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OBJECTIVE 

The 10th Electromagnetic and Light Scattering Conference is held in Bodrum, a resort town on the 
Aegean Coast of Turkey.  ELS-X is built on the success of previous meetings held in Amsterdam, 
Helsinki, New York, Vigo, Halifax, Gainesville, Bremen, Salobreña, and St. Petersburg, along with the 
various Bremen workshops.  The main objective is to bring together scientists and engineers researching 
various aspects of light scattering and to provide a relaxed atmosphere for in-depth discussion of theory, 
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CONFERENCE LOCALE  

The conference will be held at Hapimag Sea Garden Hotel, a resort about 20 km outside Bodrum. 
Bodrum is a lovely town on the shores of the Aegean Sea.  It spreads over the ancient Halicarnassus, 
where its mausoleum was one of the Seven Wonders of the World.  The town and its surroundings are 
rich with history and natural beauty.  The modern Bodrum is a busting town with many cafes, restaurants, 
bars and beaches.  To many it is everything and anything they want it to be: historic, interesting, relaxing, 
or rich. 
 
An imposing Crusader Castle, built by the knights of Rhodes, overlooks the harbor and the international 
marina.  The nearby peninsula is rich in history and has many hidden beaches and traditional small 
villages.  Bodrum houses the impressive Museum of Underwater Archeology. 
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Abstract 

The influence of the optical properties of the substrate in the backscattering of Micron-
sized structures supporting sub-micron defects is analyzed by means of a parameter based 
on integrated backscattering calculations. This analysis is performed for two different 
configurations (defect on the microstructure or on the substrate), considering both 
dielectric and metallic substrates .  

1 Introduction 
During the last decades, researchers on light scattering by surfaces have focused on the 

electromagnetic problem of particles on substrates. Their results have generated non-invasive light 
scattering techniques for particle sizing with applications in different fields. In previous works[1-2], the 
authors have extensively studied light scattering by particles on substrates from both numerical and 
experimental points of view. 
Among the types of far-field scattering measurements the backscattering detection has proved itself very 
sensitive to small variations in the geometry and/or optical properties of scattering systems with structures 
comparable to the incident wavelength[3-4]. 
 

In a recent work [1], we described how a small defect located on a micron-sized cylinder on a 
substrate changes the backscattered intens ity. Also, we showed that an integration of the backscattered 
intensity over either the positive or negative quadrant (corresponding to the defect side or the opposite 
one, respectively) yields to a parameter, ?σbr , (see ref.[1])  sensitive not only to the existence of the defect 
but also to its size and location on the microstructure. These results were obtained for a homogeneous 
system, where substrate, cylinder and defect were supposed perfect conductors. Later on, another work 
was presented showing results for more realistic systems: dielectric or metallic defect on a metallic 
cylinder located on a metallic substrate[2] . Also, other geometries, where the small defect was in the 
substrate nearby the cylinder, were considered. Those works suggests the measurement of σbr as an 
experimental technique for monitoring, sizing and characterization of small defects adhered to 
microstructures. From a practical point of view, detection and sizing of very small defects on 
microstructures located over substrates by some reliable and non-invasive method could be useful in 
quality control technology and in nano-scale monitoring processes. In this context, the objective of this 
work is to study the sensitivity of this technique to the optical properties of the substrate in two 
configurations: A) defect on cylinder and B) defect on substrate nearby the cylinder. This abstract is 
organized as follows: Section 2 is devoted to describe the geometry and the numerical method proposed 
to solve the problem. Section 3 is devoted to show the main results and their corresponding discussion. 
Finally Section 4 summarizes the main conclusions of this research.  
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2 Scattering Geometry and Numerical Method  
The scattering geometry is similar to that described in a previous work[1], i.e a cylindrical metallic 
microstructure of diameter D=λ located on a flat conducting substrate, and supporting a much smaller 
defect. Its shape will be assumed cylindrical with diameter d=0.1λ. Two situations will be analyzed: 
Configuration A) The defect is located on the cylinder and its position is given by the angle ϕ , which is 
considered always in the right side, ϕ>0, with no loss of generality. Configuration B) The defect is 
located on the substrate nearby the cylinder. In principle, we want to show the differences, if any, 
appearing between these two configurations in order to extract the most important conclusions leading to 
a possible distinction between them. This could give more insight in the solution of the inverse problem.  
 

 

Figure 1: Scattering geometry. 

 
 The scattered field  in each medium is obtained by numerically solving the Maxwell’s integral equations 
using the Extinction Theorem formulation applied to the 2-D geometry for multiple connected 
domains[5].  

3 Results 

3.1 Configuration A 

Figure 2 shows a comparison of σbr for different dielectric and metallic substrates, as a function of the 
angular position of the defect on the main cylinder. An interesting result that can be observed in Fig.2 is 
that |σbr+| increases as we increase ε, being maximum for the case of metals. An opposite behavior 
appears for |σbr-|. 
     It can also be seen that σbr is more sensitive to ε   , when ε∈[1.2,4] and it saturates for big values of ε, 
tending to the metal case. Another difference in σbr+,  is that the maxima and minima shift to the right as 
we increase ε , tending to the metal case for big values of ε. The main difference between dielectric and 
metallic substrate in this configuration is that for the dielectric case, sb- is not close to zero and therefore 
it is more difficult to predict the side of the cylinder where there is a defect. 
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Figure 2: sbr
±  as a function of the defect angular position ϕ for a silver cylinder of D=? with a silver 

defect of d=0.1λ and located on different types of substrate (ε). 

3.2 Configuration B 

Figure 3. shows the evolution of s br for different dielectric and metallic substrates, as a function of the  
position x, of the defect in the substrate. The shadowed area represents defect positions “under” the 
cylinder, not considered in the calculations. In this configuration, s br is still more sensitive for dielectric 
substrates than metallic substrates. In fact, silver and gold substrates give almost the same values of s br.  
 An interesting feature of s br in this configuration is that, s br is always positive for dielectric 
substrates whereas is always negative for metallic substrates. As it happened in configuration A, s b- 
present bigger values for the case of dielectric substrate, but this time this is not critical, as sb

- is always 
smaller than s b

+. 

Defect Position X (in lambdas)
-1,5 -1,0 -0,5 0,5 1,0 1,5

σ
br

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4 ε=1.8 
ε=2.4 
ε=2.8 
ε=4 
ε=6 
ε=10 
ε=Αu 
ε=Αg 

D=λ

 

Figure 3: s br
±  for a silver cylinder of D=? with a silver defect d=0.1λ and located on different types of 

substrate (ε). Defect position x ranging from 0.5? to 1.5?  
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4 Conclusions 
In this work, the influence of the optical properties of the substrate in the sensitivity of the parameter σbr 
has been analyzed for two different configurations: A) defect on cylinder and B) defect on substrate 
nearby the cylinder. In both cases, s b- present bigger values for the case of dielectric substrate. σbr also 
present an opposite behavior in configurations A and B for different types of substrate. In configuration 
A, metallic substrates allow an easier detection and characterization of a defect. In configuration B, σbr is 
more sensitive if the substrate is dielectric, giving very high values of s br (up to 0.6) for small values of ε . 

Finally, if we focus on the inverse problem, information about the optical properties of the 
substrate could be obtained in both configurations by studying the maximum value of σbr. 
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Abstract 

Hemoglobin localization in erythrocytes is shown to lead to a decrease of their apparent 
absorption coefficient in the blue spectral range. This effect is quantitatively evaluated by 
using analytical relations. The replacement of erythrocytes by equivalent spheres is 
considered to simplify the final calculation formulas. The spheres with the same volume 
as that of erythrocytes is shown can be used for single red blood cells or for their rouleau 
with small number of erythrocytes. For rather a long rouleau, the spheres with the same 
ratio of their volume to surface are applicable. The asymptotic behavior of the absorption 
decrease and its influence on absorption coefficient of skin dermis are studied. 

1 Introduction 
There are known and widely used a lot of procedures to study human blood by optical means. Among 
them are diffuse reflectance and transmittance spectroscopy [1], time- and frequency-domain 
investigations [1], optical measurements of blood samples in a cell [2], etc. The two first procedures are 
usually used under multiple light scattering by in vivo tissues. The latter one is applicable for both 
multiple and single scattering conditions. All the above procedures are highly affected by optical blood 
absorption coefficient that itself is often a subject of the studies to indicate various blood pathologies. The 
main absorbing components of blood are well known to be hemoglobins in different forms, the major of 
which are oxy- and deoxyhemoglobins. Their optical absorption is reliably referenced [2 – 4]. How does 
hemoglobin, which is localized in erythrocytes, affect the optical absorption coefficient of blood? At the 
first glance, one could average the hemoglobin absorption over a blood unit volume according to its 
volume fraction fHH in blood, where fH is the volume fraction of hemoglobin in an erythrocyte and H is 
the hematocrit (volume fraction of erythrocytes in blood). Let fH = 0.25 and H = 0.4 [1] below. However, 
such an averaging is not correct always. Really, let, for a moment, hemoglobin have infinitely large 
absorption. Then the averaged absorption coefficient will be infinitely large too. It is clear, however, that 
some light portion will pass through “holes” that do not contain any absorbing substance. So averaging 
weight fHH is not applicable here. What will be the consequences of using another weight for calculating 
the absorption coefficient of a biological tissue as a whole? The paper will answer these questions. 

The effect of light transmission through the above “holes” is sometimes called by the “sieve” effect 
[5]. We proposed earlier [6] an analytical procedure to treat the localized absorption of light by 
chaotically or regularly oriented cylindrical capillaries. Hemoglobin absorption was uniformly spread 
over blood volume there. On the other hand, the “sieve” effect of hemoglobin in erythrocytes was already 
evaluated [5] by replacing an erythrocyte with a spherical particle. It is shown that the hemoglobin 
localization leads effectively to some decrease in the volume fraction of the absorbing substance. The 
effect is physically understood, because internal portions of an erythrocyte, where light comes highly 
attenuated, participate in the absorption to a less degree that the periphery. The decrease has the clearest 
manifestation in the blue spectral range or in the Soret band, where blood absorbs light strongly. 
Meanwhile, an erythrocyte is a disk-shaped particle, not a spherical one as is validly mentioned in [5]. 
How one can replace an erythrocyte by an equivalent sphere? What will be its radius? How does 
erythrocyte aggregation in a rouleau affect the absorption? These topics are considered in the paper. 
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2 Calculation scheme 
Let an erythrocyte be a disk with diameter De = 8.8 μm and thickness L = 2 μm [1, 7]. Although an 
erythrocyte is really a concavo-concave disk, we will approximate it by a cylinder with flat bases for the 
estimations below. Absorption coefficient μa, e of erythrocytes occupying volume fraction H is 
 a,e e H e H HbO Hb( ) ( ) [ (1 ) ]H HC H C Hf S Sμ μ μ μ μ μ= = + − , (1) 
where Ce is the correction factor due to the hemoglobin localization; μH is the absorption coefficient of 
hemoglobins uniformly spread over an erythrocyte volume; S is the blood oxygenation degree (fraction of 
oxyhemoglobin with respect to total hemoglobin); μHbO and μHb are the oxy- and deoxyhemoglobin 
absorption coefficients, respectively. Our aim is to find the correction factor for chaotically oriented 
erythrocytes. The following analytical relation [6] will be used for this purpose: 

 

efsin cos/2

ef

0 0

H ag e

0.25 0.5 sin ( , )

( )
0.25

agL a

ag

e H

L a d x dx

C
L D

ϑ ϑπ

π ϑ ϑ τ ϑ

μ
μ π

+

+ −

=
∫ ∫

, (2) 

where Lag = NL is the length of an erythrocyte rouleau, N is the number of erythrocytes in the aggregate, 

 
1

2
ef H H e

0

(1/ )ln[ exp( 1 ) ]a D x dxμ μ= − −∫ , (3) 

( , )xτ ϑ  is the transmission coefficient of erythrocytes with their generatrix (of length Lag) set at angle ϑ  
to light propagation direction. While deriving Eq.(3), an erythrocyte disk or cylinder was replaced by a 
parallelepiped with the same generatrix Lag and two bases with sides aef and De. Its light transmission is 
strictly the same as that of the cylinder [6]. The first two terms in the numerator and integration of Eq.(2) 
correspond to the averaged light transmission over all possible erythrocyte orientations. The integral over 
x of Eq.(2) can be calculated analytically [6]. We do not give its explicit, but cumbersome form here. 

