more diverse morphologically than LRG spirals. The
P50 and CI inputs are incapable of helping to model the MGS
spiral diversity and simply add noise rather than signal to the fits.
Masters et al. (2010) point out that red spirals (read LRG type)
will “be dominated by inclined dust reddened spirals, and spirals
with large bulges.” Note that this does not mean that LRG bulge
dominated spirals are necessarily S0 galaxies (which would add
to their diversity both morphologically and spectroscopically).
Lintott et al. (2008) and Bamford et al. (2009) have both shown
that contamination of S0s into spirals is only about 3% in the
best case scenario. So again, perhaps P50 and CI can do a better
job of modeling LRG spirals because they are less diverse than
MGS spirals.

There are several outstanding issues with using this approach
for studies that may utilize large samples of SDSS LRG derived
Photo-z’s (e.g., baryonic acoustic oscillations). The first is that
the GZ1 catalog has only been able to classify (∼59%) of the
LRG galaxies as spiral or elliptical. This means that 41% of
our sample cannot benefit from morphology knowledge when
estimating Photo-z’s. Second, the LRGs used herein do not go
to the same depth (in redshift or magnitude) as the full LRG
(r � 19) catalog since the GZ1 is based on the MGS (r � 17.77).
Note also that the GZ1 morphology estimates get worse as one
reaches the fainter end of the sample (Lintott et al. 2008). Third,
the Machine Learning derived morphologies of Banerji et al.
(2010) can only classify up to 90% as accurately as their “by
eye” GZ1 training set. These constraints will have to be taken
into account for any studies that attempt to utilize morphology
in Photo-z calculations.

The Photo-z code used to generate the results from this
Letter are available on the NASA Ames Dashlink Web
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site https://dashlink.arc.nasa.gov/algorithm/stablegp and is de-
scribed in Foster et al. (2009).
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