We will also consider the correction factor for equivalent spheres of two kinds. The first one is a 
sphere with the same volume as an erythrocyte. Its diameter is Ds = [1.5(De)2L]1/3. Another sphere kind 
has the same ratio of its volume to its surface as that of an erythrocyte. In this case, the sphere diameter is 
Ds = 1.5De. The light transmission coefficient and the correction factor for a sphere are, respectively, 

2
s H H H H( ) [1 (1 )exp( )]/[0.5( ) ]s s sT D D Dμ μ μ μ= − + −  and s H s H s H( ) 1.5[1 - ( )]/( )C T Dμ μ μ= . 

3 Sample results 
Figure 1 shows correction factors Ce (solid lines) or Cs (marks) as a function of optical diameter μHDe of 
the erythrocyte base. Points on the abscissa axis indicate wavelengths, where the corresponding values of 
μHDe occur. Different curves (1 to 4) give the Ce values for N = 1, 2, 8, and ∞, respectively. One can see 
that, due to the “sieve” effect, the decrease in the apparent absorption coefficient of erythrocytes can be 
up to about 3 times within the real range of μHDe variations. The data of Fig.1 answer the question on 
possible approximation of erythrocyte aggregates by equivalent spherical particles. When number N of 
erythrocytes in a rouleau is small (N = 1 ÷ 4), the aggregate can be represented by a sphere with the same 
volume (■ and ▲). When N > 8 (+), one can use the spheres with the same ratio of their volume to 
surface for calculating the correction factor. The more erythrocytes are in an aggregate (rouleau), the 
more pronounced is the “sieve” effect. 

As one can see from Fig.1, absorption coefficient μa, e depends on how many erythrocytes form an 
aggregate. This dependence is explicitly shown in Fig.2. The more erythrocytes are in a rouleau, the 
smaller the correction factor and, hence, the smaller the absorption coefficient. The problem on the 
influence of erythrocyte aggregation on blood optical characteristics has been studied in [7] too. However, 
wavelength λ = 632 nm selected for the investigations there shows no “sieve” effect (Ce = 1), as follows 
from Figs.1 and 2 (see also Fig.4 below). So the dependence of Ce on N was omitted in [7]. 
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Figure 1: Correction factor as a function of µHDe 

for single erythrocyte (curve 1), rouleau of two (2) 
and eight (3) erythrocytes, and for Lag = ∞. Marks ■ 
(N = 1) and ▲ (N = 2) correspond to spheres of the 
same volume, +’s correspond to spheres with the 

same ratio of their volume to surface. 

Figure 2: Correction factor as a function of 
erythrocyte number N in a rouleau for µHDe = 0.29 

(curve 1), 1.5 (2), and 3.7 (3). 
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Figure 3: Normalized correction factor С* as a 

function of µHDe for uniform distribution of 
absorbing substance (curve 1), single erythrocyte 

(2), aggregates of two (3) and four (4) erythrocytes 
(4), and for Lag = ∞ (5). 

Figure 4: Absorption spectra of dermis without 
(curve 1) and with “sieve” effect by capillaries only 
(2 and 3, Dc = 10 and 40 µm, respectively). Marks 

show the effect of erythrocyte aggregates additional 
to that of capillaries for N = 1, Dc = 10 µm (+) and 

for N = 8, Dc = 10 (▲) and 40 µm (●). 
It follows from Eqs.(2) and (3) that product CeµHDe → 1 as µHDe or simply µH (De is fixed) → ∞. 

Although the optical diameter of an erythrocyte cannot be infinitely large in the optical wavelength range, 
it is interesting to study the asymptotic behavior of the correction factor. Fig.3 shows the dependence of 
normalized correction factor С* = Сe µHDe on  µHDe for a single erythrocyte and its aggregation. Note 
first that for usual uniform distribution of hemoglobins over blood volume one has the linear dependence 
(curve 1). This corresponds to the weakly absorbing substance for λ > 600 nm. With increasing optical 
erythrocyte diameter, one observes deviations from the linearity that leads to the decrease in the blood 
absorption coefficient as compared to the homogeneous distribution of hemoglobins over blood volume. 
It is worthwhile to note the non-monotonic behavior (with a maximum) of the curves for single 
erythrocytes (curve 2) or for rouleaux with small number N (curves 3 and 4). The more number of 
erythrocytes in a rouleau, the less pronounced is the maximum. It disappears for large enough N (curve 5). 
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The maximum can be explained by follows. As µH increases, aef and ( , )xt J  are obviously to decrease. 
So the competition between these two terms entering Eq.(2) with opposite signs provides the maximum. 

How does the hemoglobin localization in erythrocytes affect the optical absorption of biotissue? The 
absorption spectra of dermis containing blood vessels are illustrated in Fig.4 without and with accounting 
for the “sieve” effect by both the capillaries and erythrocytes. Eqs.(2) and (3) with Lag = ∞ and De 
replaced with vessel diameter Dc were used for the calculations of the correction factor for capillaries. 
The absorption coefficient of dermis is 
 a c a,e c a,e c a,t( ) (1 )C f fm m m m= + - , (4) 
where fc = 0.02 is the volume fraction of blood vessels in dermis and µa,t is the absorption coefficient of 
bloodless tissue. One can see from Fig.4 that the “sieve” effect of the vessels only gives rise to a 
considerable decrease in µa of the blue spectral range (up to 5 times). As for erythrocytes too, the larger 
the optical diameter µa,eDc of a vessel, the more pronounced the effect is. Additional accounting for the 
hemoglobin localization in erythrocytes leads to a further decrease in the absorption coefficient in the 
blue for small capillary diameter (Dc = 10 µm, + and ▲) and is practically inessential for large vessels (Dc 
= 40 µm, ●). Such a behavior is physically transparent. Really, the “sieve” effect by erythrocytes 
decreases absorption coefficient µa,e of blood inside a vessel. In its own turn, this makes the “sieve” effect 
by capillaries less significant. In other words, the two effects somewhat compensate each other for large 
vessels. The compensation for small capillaries occurs to a less degree. 

4 Conclusion 
The decrease in absorption coefficient µa,e illustrated in Figs.1 and 2 can be observed for a suspension of 
intact erythrocytes in a cell. This effect opens a new opportunity to essentially detect the erythrocyte 
aggregation degree in a blood sample by optical means. For example, comparing the transmittance values 
of the erythrocyte suspension and of the solution with the same quantity of broken erythrocytes at several 
wavelengths in the blue can directly give the correction factor. The latter is analytically related with the 
aggregation degree and other unknown parameters of erythrocytes. The solution to a set of equations for 
used wavelengths can, in principle, simplify the unknown characteristics. As to the determination of 
erythrocyte parameters in vivo, this topic requires additional investigations. In any case, the screening of 
the “sieve” effect in skin by melanin, which strongly absorbs blue light too, should be taken into 
consideration. The screening can hide the hemoglobin localization effect. 
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Abstract

The energy flow caused by single particles is examined to form a physically based under-

standing for extinction and the electromagnetic optical theorem. The behavior of the energy

flow is explained in terms of wave interference. The optical theorem is shown to be a rela-

tionship based on the relative phase between the wave incident on a particle and the wave

scattered by it. The relative phase is determined by the refractive and absorptive properties

of the particle and reveals how extinction depends on both scattering and absorption.

1 Introduction

The optical theorem has a long history; its occurrence in electromagnetic theory begins more than one hun-

dred years ago and analogs of the theorem are found in quantum mechanical and acoustical scattering [1].

Over the years, many derivations and implementations of the theorem have been given [2]-[5]. However, we

have found no previous work that provides an explicit interpretation of the theorem in a physical (not math-

ematical) context. This work examines the optical theorem in detail and achieves a physical understanding

of its meaning based on simulations of the energy flow caused by specific single particles.

2 The Optical Theorem

Consider a single particle that is illuminated by a plane wave polarized along the x-axis and traveling in the

n̂inc direction, see Fig. (1) and Eq. (2) below. By expanding this wave into counter-propagating spherical

waves using Jones’ lemma, one can obtain an expression for the extinction cross section Cext of the particle

as

Cext
=

4π

kEinc
o

Im
{

x̂ · Esca
1 (n̂inc)

}

. (1)

This is the electromagnetic optical theorem [5].

To the unfamiliar investigator, Eq. (1) can appear mysterious. The optical theorem relates Cext to the

imaginary part of the scattering amplitude Esca
1

evaluated in only the forward direction n̂inc. However, ex-

tinction is due to scattering and absorption [3]. Scattering involves all directions whereas absorption is often

independent of direction, so why should the optical theorem depend on only the forward direction, and how

is absorption involved?

3 Theoretical Considerations

Suppose that the particle is located at the origin of the Cartesian coordinate system and surrounded by

vacuum, see Fig. (1). The particle is described by a complex-valued refractive index m. Let S and V denote

the surface and interior volume of the particle, respectively. The fields of the incident plane wave are

Einc(r) = Einc
o exp(ikrr̂ · n̂inc) x̂ , Binc(r) =

k

ω
n̂inc × Einc(r) . (2)
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The wave number of the incident wave is k = 2π/λ where λ is the wavelength. A harmonic time dependence

given by exp(−iωt), where ω is the angular frequency, is assumed for all field quantities. Surrounding the

particle is a spherical surface Sl of radius Rl that is large enough that points on its surface are in the far-field

of the particle. The intersection of Sl with the y-z plane forms the Cl contour, see Fig. (1). The wave scattered

by the particle can be found by solving Maxwell’s equations using the volume integral relation [5]. In the

far-field of the particle, the scattered wave takes the form of an outward traveling spherical wave with an

angular profile given by the scattering amplitude Esca
1

.

The Poynting vector S describes the energy flow in an electromagnetic wave [6]. Because both the

incident and scattered waves exist at the observation point r, S factors into three distinct terms. One of these

terms, the cross term Scross, involves the fields of both the incident and scattered waves whereas the other

terms involve the fields of only either the incident or scattered waves. The integral of the flow of the time-

averaged cross term 〈Scross〉t through Sl gives the extinction cross section Cext, and, it is this integral that

forms a starting point for the derivation of the optical theorem, Eq. (1) [5].

x

y

z

r

Θ

Φ
E

inc

B
inc

n
` inc

S

S{

C{

Figure 1: A scattering arrangement with a

star-shaped particle at the origin. The inci-

dent wave is shown with the direction of its

electric Einc and magnetic Binc fields point-

ing along the x and y-axes respectively and

its propagation direction along n̂inc. The

observation point r is shown along with the

surface Sl of radius Rl and the intersection

of Sl with the y-z plane that forms the cir-

cular contour, Cl.

4 A Physical Picture of the Optical Theorem

Figure (2) reveals a major qualitative aspect of the behavior of the radial component of the 〈Scross〉t energy

flow; the flow alternates from being inward to outward and does so more rapidly with direction as Rl in-

creases. To see how integration of the 〈Scross〉t energy flow through Sl yields the extinction cross section,

the integral Icross(θs) =
∫

∂Sl
〈Scross〉t · r̂ da is also shown in Fig. (2). This integral is taken over the open sur-

face ∂Sl which is formed by the part of Sl extending from θ = π to θ = θs. Because of energy conservation

considerations, there is a negative sign in the relation Icross(θs = 0) = −CextIinc, (where Iinc is the flux of the

incident wave), which is why the curves in Fig. (2) for Iext stop at the negative of CextIinc when θs = 0.

By expressing the scattered wave as a spherical wave with an amplitude and phase shift given by the

scattering amplitude Esca
1

, we demonstrate that the optical theorem can be understood in a more ‘physical’

setting than is done in existing literature. The ‘physical’ understanding relies on the interpretation of ex-

tinction as being caused by the interference of the incident wave with the scattered wave. This interference

causes the alternating energy flow shown in Fig. (2) and ultimately accounts for the value of Cext via a phase

shift relationship between the two waves. This phase depends, in part, on the wave inside of the particle.

As the refractive (Re m), or the absorptive (Im m) properties of the particle vary, the internal wave changes

which effects the phase of the scattered wave and hence forms the connection between extinction and the

optical properties of the particle. In addition, the energy-flow interpretation of the optical theorem naturally
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Figure 2: Left column: Polar plots of the radial component of the 〈Scross〉t energy flow through the Cl

contour shown in Fig. (1). The particle is a sphere with a size parameter kR = 4.08 and refractive index

m = 1.10 + 0i and the scattered wave is calculated from Mie theory. The three polar plots labeled a, b and

c show the energy flow for increasing contour radii Rl = 10R, Rl = 20R and Rl = 50R, respectively. Right

column: Plots of the integral Icross for the contour radii corresponding to the matching polar plots in the

left-hand column. The value of Cext as calculated directly from Mie theory is indicated in the plots.

leads one to an understanding of the requirement regarding the size of a detector that is used to measure

extinction, as discussed in Ref. [5].
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Abstract 

The phase matrices for horizontally oriented ice plates of cirrus clouds are calculated 
within the framework of geometric optics. A method for retrieving aspect ratios of the 
plates by means of polarization measurements is discussed. 

1 Introduction 
The problem of light scattering by ice crystals of cirrus clouds is one of the current problems of the 
atmospheric optics. Optical properties of cirrus clouds are needed for incorporation in numerical models 
of radiative budget of the Earth and, consequently, in numerical models of weather forecasting and 
climate change. These optical properties have been calculating for last 20-30 years within the framework 
of geometric optics where the ice crystals were mainly assumed to be 3D randomly oriented (e.g. [1,2]). 
However, the ice crystals often reveal the tendency to be horizontally oriented because of aerodynamics 
laws. In particular, the horizontal orientation is manifested through numerous halo phenomena that are 
watched and classified for centuries [3]. As for quantitative data on the light scattering by preferably 
oriented ice crystals, they are rather poor [4-6]. The available data are represented as a number of figures 
that can be hardly used by other authors for some calculations. Moreover, a set of input parameters in 
these data is so small that they can be considered as preliminary or illustrative ones. 

     In this contribution, we focus on both the quantitative data and their physical interpretation. For 
brevity, this consideration is restricted by the most conventional and simple case of hexagonal ice plates 
that are horizontally oriented.  

2 Reduced phase matrices  
The conventional phase matrix  Z  (e.g. [7]) transforms the incident Stokes vector I0 = (I0, Q0, U0, V0) into 
the Stokes vector  I = (I, Q, U, V) of the scattered field  

)(),()( 000 nInnZnI =                                                               (1) 

where n0 and n are the incident and scattering directions, respectively. This matrix is convenient for 
mathematical processing but the physical meaning of its elements is not intuitive. We prefer to use a 
reduced matrix R with more simple interpretation of its elements. Namely, let us consider the initial phase 
matrix Z as a set of four column vectors Z = (Z1. Z2, Z3. Z4,) where Z1 = (Z11, Z21, Z31, Z41,) and so on. 
The reduced matrix R is determined by the linear transformations of the column vectors as follows 

11 ZR = ;       122 ZZR +=  ;     133 ZZR +=  ;      144 ZZR +=                            (2) 

Then the column vectors Rj  mean the Stokes vectors of the scattered field for different states of 
polarization of the incident light. They correspond to nonpolarized (Q0 = U0 = V0  = 0), linearly polarized 
at 0º (Q0 =1, U0 = V0 = 0), linearly polarized at 45º (U0 =1, Q0 = V0 = 0), and circularly polarized (V0 =1, 
Q0 = U0 = 0) incident light, respectively.  Thus, all elements of the matrix R mean the results of the 
obvious experimental measurements.  Here the first row means the intensities of the scattered light in the 
proper experiments. We shall normalize the other elements of a column vector to these intensities 
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resulting in the degree of polarization of the scattered light for every polarization state of the incident 
light. This normalized matrix N with the elements 

jj RN 11 =  ;       jijij RRN 1/=    for i = 2, 3, 4                                    (3) 

is the goal of our numerical calculations. For the case of horizontally oriented crystals, the conventional 
spherical coordinate system is assumed where the azimuth angle θ is accounted from the vertical 
downward direction. The azimuth angle φ is accounted from an arbitrary chosen zero meridian in the 
direction of the unit vector eφ that is determined by means of three  right-handed basic unit  vectors n = eθ 
× eφ .    

3.  The reduced phase matrix N for horizontally oriented hexagonal ice plates  

3.1 Phase functions 

In a recent paper [8], we studied the phase functions of the horizontally oriented hexagonal plates in 
details. As known, the phase functions are concentrated along four horizontal circles. Two of them (the 
parhelic and subparhelic circles) reveal four sharp angular peaks. They are the forward peak, sundog, 
parhelion 120º, and peak 150º. As an example, a typical phase function is shown in Fig.1.   

 

Fig.1. The phase function in the parhelic circle for a horizontally oriented hexagonal ice plate of the 
aspect ratio 0.2 at the incident angle of 75º.  The dotted line corresponds to the residue after a subtraction 
of the abovementioned four peaks. 

3.2 Degrees of polarization  

Because of great intensity, these four peaks are easy measured in experiments. Hence, they are the most 
promising values for the inverse scattering problems, i.e. for retrieving crystal shapes and orientations 
from optical measurements. Polarization measurements inside these peaks should bring valuable 
additional information in the inverse problems since the polarization measurements are relational, i.e. 
they do not need some absolute detector calibration. So, the phase matrix calculated is a promising 
instrument for the scattering inverse problems. 
        We note that the parhelic circle is usually watched by an observer on the Earth when the sun 
radiation propagates through cirrus clouds. In this case, it is natural to assume that the incident light is 
nonpolarized, i.e. only the first column of the phase matrix is of practical interest. The subparhelic circle, 
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on the contrary, can be watched from the Earth when a light source is located on the ground. This light 
source can be either a nonpolarized floodlight beam or a polarized laser beam. In the latter case, all 
columns of the phase matrix are of practical importance.    
        Let us consider the brightest peaks, i.e. the forward scattering peaks and sundogs. Table 1 and Fig.2 
show the phase matrix N of Eq. (3) obtained for certain typical situations 

Table 1: The normalized reduced matrix N of Eq. (3) in the forward scattering peak for the hexagonal 
plate of the aspect ratio of 0.1. The 2-4th rows are given in percents.   

0.9    0.9        0.9        0.9   
<1     100        <1        <1 
0         0         >99        0 
0         0         0          >99 

0.75    0.79     0.75     0.75 
4.59    100      4.59     4.59 
   0        0        99.8        0 
   0        0           0        99.8 

0.45    0.53    0.45     0.45 
16.6    100      16.6    16.6 
  0         0        94.7   -10.1 
  0         0        10.1     94.7 

 
Parhelic circle, the incident angle are equals 15º, 45º, and 75º, respectively 
 
0.03    0.03     0.03        0.03   
-10.6   100     -10.6       -10.6 
  0         0        -99.4        0 
  0         0           0          -99.4 

0.05    0.02     0.05     0.05 
-61.9   100     -61.9    -61.9 
   0        0        -56.3    -14.1 
   0        0         14.1    -56.3 

0.21    0.14    0.21     0.21 
-35.9   100    -35.9    -35.9 
  0         0        91.2     -3.0 
  0         0          3.0     91.2 

 
Subparhelic circle, the incident angle are equals 15º, 45º, and 75º, respectively 

 

Fig.2. Polarization of sundog in the parhelic circle for the incident polarized light (i.e. the Stokes 
vector Ni3(φ)). The phase function N13 is shown by the dashed curves with the right ordinate axis. The left 
ordinate presents the other elements:  N23 ( + ), N33 ( × ), and  N43 ( o ). Aspect ratio is equal to 0.1. The 
incidence angles are 45 º (left) and 75 º (right)  

 
Considering such kind of numerical data we conclude the following. The case of small incident angle (up 
to ≈ 30º) is not promising for retrieval of aspect ratios of the plates from the scattered radiation. For the 
large incident angles ( > 30º), these are the elements N34 and N43 that prove to be sensitive to either the 
incident angles or the particle's aspect ratios. Moreover, their behaviors are rather regular. There is a 
simple physical explanation of this fact. Namely, the element N34 describes appearance of circular 
polarization in the case of incidence of linearly polarized light. A transformation of the linearly polarized 
light into circular polarization can be caused by only total internal reflections. So, the degree of circular 
polarization is an indicator for the number of the total internal reflections among the photon trajectories 
giving an essential contribution to the scattered light. The number of total internal reflections for the 
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typical trajectories reflecting from the horizontal facets is a simple function of either the incident angle or 
particle's aspect ratio. Such physical regularities are true for other peaks, too, in the case of plates of 
arbitrary shape but of small aspect ratios. Therefore a method for diagnostics of aspect ratios of the plates 
by means of polarization measurements appears.  

 
So, this is the bistatic lidar sounding of cirrus clouds that can be promising for diagnostics of 

horizontally oriented ice plates. In the bistatic lidar sounding scheme, not only the forward scattering 
peak, but other peaks, for example, sundogs can be used, too. In particular, Fig.2 demonstrates the strong 
dependence of the element N34 on the incidence angle within the sundog. Though our calculations are 
performed within the framework of geometric optics approach, they can be easy expanded to include 
diffraction. It is obvious that diffraction will not essentially distort the values describing degree of 
polarization. Therefore diffraction will not prevent to apply the method proposed for diagnostic of the 
aspect ratios of ice crystals in practice. 
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Abstract 

The paper deals with the polarized radiative transfer within a slab irradiated by a 
collimated infinity-wide beam of arbitrary polarized light. The efficiency of the proposed 
analytical solution lies in the assumption that the complete vectorial radiative transfer 
solution is the superposition of the most anisotropic and smooth parts, computed 
separately. The vectorial small angle modification of the spherical harmonics method is 
used to evaluate the anisotropic part and the vectorial discrete ordinates method is used to 
obtain the smooth one. The azimuthal expansion is used in order to describe the light 
field spatial distribution for the case of abnormal irradiance and to obtain some known 
neutral points in the sky especially useful for polarized remote sensing of the atmosphere. 

1 Introduction 
It is well known in optics that polarization state of light described by four-element Stokes vector (SV) 
contains all the information about an object under consideration available for optical methods of remote 
sensing (RS). Nevertheless today the amount of scalar (neglecting polarization) studies is much more 
grater than polarimetric ones. This relates with the comparatively small amount of polarimetric systems 
all over the world. And this fact in its turn can be explained by two main reasons: design problems in 
electro-optical polarimetric systems (high accuracy of measurements must be apply to determine the 
polarization state of light) and mainly by absence of a reliable mathematical model including polarization 
for interpretation of the experimental results (see SPIE vol. 5888 “Polarization Science and Remote 
Sensing II”, 2005 for example – quite many polarimetric systems and simultaneously only a few 
theoretical investigations). Following the scalar case the polarized radiative transfer (RT) mathematical 
model must be of a high efficiency from the result convergence to the exact one point of view. It must 
allow to compute highly anisotropic scattering of natural formations (clouds, ocean, galaxy dust and 
others), be valid for arbitrary optical thickness τ and the irradiance angle θo of a scattering media (the last 
one allows to describe known directions of neutral polarization of atmosphere-scattered light – Arago, 
Babinet and Brewster points). The model must include multiple scattering and if possible it must be 
expressed in analytical form to make the solution of inverse problems a little simpler. This paper deals 
with a described model applied to a slab irradiated by infinity wide collimated beam (plain unidirectional 
(PU) source of radiation with l̂ 0 as a direction of the irradiation). The incident light assumed to be both 
natural and arbitrary polarized. 

2 The complete solution of the polarized radiative transfer problem  

2.1 The anisotropic part 

We will use the following notation: «→» is the 4-elements column vector; «↔» - the 16-elemnts square 
Mueller matrix, Λ – single scattering albedo; θ and φ – are zenithal and azimuthal angles respectively; μ = 
cosθ, the unit directionality is l̂ . The SV and its component we note as ˆL(τ, ) [I Q U V]=l . In RT 
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one of the main problems is to take mathematical specialties of the boundary problem for the vectorial 
radiative transfer equation (VRTE) into account. For the PU-source such speciality is the unscattered 
radiation expressed as Dirac δ-singularity. This singularity needs ∞ elements to be represented in a series 
and hence can not be computered analytically. Chandrasekhar separated the light field within the slab 
into two parts - δ-singularity and scattered light - and computed the diffuse transparent and reflected light 
field. But for real turbid media the scattered light field still remains a highly anisotropic function which 
needs lots of terms of the series to be computed. This leads to the ill-conditionality of the evaluations and 
besides computation time increases.  

We follow with an idea that showed good results for scalar case [1] and represent the desired vectorial 
radiation field as the superposition of the anisotropic part that includes the δ-singularity and smooth non-
mall angle part (indexed by «~»). So we write for the desired spatial distribution of SV 
 VMSH ~

ˆ ˆ ˆL(τ, ) L (τ, ) L (τ, ).= +l l l  (1) 
We use the definition, the addition theorem and some recurrence formulas from Gelfand for 

generalized spherical functions (GSF) P ( )μk
m  which represent the eigen-functions for the scattering 

operator of the VRTE and write down the standard series to express SV and the scattering matrix as 
follows 

 
0 0

2 1ˆ ˆˆ ˆˆL( , ) P ( ) ( )exp( ), ( ) (2 1)P ( ) .
4

∞ ∞ ∞

=−∞ = =

+ ′ ′τ = μ τ ϕ      = +
π∑ ∑ ∑l f ll llk k

m m k k
m k k

k im x k x  (2) 

The anisotropic part is computed in the vectorial small-angle modification of the spherical harmonics 
method (VMSH) [2]. The VMSH is built upon the substitution of the discrete spatial spectrum of the SV 
f  in (2) with respect to zenithal index k by a smooth k-continuous one. Its Taylor expansion with respect 
to k cut to two terms. This gives quite simple differential equation for the VMSH. The solution expresses 
as matrix exponent. So the VMSH can be evaluated as 

 { }
0, 2

VMSH 0 0 0
2 0

ˆ ˆ ˆ̂L ( , , ) (2 1)P ( )exp (1 ) (0) 4 ,
 ∞

=−  =

τ = + − − Λ τ μ π∑ ∑l l ll fm m
k k k

m k

k x  (3) 

where all (0)f  are known from boundary conditions. The VMSH (3) allows evaluating the light field for 
some solid angle of the forward hemisphere (co-directionally with the incident radiation). This zone of 
validity depends greatly upon the slab properties. The more is the anisotropy state of the slab scattering 
properties the wider is the zone of accurate result. More deeply we discuss (3) and gave some results in 
our recent work [3]. Here we note only that the main advantage of (3) is its keeping both the anisotropic 
part of light field and the direct non-scattered singularity. Approximation (3) neglects the back-scattered 
radiation and so we are going to describe the determination the smooth regular part in the following 
subsection. 

2.2 The smooth part 

As we noted above we depart from Chandrasekhar and formulate the boundary problem not for the whole 
diffuse radiation but for the smooth part only as follows 

 
~ ~ ~

~ ~ 0 VMSHμ>0 μ<0

ˆ ˆ ˆˆ ˆ ˆ ˆμ L (τ, ) L (τ, ) S( , χ , χ)L (τ, ) (τ, ) 4π ,
4π

ˆ ˆ ˆL (0, ) 0; L (τ , ) L (τ, ) ,
τ

−Ω

∂ Λ⎧ ′ ′ ′+ =   + Δ  ⎪ ∂⎨
⎪ =    = −  
⎩

∫l l ll l l l

l l l

d
 (4) 

where S  contains the scattering matrix and the rotator in order to take the multiple transformations of the 
reference plane during scattering into account. The VMSH as the source function is described by Δ  and 
can be expressed as follows 

 VMSH 0 VMSH 0 VMSH 0
ˆ ˆ ˆ ˆ ˆ ˆ̂ ˆ ˆ ˆ( , ) L ( , , ) L ( , , ) S( , , )L ( , , ) .

4
∂ Λ ′ ′ ′ ′Δ τ = −μ τ + τ +  χ  χ τ
∂τ π ∫l l l l l ll l l ld  (5) 
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Both in scalar and vectorial theory the evaluation of scattering integral of the transport equation is on a 
par with the δ-singularity subtraction. In vectorial case the complex circular basis (CP - representation) 
was offered by Kuščer and Ribarič. The matrix relation between the CP- and Stokes polarization (SP-) 
representations is well known. The advantage point of CP is in the fact the rotator in this basis becomes a 
diagonal matrix and the scattering integral can be evaluated (we used this to obtain (3)). But it is 
impossible to use matrix scaling transformation (Karp) for complex numbers in order to prevent ill-
conditionality of the system of equations while τ or anisotropy increases. So after evaluating of the 
scattering integral we transform the obtained system for ( )τf k

m  (2) from complex CP- back to real 
energetic SP-basis. 

The vectorial discrete ordinates method with Mark’s boundary condition is used because of its 
efficiency [4]. In [5] Chandrasekhar’s δ-singularity subtraction was used to obtain the diffuse radiation so 
it’s convenient to use some notations from [5] in our method of solution. As we have previously 
mentioned we use the CP-representation, the GSF addition theorem and back CP→SP transformation to 
evaluate scattering integrals both in (4) and (5). Besides we note that the frame of reference for (3) differs 
from that in (4). So we use the linear transformation to reduce (3) and (4) to the same frame of reference. 
Here we omit intermediate evaluations and give the main results. 

For the scattering integral in (4) we have 
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where 
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k k k k
χk are the matrix coefficients of scattering matrix (2) in SP-representation, and matrix polynomials are  
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Q ( )μm
k  are semi-normalized Schmidt polynomials and ,2P ( )μk

m  are GSF. It can be seen from (6) that it is 
convenient to present the smooth part as two azimuthally-dependent items 

1 1 2 2
0

L( , , ) = ( )L ( , ) ( )L ( , ) ,
∞

=

⎡ ⎤τ  μ  ϕ φ ϕ τ μ + φ ϕ τ μ⎣ ⎦∑ m m

m
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each of which can be obtained from the following boundary-condition problem (i = 1 and 2) similar to (4) 
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if the source function ( , )Δ τ μ  is derived. 
For the source function after reduction of frames of reference we use the same methods as described 

above. Namely, we’ll use the SP→CP→SP transformation, the addition theorem for the GSF to evaluate 
the scattering integral in (5) and the recurrence formulas for the GSF to obtain the system of equations for 
the vectorial coefficients. As a result we have the following for the source function 

 0 0 0 0
0

2 1ˆ ˆ( , , ) ( ) ( ) ( )L exp( ( )),
4

∞

= =−

+
Δ τ = Π μ Φ τ Π μ ϕ − ϕ

π∑ ∑l l
k

m m
k k k

k m k

k im  (8) 

where [ ]0 0 0L = 1 sin 2 cos2ϕ − ϕp p q  is the initial Stokes vector with the linear polarization degree 
p, the ellipticity q and φ0 – gives the azimuth of the reference plane. Further on 
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} ( )0 0(1 )Z ( ) , Z exp (1 ) ,− − Λχ τ          = − − Λχ τ μk k k k  

and 2 2a diag[ 4 4 ]; a ; b diag[0 1 1 0].= − −   Α =   =k k kk k k k k  This being substituted in (8) 
together with (7), the VMSH (3) gives and the assumption (1) the complete solution of the VRTE 
boundary problem for an arbitrary irradiated slab. 

3 Conclusion 
In summary we would like to note one thing, we’ve mentioned above, for the second time: δ-singularity 
subtraction and the subsequent determination of the scattered radiation seems to be inefficient for the 
cases of highly anisotropic scattering and the VRTE boundary condition’s mathematical specialty 
presence. One can find such specialties not only for PU-source but for point-sources too. So the only way 
to build an efficient model for such cases is to consider the anisotropic and the regular part superposition. 
We particularly note that the efficiency of the proposed method increases together with the degree of 
scattering anisotropy, the number of stratification layers of a slab (for example, 4 layers to simulate a real 
atmosphere), for 2D and 3D geometry (point-source is the simple example). 

The neutral polarization points following the direction of the slab irradiance have the day and annually 
variation. So the method described here and considered the azimuthal asymmetry (m- or, the same, 
Fourier-expansion) of the SV spatial distribution seems to be an efficient basis for polarized remote 
sensing that uses both atmosphere neutral points and any SV-component analysis for different media 
especially for highly anisotropic one. 
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Abstract 

In this paper we consider ways in which macroscopic symmetries impact on the structure 
and information content of scattering matrices in vector electromagnetic theory. We show 
how these symmetries can lead to a consistent and complete parameterization of 
depolarization behaviour and examine the potential for using these ideas to extract 
information about non-spherical and complex particles in random media scattering 
applications. 

1 Introduction 
Polarization effects in wave scattering by non-spherical particles forms a topic of great interest in 

many applications. While several powerful modeling techniques have been developed for predicting the 
quantitative vector nature of such scattering, there remains a need to augment this with methods for 
validation and interpretation of the predictions of such models. In addition, advances in measurement 
techniques have opened the possibility of fully populating scattering matrices from experimental data and 
this in turn offers the possibility of improved parameter retrieval, such as particle shape and composition, 
from scattered field measurements of complex random media.  

In the absence of suitable canonical wave solutions for many complex geometries of interest, 
scattering symmetries and physical constraints provide an important means of satisfying such needs. In 
this paper we look at a new way of integrating these constraints into a self-consistent parameterization of 
wave depolarization by complex particle clouds. That scattered powers are always non-negative and wave 
coherences lies between 0 and 1 are simple physical constraints, but ones with a subtle impact in vector 
scattering theory. For example, we shall show that parameterization of an important class of depolarizers 
defines a cube in Stokes space [1], but do all points inside the cube satisfy even these two simple physical 
constraints? We shall show in this paper that they do not and that only a subset of the cube contains valid 
physical depolarizers. Given this shortcoming, we can then ask if there is not a better way of studying 
depolarizers with symmetry and physical constraints built into the parameterization from the start. Such a 
scheme forms the central focus of this paper. 

In polarization studies, interest centers on the Mueller matrix [M] that relates incident and scattered 
Stokes vectors. Importantly, the structure of [M] reflects symmetries in the underlying complex amplitude 
or [S] matrix. For example, the vector wave reciprocity theorem in backscatter causes a symmetry in [S] 
which limits the form of the Mueller matrix (for arbitrary random scattering problems) to that shown in 
equation 1 [2], where we note that there is an important constraint equation on the diagonal elements, 
leaving [M] with only 9, rather than 16 degrees of freedom. Reciprocity symmetry then limits the types of 
depolarization we can observe in backscatter. 

In general [M] = f([S]) changes the degree of polarization of the wave but has the property that if the 
incident wave entropy is zero (a purely polarized incident wave) then the scattered wave entropy is also 
zero. This ‘conservation of zero wave entropy’ is an important idea in polarization theory. Fundamentally, 
this property has to do with the reversibility of the mapping from [S] to [M] as 
[M] = f ([S]) ⇒ [S] = f −1([M])?  
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    Reciprocity ⇒ m11 − m22 + m33 − m44 = 0   (1) 

 
However there exists the possibility of formulating a set of Mueller matrices that do not correspond to a 
single [S] matrix at all, called depolarizers. The most extreme example of these is the isotropic 
depolarizer, with a Mueller matrix of the form shown on the left hand side of equation 2 [1] 
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       (2) 

This matrix converts all Stokes vector into a randomly polarized wave, but there is no corresponding 
single [S] matrix. This form leads to a standard generalization of the depolarizer as shown in two stages 
from left to right in equation 2. The middle is a partial depolarizer while the right hand form generalizes 
to an anisotropic partial depolarizer with arbitrary direction in Stokes space (the matrix O3 is a 3 x 3 real 
rotation matrix of the Poincaré sphere). However, we can ask if all such depolarizers are physically 
consistent and do these forms exhaust all possibilities? To answer these questions we need to look in 
more detail at the nature of depolarization. To do this we introduce the scattering coherency matrix. 

2. Scattering Coherency Matrix Formulation 
The Mueller matrix can be conveniently converted into a 4 x 4 Hermitian coherency matrix [T] which is 
positive semi-definite and so guarantees that all scattered powers will be non-negative and coherences 
less than or equal to 1 [3,4].  The mapping from [M] into this 4x4 matrix [T] is shown for reference in 
equation 3. 
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As [T] is positive semi-definite (PSD) Hermitian it has real non-negative eigenvalues and orthogonal 
eigenvectors. For example, by mapping the general depolarizer D of equation 2 into [T] we see that the 
real diagonal elements δ1, δ2 and δ3 are constrained by the four inequalities shown in equation 4. If we 
consider δ1, δ2 and δ3 as defining a unit cube in Stokes space then equation 4 represents four planes in this 
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space that further constrain the region of physical depolarizers.  By using [T] we can then avoid problems 
of considering non-physical [M] matrices inside this cube by mistake. 
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≥ 0                                                      (4) 

For the case of a ‘general’ depolarizer proposed on the far right in equation 2, obtained by a rotation of 
the Poincaré sphere, the coherency matrix [T] is transformed as shown in equation 5 
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                           (5) 

 
We shall see that this represents only a subset of possible depolarizers and leads to a more general 
classification based on 4 x 4 unitary matrix transformations of T[ ]'= U4[ ] T[ ] U4[ ]*T  as follows. 

3. General Theory of Depolarization 
In this section we formulate a general model of depolarization that scales to arbitrary dimension of the 
coherency matrix N x N. The basic idea is to identify the ‘polarizing’ contribution with the dominant 
eigenvector of the coherency matrix, i.e. the eigenvector corresponding to the largest eigenvalue. The 
other eigenvectors then contribute to depolarization with a strength given by the remaining minor 
eigenvalues. By employing multidimensional unitary transformations we will then be able to parameterize 
all possible types of depolarization. We first start with the general formulation and then specialize it to the 
three important cases for N = 2,3 and 4. We then consider the effects of scattering symmetries on 
constraining the degrees of freedom involved in both polarized and depolarized components [4]. 

The starting point for our analysis is the idea of a unitary reduction operator [U-1], which acts to 
reduce the dimensionality of an N x N unitary matrix to N-1 x N-1 as shown in equation 6 

 

U−1[ ] UN[ ]=  
1 0T

0 UN−1

 

 
 

 

 
 =

1 0T

0 exp(iHN−1)

 

 
 

 

 
                                           (6) 

HN−1 = hkΨk
k=1

M

∑   ⇒ h = depolarisation state vector  

We then identify the submatrix UN-1 with the depolarizing aspects of the scattering process. In this way 
UN-1 involves continuous smooth transformation away from the polarized reference state (the dominant 
eigenvector).  The submatrix UN-1 may be further parameterized in terms of an N-1 x N-1 Hermitian 
matrix, related to the unitary transformation by a matrix exponential and itself conveniently expanded in 
terms of a set of scalar parameters, being the basis elements of the underlying algebra [5].  

This then leads us to propose the following notation to characterize the number of parameters involved 
in polarizing and depolarizing components of the decomposition of a general N x N coherency matrix TN 
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TN = [E + L]+ (E + L)                                                              (7) 
where [..] are the depolarizing parameters and (..) the polarizing terms and for each, E are those 

parameters associated with the eigenvectors and L the eigenvalues. From the general structure of N x N 
coherency matrices we then have the following constraints: 

 
• [L] + (L) = N 

• [E] + (E) = dim(SU(N)) - rank(SU(N))=N(N-1) 
Note that the total number of eigenvector parameters = [E] + (E) = dim(SU(N)) – r(SU(N)) where 
dim()=N2-1 is the dimension of the group and r = N-1 is the rank of the Cartan sub-algebra or the number 
of mutually commuting generators [5]. For example for N=1 there are no useful eigenvector parameters, 
for N=2 we only have two, while for N= 4 (the most general scattering case) we have twelve parameters 
available. In this case [T]/[M] have up to 16 parameters and SU(4) is the governing unitary group. SU(4) 
has dimension 16 and rank 4 so [E]+(E) = 16-4 = 12 and [L] + (L)= 4 . By application of the unitary 
reduction operator, depolarization in general scattering systems is controlled by [L] = 3 eigenvalues and 
the SU(3) group for eigenvectors. SU(3) has dimension 8 and rank 2 [5] so that we can write the 
polarizing/depolarizing decomposition in compact form as shown in equation 8 
 

Tbistatic = [6 + 3] + (6 + 1)                                                          (8) 

which shows that there are now up to 6 eigenvector parameters associated with depolarization. However 
there are several important symmetries that reduce further the number of parameters. In the paper we shall 
show that depolarization is limited by the following cascades in the presence of increasing levels of 
scattering symmetry  

T4
recip = 2 + 3[ ]+ 4 +1( )      T4

plane = 2 + 3[ ]+ 2 +1( ) 

   (9) 

T4
bi sec trix = 2 + 3[ ]+ 4 +1( )    T4

bistatic+symmetry →     [0 + 3] + (3+1)  

 
We shall give examples and further discussion of these results in the full paper. 

References 
[1] S.Y. Lu, R.A. Chipman, 1996, “Interpretation of Mueller matrices based on the Polar decomposition”, 

JOSA A Vol 13, No 5, May, pp. 1106-1113 

[2] J. W.Hovenier, D W Mackowski, “Symmetry Relations for Forward and Backward Scattering by 
Randomly Oriented Particles”, J. Quant. Spectrosc. Radiat. Transfer Vol 60, pp 483-492,1998 

[3] S.R Cloude, “Polarimetry in Wave Scattering Applications”, Chapter 1.6.2 in SCATTERING, 
Volume 1,Eds R Pike, P Sabatier, Academic Press, 2001, ISBN 0-12-613760-9 

[4] S.R. Cloude, “A New Method for Characterising Depolarisation Effects in Radar and Optical Remote 
Sensing”, Proceedings of IEEE International Geoscience and Remote Sensing Symposium 
(IGARSS 2001), Sydney, Australia, Vol.2, pp 910-912, July 2001 

[5] S.R.Cloude, " Lie Groups in EM Wave Propagation and Scattering", Chapter 2 in Electromagnetic 
Symmetry, Eds. C Baum, H N Kritikos, Taylor and Francis, Washington, USA, ISBN 1-56032-
321-3, pp 91-142, 1995 



Spectropolarimetry of planets, Dlugach 29 

Spectropolarimetry of planets: what observational data can be 
essential for correct microphysical retrievals of atmospheric 

aerosols  
  

Janna M. Dlugach1 and Michael I. Mishchenko2 

1 Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 
27 Zabolotny Str., 03680, Kyiv, Ukraine, e-mail: dl@mao.kiev.ua  

2 NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, U.S.A., 
e-mail: mmishchenko@giss.nasa.gov 

Abstract 

We present the results of computations of the degree of linear polarization for the center 
of a planetary disk in the phase angle range 0°< α < 90°. The computations were 
performed for various models of the cloud layer of Jupiter derived in [1–3] on the basis of 
spectropolarimetric observations of Jupiter [4]. For α ≥ 15°, our results show a 
noticeable difference in the value of polarization depending on the adopted cloud-particle 
model. We conclude that the availability of observational data in a wide range of phase 
angles can provide critical constraints on the particle shape. 

1 Introduction 

In our previous publications [2, 3], we have used Jupiter as a “testing ground” and have demonstrated that 
the optical properties of cloud particles (especially the refractive index) cannot be reliably estimated on 
the basis of measurements performed in a narrow range of phase angles. Using the results of ground–
based spectropolarimetric observations of the center of the Jovian disk [4], we found that the assumed 
shape of atmospheric aerosols is essential in estimating their microphysical properties. Specifically, 
varying the assumed particle shape resulted in significant changes in the retrieved refractive index, size, 
and atmospheric structure. In this paper, we analyze how an extension of the phase angle range can help 
in the determination of the particle shape and, as a consequence, yield more accurate retrievals of the 
optical properties of cloud particles. 

2   Atmosphere models and computational techniques 

A detailed analysis of ground-based observation of Jupiter, using the model of a cloud layer composed of 
spherical cloud particles was performed in [1]. Subsequently, the case of nonspherical particles was 
considered in [2, 3]. In all three publications, we used spectropolarimetric data for the center of the Jovian 
disk collected by Morozhenko [4] at wavelengths λ = 0.423, 0.452 0.504, 0.600, and 0.798 μm in the 
phase angle range 0° < α < 11°. Two models of the Jovian atmosphere were considered: (A) a 
homogeneous semi-infinite layer composed of gas and cloud particles; and (B) a two-layered medium 
with a layer of pure gas of optical thickness τ0 on top of a semi-infinite homogeneous layer composed of 
gas and cloud particles. The semi-infinite homogeneous layer was supposed to consist of spheres, 
randomly oriented oblate or prolate spheroids, or randomly oriented cylinders with varying aspect ratios 
E. Particle polydispersity was characterized by a simple gamma size distribution. As a result, a good 
agreement between the observational data and the model results was found for the values of the real part 
of the refractive index mR, the effective radius reff, the effective variance veff, and the model of atmosphere 
listed in Table 1.  
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Table 1. Best-fit microphysical parameter values for various particle models, derived in [1–3]  

Shape E mR reff, μm veff Model 

Spheres 1.0 1.386 0.385 0.45 A 

Oblate spheroids 1.3 1.45 0.35 0.40 B 

Oblate spheroids 1.5 1.52 0.40 0.35 B 

Prolate .spheroids 1.3 1.50 0.35 0.30 B 

Prolate spheroids 1.5 1.54 0.90 0.30 A 

Oblate cylinders 1.3 1.43 0.47 0.40 B 

Prolate cylinders 1.3 1.49 0.60 0.40 B 

 
To interpret polarimetric data for the center of a planetary disk, it is necessary to calculate the degree 

of linear polarization P = –Q/I. The first two components, I and Q, of the Stokes vector I of the reflected 
radiation are given by 

), , ,() ,( 00110 ϕϕμμμϕμ −=− RI               (1)

), , ,() ,( 00210 ϕϕμμμϕμ −=− RQ                      (2) 

where (μ0, ϕ0) and (–μ, ϕ) specify the directions of light incidence and reflection, respectively, and R11 
and R21 are elements of the 44×  Stokes diffuse reflection matrix R. In our computations, we first used 
the T-matrix approach to determine the elements of the single-scattering matrix F [5]. Then the elements 
R11 and R21 for model A were computed by means of a numerical solution of the Ambartsumian’s 
nonlinear integral equation [6]. The overlaying gas layer in model B was incorporated by means of a 
computational algorithm based on the invariant imbedding technique as described in [7].  

3    Results of computations and discussion  

We performed calculations of the degree of linear polarization for the center of a planetary disk (μ0 = 
cosα ,  μ = 1) for the range of phase angles 0° ≤ α ≤ 90°, spectral interval of λ = 0.423 ÷ 0.798 μm, and 
the models of cloud particles listed in the Table 1. The results of the computations are shown in Figs. 1 
and 2. Figure 1 depicts the calculated phase-angle dependences of the degree of linear polarization for 0º 
≤ α ≤ 30º (left-hand column), 30° ≤ α ≤ 60° (middle column), and 60° ≤ α ≤ 90° (right-hand 
column). For α > 15° and all wavelengths, one can see a significant difference in the behavior of the 
polarization curves depending on the adopted cloud-particle model. For instance, in the wavelength range 
0.423 ÷ 0.504 μm in the case of spheres, the negative polarization has a minimum absolute value 
(compared to the cases of other particle shapes), and the sign of polarization changes twice (at α ≈15–20 
and 30°). For longer wavelengths, the sign of polarization changes once at α ≈25°, and then the 
magnitude of the positive polarization increases with increasing phase angle. In the case of prolate 
spheroids with E = 1.5, for λ = 0.423 ÷ 0.504 μm the behavior of polarization is somewhat similar to that 
in the case of spheres, but in a longer wavelength range polarization is always negative. For other particle 
shapes, one can see that the absolute value of the negative polarization first increases with increasing 
phase angle, reaches its maximum value, and then starts to decrease. At some value of phase angle, the 
polarization becomes positive and increases with increasing phase angle. However, for different particle 
shapes we see a noticeable difference in the position of minumum of the negative polarization and the 
polarization inversion point, as well as in values of polarization. It is possible that such different behavior 
of polarization at the center of a disk for α > 15° is caused by a specific behavior of the single-scattering 
matrix element F12. To confirm this supposition, we include Fig. 2 which depicts the calculated 
dependences of – F12/ F11 on the scattering angle Θ (= π–α) for all cloud-particle models used.             
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Figure 1. Calculated phase-angle dependence of the polarization at the center of a planetary disk for 0° ≤ α ≤ 30°  
(left-hand column), 30° ≤ α ≤ 60° (middle column), and 60° ≤ α ≤ 90° (right-hand column). 
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Figure 2. Calculated scattering-angle dependence of the scattering-matrix element ratio –F12 / F11 . 

4 Conclusion 

Thus, we have demonstrated that phase-angle dependences of the polarization at the center of a planetary   
disk calculated for various particle cloud models exhibit noticeable differences at larger values of the 
phase angle. So, we can conclude that the availability of observational data obtained in a wide range of 
phase angles, e.g., from spacecraft, can provide the necessary constraints on aerosol particle shape and 
make the problem of the interpretation of polarimetric observations better defined.    
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2 Direction Géńeral Technique; Dassault Aviation;
78 Quai Marcel Dassault St Cloud 92214, France

Abstract

We report a theoretical and numerical investigation of the light scattering in an absorbing medium with randomly
distributed scatterers. The extinction coefficient is derived from the imaginary part of the effective index derived using
a diagrammatic approach. The accuracy of the result is assessed by comparison with a numerical solution of Maxwell’s
equations that fully accounts for multiple scattering.

1 Introduction

Modelling transport of light in scattering random media when the host medium is absorbing is a fundamental
topic of practical importance. In this paper, we focus on theextinction coefficient in absorbing media
containing a random distribution of scatterers of arbitrary size. No general satisfying form of the extinction
coefficient has been derived yet. Indeed, the presence of theparticles modifies the field in the host medium.
Hence the absorption in the host medium is also modified by thepresence of particles. In other words,
particles and host medium cannot be treated as two uncoupledsystems. This entails that the scattering and
absorption cross-section are not intrinsic characteristics of the particle when the latter is embedded into an
absorbing medium. This issue has already been raised by Bohrenet al.[3] and more recently by Videenet
al.[2].

The purpose of this paper is to introduce a new model of the extinction coefficient in absorbing media
based on the effective medium theory (EMT) arising from the well developed multiple scattering theory[4,
5, 6]. The second section outlines the key ideas of our model.In order to assess the validity of the model, we
have implemented a numerical solution of Maxwell equationsfor a set of 2D particles (cylinders) embedded
in an absorbing host medium. We solve the problem for a large number of realizations and perform an
ensemble average over typically500 realizations. Section 3 is devoted to the outline of this procedure.
Section 4 shows an example of comparison between numerical simulations and theory.

2 Diagrammatic expansion of the extinction coefficient

The key of our approach is to derive an equation for the mean field in a random medium. This equation
has the form of a Helmholtz equation with an effective refractive index. As this effective refractive index is
homogeneous, the energy flux due to the mean field coincides with the contribution of the collimated part of
the specific intensity. The extinction coefficientKext is simply related to the imaginary part of the effective
wavevectorIm(keff ):

Kext = 2Im(keff ). (1)
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Within the independent scattering approximation, we show[1] that the effective wave vector is given by:

k2 = k2

h + i
f

vp

4πSkh
(0)

kh

, (2)

whereSkh
(0) is the scattering matrix as defined by Bohren and Huffman [7] evaluated in the forward di-

rection,vp is the volume of a particle,f is the filling ratio of particles and the wavevector in the matrix
is kh = nhk0 wherenh is the host medium refractive index andk0 is the wavenumber in free space. The
effective medium theory can be improved by taking into account the correlation between two particles[6, 1].
It yields the following equation for the effective wavevector:

k2 = k2

h + i
f

vp

4πSkh
(0)

kh

+

(

i
f

vp

4πSkh
(0)

kh

)2 1

k

∫

∞

0

eikhr sin(kr)g2(r)dr, (3)

whereg2(r) is the pair-correlation function[5, 1]. This expression isstrictly rigorous only for small
particles and assuming a scalar behavior of the corrective terms due to the correlations[1]. We note that this
equation can be cast in the form:

k2 = k2

0
n2

eff (ω, k), (4)

whereneff is an effective index that depends onω so that the medium is dispersive and onk so that
the medium is non-local. In what follows, we will refer to this model as a non-local effective medium.
The non-local correction has to be taken into account when correlations cannot be ignored, this is the so-
called dependent scattering regime. For the sake of comparison, we report the phenomenological expression
introduced by Kugaet al.[8] :

Kext = 2k0Im(nh)(1 − f) +
f

vp

Cext, (5)

whereCext is the extinction cross section of a scatterer evaluated as if the host medium was not absorbing.
This model is based on the simple idea that absorption is a local phenomenon and that the field is essentially
uniform. Within this approximation, absorption in the hostmedium is proportional to the host volume. There
are many cases where this approximation is very good. Yet, itis clear that if the particle has a resonance,
the field at the boundary is enhanced. In turn, this produces astrong field in the host medium along the
boundary. It follows that the presence of the particle may increase the absorption in the host medium. This
discussion suggests that it is necessary to account for the exact scattering operator of the particle including
the losses of the host medium. In order to compare the 2D numerical simulation with the effective medium
theory, we have developped a 2D version of the effective medium theory[1].

3 Derivation of the extinction coefficient from a numerical simulation

We outline in this section the derivation of the extinction coefficient from the exact numerical solution of
Maxwell’s equation in a slab with a thicknesse containing a 2D random distribution of dielectric disks. The
host medium is absorbing. We consider a p-polarized incident plane wave. The geometry described in Fig.1
is periodic along the slab with a periodL large compared to the wavelength and the particle size in order
to avoid edge effects. The periodic system diffracts the incident plane wave into a large number of discrete
directions given by the transverse wave numberkx,p = kinc,x + p2π

L
, wherep is the diffraction order. Disk

particles are randomly distributed in the slab with the condition that particles cannot overlap and that each
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disk is entirely in the rectangular box. For each realization of a random distribution of particles, the reflected
and transmitted field is computed exactly using the method ofmoment as it was described in ref.[9]. Since
the scatterers are randomly located, each realization produces a speckle pattern. When considering the set of
solutions corresponding to a set of realizations, it provesuseful to split the field as the sum of the statistical
average and a fluctuating component:

E =< E > +δE, (6)

where< δE >= 0. Between 200 and 1000 realizations were generated to compute the average field. When
averaging the intensity, the speckle pattern is smoothed and one finds the scattered intensity pattern. When
averaging the field, the speckle structure disappears and the mean field is the response of the average system
with the effective index. For a slab, we find two plane waves specularly transmitted or reflected.

2a

2aL

e e-2a
N realizations

E=<E> +δΕ
<E>

Einc

<average >

Einc

n=1

n=1

n=1

n=1

nh

neff

np

refractive index

Figure 1: Geometry of the system

4 Comparison between numerical simulations and approximate theories

We have investigated the extinction coefficient in an absorbing medium when the correlation effects are
important. Results are displayed in Fig.2 for different cases. We shall discuss the effect of dielectric con-
trast, losses in the particles and correlation between particles. Our main conclusions can be summarized
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Figure 2: Comparison between theory and numerical simulation



36                                                               Tenth International Conference on Light Scattering by Non-spherical Particles

as follows. The comparison shows a very good agreement in theindependent scattering regime. When
the dielectric contrast between particles and the host medium is small, the EMT model which takes into
account the correlation between pair of scatterers is in excellent agreement with the exact result up to30%
as seen in Fig.2. For a filling ratio above5%, we find that for small particles, the effect of correlations
leads to a smaller extinction coefficient than predicted by the independent scattering approximation, while
the tendency is reversed for large particles. It is worth noticing that there is a particle size for which the
correlation effects are negligible up to 15%. It is also observed that in general, the absorption of the host
medium reduces the effect of the correlations allowing one to use the independent scattering approximation
for larger filling ratio. The case of large dielectric contrast, large volume fraction and size parameter on the
order of one (the so-called resonance regime) remains an open issue.

5 Conclusion

The evaluation of the extinction coefficient for particles embedded in an absorbing medium is a long stand-
ing problem. Using the multiple scattering theory in randommedia, we have derived the expression of
the extinction coefficient from the imaginary part of the effective index for two-dimensional and three-
dimensional cases. Taking into account correlation between particles position yields a non-local effective
index. In order to assess the accuracy of the model, we have presented in this paper a direct comparison with
two-dimensional exact solution of Maxwell’s equations in an absorbing slab filled with randomly distributed
scatterers.
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Abstract 

Many modern applications of lasers involve modeling of radiation energy transport through very thin layers. The 
interactions of continuous wave and pulsed lasers with skin in dermatological use related to surgery and cosmetic 
procedures are examples of such. Highly scattering thin layers in skin are best modeled by Monte Carlo method 
since their interfaces are not perfectly planar and the thicknesses are non-uniform. Due to scattering, interference 
and other thin film wave effects are not important. Additionally, the common diffusion approximation utilized 
extensively in modeling bio-medical laser transport is invalid because of the proximity of interfaces where the 
diffusion approximation is known to be inaccurate.  

Traditional Monte Carlo models may, however, inaccurately capture the effect of thin layers. As an example, the 
very thin epidermis with its highly absorbing melanin is known to influence the laser penetration significantly. If the 
Monte Carlo model is implemented without special features then the results of the simulation would show no effect 
of the outer thin layer since the path length of most photons would be significantly larger than the layer thickness 
and the resulting predicted photon travel would simply not notice the presence of the layer.  

In this paper we present the results of using Monte Carlo to accurately model transport of radiation through very thin 
layers using both the traditional Monte Carlo and that with the new features incorporated. The results have profound 
implications in the diagnostic and therapeutic applications of laser in biomedicine and surgery. 

1 Introduction 
Monte Carlo simulations have become increasingly important in developing new diagnostic and 
therapeutic applications of laser in biomedicine and surgery. Monte Carlo computational models have 
been used to chart new direction in the development and advancement of new clinical applications, new 
clinical procedures, resulting in better clinical outcomes. For instance, Monte Carlo based models are 
being used to develop and optimize treatment procedures, speed wound healing, minimize pain, reduce 
subjacent tissue damage or injury and predict the extent of tissue damage resulting from a particular 
thermal treatment method. 

 Many clinical conditions rely on the ability to deliver energy to biological tissue in order to modify 
the properties or health of the tissue. Monte Carlo based laser diagnostics [1] and therapeutics [2] 
applications have become widely accepted as the benchmark for the management and treatment of many 
clinical conditions. Modern therapies require accurate deposition of thermal energy into biological tissues 
and laser based therapies have become widely accepted. Photodynamic therapy, selective 
photothermolysis, laser surgery, tissue welding and cryosurgery are examples of this laser based modern 
therapies. These therapeutic procedures require accurate modeling of transient deposition and absorption 
of energy in the regions of interest in the affected tissue. Most previous studies on numerical models that 
are used to predict energy distribution in illuminated biological tissue layers during laser therapies and 
diagnostics have been studied extensively. Parabolic diffusion approximation [3] and Monte Carlo 
simulation models [4] have been considered by many researchers, but models to predict precisely 
deposition of energy in very thin tissue layers are yet to be fully developed. 

       For optically thin tissues like the epidermis and the epithelial layer of the esophagus, numerical 
models used to predict energy distributions fail partly because of the microscale nature of these layers. 
Results from traditional Monte Carlo simulations have been shown not to match those obtained from 
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parabolic diffusion results for tissue samples of thickness less than their mean free path [5]. Experimental 
investigations of short pulse laser transport through tissue have indicated that although the diffusion 
approximation seems adequate for very thick tissue samples, it does not match experimental results in 
other cases [6]. Also when the energy is pulsed, has very short time scale with attendant high heat fluxes, 
current approaches used in modeling biological thermal phenomena are not proficient at capturing 
important physical events occurring at or near boundaries or tissue interfaces.  
In this paper, laser light scattering for thin layers has been examined for both the traditional Monte Carlo 
and that with new features added and its effect on the reflection, transmission, and absorption presented.  

2  Method 
Monte Carlo simulation technique is a common statistical method used to model light propagation in 
tissue and is based on the concept that photons can be scattered, absorbed or exit the model under 
investigation Fig. 1 [7]. 

 

 
           (a)                     (b) 

Figure 1: (a) Typical skin sample [7], (b) Multi layer skin model used in the simulation. 

The simulation process is initiated by launching light beam which is considered to be split into many 
photon packets, each with initial weight, W , into the biological medium in a given direction. After a 
distance, L , the photon packet is assumed to interact with the medium, and a fraction, W∆  of this packet 
is deposited at the point of interaction after which a new direction for the photon packet is simulated. A 
repetition of this process continues until the photon packet is absorbed or exits the medium. Termination 
roulette is used to avoid simulating small weights. The path length between two successive interactions or 
scattering event L , the deflection angle after the interaction in the polar and azimuthal directionsθ  & ϕ  , 
respectively, and the deposited fraction at jth interaction are determined by the following equations [8]: 
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For time resolved analysis, the total optical path length of each photon bundle inside the medium is 
converted to time of flight, t, of photon by using the speed of light of the medium c  thus: 

         
c

L
t total=                (6) 

3 Results and Discussion 
The distribution of photon energy absorbed in each layer is shown in Fig. 2, while reflection and 
transmittance from the layered media is shown in Fig. 3. The top surface of the epidermal layer is 
considered as a black or a reflecting boundary. Black boundary, for the purpose of this work implies that 
a photon packet once inside the tissue cannot be reflected out to the surrounding media. This is equivalent 
to insulation boundary condition. For reflecting boundary the photon after multiple scattering and not 
being absorbed in the tissue escapes from the tissue surface. The traditional Monte Carlo profile has a 
continuous photon absorption distribution. The exact transition from layer to layer is not dramatic as there 
is no clear dividing line between layers, despite the large difference in layers absorption contrast. 

 For the Monte Carlo with special features shown in Fig. 2 as ‘New’ and ‘Traditional’, the absorption 
profile in the layered skin media has a sharp discontinuity at each layer to layer interface. Photon 
interaction with the turbid skin model is captured explicitly at each level and on each layer, and gives a 
vivid picture of events occurring during each step of the simulation. In the traditional method, there is no 
clear delineation of photon absorption between respective layers.  
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                  (a)          (b) 
Figure 2: (a) Monte Carlo with new features added (b) Traditional Monte Carlo: Energy deposition in epidermis (L1), dermis 

(L2) and subcutaneous (L3) layers for both reflecting and non-reflecting epidermal layer with L1 = 0.005 cm, L2 = 0.30 cm, L3 = 
0.99 cm, µa = 8.8, 0.26 and 0.07 cm-1 for   epidermis, dermis and subcutis, µa = 20 cm-1 for all layers, and n1 = 1.0, and n2 = 1.37. 
The reflection and transmission intensity for Monte Carlo with new features added and the traditional 
Monte Carlo for situation where the epidermal layer is black and reflecting is shown in Fig. 3. This 
enhancement was made possible by using the optical distance of each layer as intermediate start and end 
boundary condition and hence photon path length traveled after an interaction event is captured in the 
layered where the event occurred. The result presented above may provide a route to more realistic 

       Depth (cm)        Depth (cm) 
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determination of energy deposition in very thin layered media, noting however that these results are also 
dependent upon chosen optical properties, age, race and physiological factors of each individual.  
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   (a)       (b) 

Figure 3: (a) Reflection intensity and (b) Transmission intensity: For epidermis (L1), dermis (L2) and subcutaneous (L3) layers 
for both reflecting and non-reflecting epidermal layer with L1 = 0.005 cm, L2 = 0.30 cm, L3 = 0.99 cm, µa = 8.8, 0.26 and 0.07 

cm-1 for epidermis, dermis and subcutis, respectively, µa = 20 cm-1 for all layers, and n1 = 1.0, and n2 = 1.37. 

4  Conclusion  
In this paper, we have presented a novel Monte Carlo simulation with features that calculates photon 
propagation and energy deposition, reflection and transmission in multi layered skin explicitly for each 
layer. This result will improve our understanding of light tissue interaction and its effect on 
dermatological applications relating to surgery and skin rejuvenation. 
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Abstract 

We study the dependence of the reflectance spectra of regolith-like surfaces on the phase 
angle. A computer model based on the ray optics approximation is used. Our calculations 
reveal a strong non-monotonous dependence of the spectral slopes on the phase angle. 
Changing observation geometry also influences the depth of the absorption bands. We 
also calculate the phase angle distribution of the average path lengths <L> that rays pass 
through in the medium between the points of entrance and emergence. 

 

1 Introduction 
Progress in the remote sensing of planets and their satellites requires better understanding of light 
scattering by their regoliths. In particular, interpretation of the reflectance spectroscopy data can provide 
information about chemical and mineral properties of planetary surfaces. There are unresolved questions 
that should be considered to make this interpretation more accurate. For instance, it is important to 
estimate contributions of single particles and multiple scattering between particles at different phase 
angles. Important problems include transforming photometric data to the same illumination/observation 
geometry of illumination and accounting for the polarimetric effect on spectra.  

During photometric observations of a planet with a spacecraft, the illumination and observation 
conditions change. The principal parameter for characterizing the conditions is the phase angle α. The 
continuum slope and parameters of the absorption bands can be different for the same portion of a 
planetary surface, if spectra are taken under different conditions. Examples are spectrophotometric 
measurements of the Moon, asteroids Eros in situ [1] and Itokawa [2]. Although laboratory experiments 
have been coupled with regolith structure models [3,4], measurements of lunar samples [5], and 
telescopic observations of the Moon [6], the solution of the problem is not complete. The interpretation of 
existing space mission data as well as planning future projects warrant more detailed analyses of the role 
of photometric geometry in the formation of the reflectance spectra. 

We here use light scattering computer simulations to study the phase angle and polarimetric effects on 
lunar spectra. To simulate light scattering in particulate media we use a ray tracing model [7, 8]. 

 

2 Computer experiment description 
A detailed description of the ray-tracing model used in this study can be found in [7,8]. To generate 
random particles with irregular shape we use an auxiliary 3-D random Gaussian field (RGF) [7]. The 
model of the particulate medium is characterized with the following parameters: volume fraction of 
particles ρ (packing density), the complex refractive index of the material (m = n + ik), and the average 
particle size d. In our samples the sizes of particles are almost the same, varying from 25 to 1500 µm. The 
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Figure 1: Spectral dependences of reflectance 
and normalized reflectance at different phase 
angles for a medium composed of particles d 

= 50 µm. 
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Figure 2: Same as Figure 1 for d = 250 µm. 
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packing density of particles in all experiments equals to ρ = 0.1. Natural powders usually are denser and 
our algorithm allows packing up to ρ = 0.4. However, lower density significantly simplifies simulations 
and, in general, the parameter ρ plays a secondary role in spectral reflectance (e.g., [9]).  

In our ray tracing calculations we used 106 – 107 rays. Each ray is traced from facet to facet until it 
leaves the particulate surface after a sequence of interactions with the particulate medium. At non-zero 
absorption each ray propagated inside a particle can be absorbed on the way between two facets with 
probability exp(-τ), where τ = 4πk(λ)l/λ, l is the path length between facets, and λ is the wavelength. For 
k(λ) we used an average dependence for lunar mare material obtained from spectral observations of the 
Moon [9]. The real part n of the complex refractive index is considered as a constant, we use n = 1.6.  

In order to determine angular scattering characteristics, the phase angle range is divided into a number 
of angular bins. The number of rays normalized by the solid angle of a given bin is the intensity of 
scattered light at the bin. The reflectance of a particulate surface at a given phase angle is defined as a 
ratio of the bin intensities corresponding to arbitrary k and k = 0. This simulates comparison with a 
Lambertian surface. Calculation of reflectance for a set of wavelengths at given photometric geometry 
provides a spectrum. We made calculations for a fixed incidence angle i = 70° and changing angle of 
emergence e. Phase angle α varies within 0 – 160°. Scattered intensity is collected in the narrow sector 
containing a plane perpendicular to the average surface. 
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3 Results and discussion 
Figures 1 and 2 show (a) normalized and (b) absolute reflectance spectra for media consisting of particles 
with whose average size is 50 and 250 µm measured at λ = 0.7 µm. At first, we note that the surface 
reflectance becomes lower as particle size increases. This is a widely known effect. The slope of the 
spectra changes with the phase angle α in all plots. It can be either increasing or decreasing depending on 
the size of the particles. For a size of 50 µm in the range of phase angles ≈ 0 – 60° the slope increases. 
This can be attributed to the so called “phase reddening” that is observed for natural surfaces, the albedo 
of which is higher at larger wavelengths. This was investigated in laboratory experiments (e.g., [3-5, 10]), 
but has not been adequately studied theoretically before. For particles with sizes larger than ≈ 200 µm the 
spectral slope decreases monotonously.  

The changing illumination/observation geometry also influences the depth of the absorption bands. To 
illustrate this we plot the spectra divided by the continuum in the wavelength range near the 1 µm 
absorption feature in Figure 3. We approximated the continuum as a linear function between the band 
wings. It is seen that beginning from approximately α = 60° the band quickly becomes weaker, and in the 
range 10° – 120° its depth decreases by a factor of two. 

Ray-tracing allows decomposition of the reflected flux into single-particle and multiple-particle 
scattering components. Our calculations show that for the multiple-scattering component, the spectral 
slopes are much larger than those for the single-particle-scattering component. The phase dependence of 
the slopes is monotonous in the case of single-particle scattering and has non-monotonous behavior for 
the multiple-scattering component. 

An explanation can be suggested for the observed behavior of the slope and absorption band. We may 
consider the total ray path length L in a particulate medium between the points of entrance and emergence 
from the particulate surface. The intensity of a transmitted ray is proportional to exp(-4πk(λ)L / λ). The 
value of L is a function of the phase angle α. These values are different for different orders of scattering. 
In Figure 4 we show the calculated distribution of <L(α)>. As one can see, the average ray path length 
increases in the range 0 – 80°, which corresponds to the increasing spectral slope, reaches a maximum 
and then decreases at large α.  

Figure 3: Surface reflectance divided by 
continuum near the 1 µm absorption feature at 
different phase angles. The size of constituent 
particles is d = 50 µm. 
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Figure 4: Phase-angle distribution of the 
average path lengths <L> that rays pass through 
between the entrance and emergence points of 
the particulate medium. 
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3 Conclusions 
From the results of our ray-tracing simulations we can conclude the following: 

1. The results reveal a strong dependence of the spectral slope on the phase angle. It can be either 
increasing or decreasing depending on the size of particles. The illumination/observation geometry can 
also influence the depth of the 1 µm absorption band. In the range 10° – 120° its depth decreases by a 
factor of two.  

2. Single and multiple scattering components both appear to be important and play a significant role in 
the formation of the reflectance spectra and its behavior with phase-angle change. Multiple light 
scattering is responsible for the non-monotonous phase dependence of the spectral slope.  
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Abstract

We present calculations of the scattering angle dependence of the degree of circular polarization of
light singly scattered at 500 nm by randomly oriented randomly built aggregates of optically inactive
homogeneous identical spheres. Using the T-matrix method we analyzed the effect of changing the size
of the monomers for two different geometries. The values of the computed degree of circular polarization
are comparable to the observed ones for light scattered by dust particles in comets P/Halley, C/1995 O1
(Hale-Bopp) and C/1999 S4 (LINEAR).

1 Introduction

A small but non-zero degree of circular polarization (DCP hereafter) has been persistently observed for light
scattered by dust grains in comets. A summary of some of the available observations is presented in Table
1.

The measurements for a given comet are highly variable in time. The time scale of the variations have
been reported to be of the order of a few days [1, 2] or as short as a few minutes [3]. The precision of the
measurements is, in general, quite low, especially for measurements of comet Halley, where the errors are
of the order of the mean values, or even larger.

Some systematic errors might be introduced in the observations of Halley by Metz et al. [3], because
they present a strong dependence on the diaphragm aperture: DCP values of −1.0%, 0.2% and −1.3% were
obtained for apertures of 10′′, 21′′ and again 10′′, respectively.

In a previous work (Guirado et al. [7]) we presented a systematic study of the DCP of light scattered by
model asymmetrical particles. There we used two artificially asymmetrical aggregates of identical spheres
(monomers) and calculated the DCP curves, i.e., the DCP as a function of the scattering angle for several
sizes, refractive indices and numbers of monomers of the aggregates. We obtained a DCP of up to 2%. From
the results of that work we inferred the following: when the substructure (monomer or group of monomers)
producing the asymmetry of the aggregate is comparable in size to the wavelength, some principal peaks
appear in the DCP curve. These peaks reduce their amplitude when the aggregate becomes larger than the
wavelength, but always remain at about the same scattering angles. Also the number of principal peaks
keeps constant when varying the size of the aggregate. When the size of the aggregate is increased in such
a way that the diameter of each monomer becomes of the order of the wavelength, secondary peaks appear
in the DCP curve. The number of these peaks increases while increasing the size of the aggregate, and
their positions change. Finally, when making an average of the DCP curve over a size distribution the
secondary peaks contribution is cancelled out when these peaks are summed up and only principal peaks
remain, because they always contribute in the same sense at the same positions. From these conclusions, we
derived that aggregates built in a random way may also produce a significant DCP of scattered light if the
substructure producing the asymmetry of the particle is comparable in size to the wavelength of scattered
light. The main goal of the present work is to study what is the order of magnitude of the DCP of light
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Comet Author Wavelength (nm) Aperture Phase angle (◦) DCP (%)
Halley Morozhenko [1] 514 2.7′′ × 81′′ 21.1 - 34.8 (−0.76 ± 0.27) - (0.37 ± 0.20)
Halley Morozhenko [1] 484 2.7′′ × 81′′ 21.1 - 34.8 (−0.05 ± 0.15) - (0.70 ± 0.28)
Halley Dollfus [2] visible* 2.1′′ to 107′′ 40.7 - 22.5 (−0.65 ± 0.39) - (1.18 ± 0.48)
Halley Metz [3] 560 10′′, 15′′ and 21′′ 66.1 (−2.2 ± 0.1) - (−0.7 ± 0.0)

Hale-Bop Manset [4] 684 15.5“ 40 - 47.4 (−0.24 ± 0.02) - (0.20 ± 0.04)
Hale-Bop Rosenbush [5] 485 10“ 46 (−0.26 ± 0.02) - (−0.06 ± 0.06)
LINEAR Rosenbush [6] red** 15′′ 60.9 - 122.1 up to 1%

* Wide band filter centered at 500 nm and covering the whole visible spectrum.
** Wide band R filter.

Table 1: Summary of some observations of circular polarization of light scattered by comets.

scattered by randomly built aggregates. If too small, we could directly rule out real asymmetrical aggregates
as producing most of the circular polarization in comets, but if it is of the order of the observations, we
should proceed with a systematic study of several geometries, sizes and refractive indices.

A previous approach to this problem was made by Kolokolova et al. [8]. These authors found values
of the DCP very close to zero for randomly built aggregates of identical optically inactive homogeneous
spheres in random orientation. But only two particular sizes were chosen, and now we know that other sizes
could give large values of the DCP so that significant values might remain after size-averaging.

2 Numerical methods

For the generation of the aggregates we implemented a cluster-cluster aggregation (CCA) method in a For-
tran code. We chose this mechanism instead of particle-cluster aggregation (PCA) because the former pro-
duces aggregates with elongated substructures, which is favourable to the asymmetry of the formed particles.
Only if the obtained DCP is comparable to the observations, PCA aggregates should be studied. In order to
limit the size of the clusters and the whole aggregates, we fixed a limit to the maximum distance between
two monomers of the structure.

For all calculations we used the T-matrix superposition method for aggregates made of spherical monomers.
We chose the free available double precision version of the code of Mackowski and Mishchenko [9]. The
results depend somewhat on the accuracy parameters of the code, and we needed very accurate results be-
cause we expected to obtain small values of the DCP. So, we changed the accuracy parameters until the
results became stable. The criterion for stability was the following. We defined the relative error for each
element of the scattering matrix as Fi j(parameters1)−Fi j(parameters2)

Fi j(parameters2) , where parameters2 are ten times smaller
than parameters1. Then we changed the parameters until the error was smaller than 10−9 for all scattering
angles and all elements of the scattering matrix.

3 Numerical results

We chose aggregates made of identical homogeneous and optically inactive spheres for this preliminary
study. The refractive index was m = 1.5 + i0.001. We have calculated the degree of circular polarization, as
a function of scattering angle, produced by incident unpolarized light scattered at a wavelength λ = 500 nm
by collections of the above described particles in random orientation.

Two different shapes were used for the aggregates (see Fig. 1). We will denote by x the size parameter
of the monomers of the particle, and by X the volume equivalent size parameter of the whole aggregate. All
results are plotted as a function of the scattering angle, and the phase angle, which simply is 180◦ minus the
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Figure 1: Randomly built asymmetrical aggregates consisting of (a) 93 and (b) 165 identical spherical
monomers.

scattering angle.
As seen in Fig. 2 while increasing the size parameter for geometry (a), larger values of the absolute

value of the DCP appear, while the substructure producing the asymmetry becomes comparable in size to
the wavelength. For geometry (b) even larger values of the absolute value of the DCP are reached.

Secondary peaks are not present in any of the geometries. In our interpretation this is due to the fact that
the monomers are much smaller than the wavelength.

Figure 2: The degree of circular polarization as a function of the scattering angle for three collections of
randomly oriented randomly built aggregates differing in volume equivalent size parameter for shape a (left)
and b (right).

4 Conclusions

Single scattering of unpolarized light by randomly built optically inactive particles in random orientation can
produce values of the degree of circular polarization comparable to the observed values for light scattered
in comets. Further work is in progress.
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Abstract 

   We consider here the electromagnetic wave scattering by a long and thin-wire (in comparison to the wavelength) 

helical particle. In contrast to several previous theoretical works, we adopt here the algorithm developed for 

scattering by a multi-layered fiber. In the present work a long helical particle is considered as a hollow cylinder with 

a thin non-homogeneous membrane for which the periodical boundary conditions are imposed. 

 

 

1 Introduction 
A helical particle is an exotic object, and till now it was scarcely considered in literature devoted to light scattering 
problems. 
In rare works concerned with this problem1, 2, numerical techniques are involved. In contrast to such approach, we 
develop here a formalism based on representation of a helical particle as thin non-homogeneous membrane and 
periodical boundary conditions. This allows for using the iterative technique and equations in the form obtained for 
a coated infinite cylinder3 on each iteration step. 

 

2 Basic considerations 
 

   Consider a helix oriented along z-axis (Fig. 1). 

 
  

 

 

 

 

 

 

 

Figure 1:  The geometry of helical particle 
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The equation of its central line is: 
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where 
cR

h
π2

Λ
=  and l is the length parameter. Consider the attendant local coordinate (ξ,ψ,ζ),with ζ̂ coinciding 

with l̂ . The outer surface points in these coordinates are (ξ,ψ,0): ξ2+ψ2=ρ2. However, for ρ << λ (wavelength) we 
can accept that inside the helix (not in the volume of helix, but in the “wire” itself) the field is homogeneous relative 
to ξ,ψ coordinates, and thus the boundary conditions can be formulated on the central line: ),,( ccc zyx . 

The case 0→cR  corresponds to an infinite thin wire, and the case ( )0
2

1
→Λ/= ρη  corresponds to a hollow 

cylinder with a thin homogeneous membrane (absolutely transparent if η=0). In general, the helix can be considered 
as a hollow cylinder with a thin (non-homogeneous) membrane and periodical boundary condition (the following 
expression is not accurate, because of the round shape of a wire forming the helix, but for a thin wire we can ignore 
such an inaccuracy): 
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with ρ/Λ<<1, and n=…-1,0,1,... The proper Fourier series is 
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and the similar series can be written for the refraction index m. Dealing with such a cylinder, we can formulate the 
periodical boundary conditions for z and τ components of E and H. Thus we have a hollow cylinder (Fig. 2 shows 
its cross-section), and three separated regions: 0- the inner medium (air), 1 – the helix, i.e., non-homogeneous 
membrane (gray area), and 2- the ambient medium (air).  
 

 

                  

                                    

 

a                                                                     b 
           Figure 2: The hollow cylinder cross-section: a) upper view, b) side view 

 

Here the inner radius is R1=Rc-ρ, and the outer radius is R2=Rc+ρ and ρ/Rc << 1 is presumed.  
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3 Solution for scattered field 
   Strictly speaking the wave equation does not have a close solution for the present boundary condition. However, 

this can be shown that in cases where parameter 
Λ

=
4
πρη  is very small or close to 0.5: 1<<η  or 15.0 <<−η , a 

convenient approximation does exist. In such an approximation one can represent the scattered field by the series of 
space (angular: θ  will be the angle between z-axis and the scattering direction) Fourier harmonics. 
   It seems reasonable to assume that the scattered and inner fields have periodical dependence on the coordinate z 
with the space period Λ. Therefore we suppose the periodical dependence of scattering coefficients on z. In the 
present case the scattering coefficients (except of the incident )(in

na  field) have to be represented as the Fourier 
series. However, every Fourier term requires its own radial dependence; therefore, we have to write the solution in 
the form. In a certain approximation the fields in the jth layer (j = 1,2) can be written as : 
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Where M and N are cylindrical vector harmonics4. 
   By writing m as ( ) ( )φδφ ,, zmmzm += , where δm is represented approximately by a Fourier series analogous to 
(3-1) we write the boundary conditions for the inner and outer boundary in the form similar to that appearing for a 
case of a layered cylinder3. The solving procedure prescribes to use ( ) mzm =φ,  at the first step for getting the zero 
order space harmonic for the scattered field and the fields in the hollow cylinder layers. The scattering coefficients 
{ })(
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0, ,,, j
n

j
n

j
n

j
n PWTQ  appear as the standard solution3. At the following stage one obtains higher order 

harmonics as perturbations with respect to the small parameter δm. The proper equations take the similar form, 
where the zero order field solution with the factor δm appears at the place of the incident field. Thus the similar 
procedure can be used in the iterative manner. This corresponds to the physical interpretation, where the mean-field 
generates higher order perturbations.  
   Since the helix is taken as infinitely long, the θ-directions can be found in the same manner as the diffraction 
angles for the infinitely long gratings. In case of a finite length helix each θl is replace by a (narrow) continuous 
spectral shape. Being interesting in the total energy scattered in a certain θ angular order, one can fulfill integration 
with respect to θ in the proper interval and then reduce formally the problem to the similar form for the mean value 

of the scattering coefficients, say 
l

j
lnQ

θθ ∆∈|

)(
,  instead of ( )l

j
lnQ θθ ∆∈)(
, . In the case of the infinitely long helix, 

where a spectral function is reduced to the series of δ-functions we return to the original equations.  
              
              
 

4 Extinction and scattering coefficients  
 
   Consider the general relations4: 
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where R is the radius of a cylindrical surface around the helix (integration with respect to z can be fulfilled in the 
interval [0,Λ]) and 
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Since the incident field does not contain terms with factors 
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but for Qsc we have to take : 
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5. CONCLUSION 

 
In the present work we demonstrated a possibility of treating the problem of light scattering by a helical particle by 
using a Fourier approach. It is shown, that one can use a calculation procedure developed for a multilayered 
(hollow) cylinder to find all Fourier (diffraction) order of the scattered field. Thus a calculation technique turns out 
to be much simpler than it has been suggested before. 
 

6. REFERENCES 
1. C. Bustamante, M. F. Maestre, and I. Tinoco, “Circular intensity differential scattering of light by helical 

structures”, I. Theory, J. Chem. Phys, 9, 4273-4281,1980. 
2. A. Cohen, R.D. Haracz and L.D. Cohen, “Scattering from a helix using the exact cylinder theory”, J. Wave 

Mater. Interac., 3, pp. 219-225, 1988. 
3. I. Gurwich, N. Shiloah and M. Kleiman, “The recursive algorithm for electromagnetic scattering by tilted 

infinite circular multi-layered cylinder”, J. Quant. Spectrosc. Radiat. 63, 217–229, 1999. 
4. C. F. Bohren and D. R. Huffman, Absorbing and Scattering of Light by Small Particles, (Wiley, New York, 

1983). 
5. H. C. Van de Hulst, Light scattering by Small Particles, (Dover Publications, Inc,, New York, 1981). 
 
 



Light scattering simulation by conca ve, peanut -shaped silver nanoparticles, Hellmers             53  

Light scattering simulation by concave, peanut-shaped silver 

nanoparticles modeled on Cassini-ovals 

Jens Hellmers,1 Norbert Riefler,1 Thomas Wriedt,2 Yuri Eremin,3 

1
 Universität Bremen, Verfahrenstechnik, Badgasteiner Str. 3, 28359 Bremen, Germany 

2
 Institut für Werkstofftechnik, Badgasteiner Str. 3, 28359 Bremen, Germany 

3
 Moscow State University, Fac. of Apl. Math.& Comp. Sc., Lenin’s Hills, 119992 Moscow, Russia 

tel: +49 (421) 218-5418, fax: +49 (421) 218-5418, e-mail: hellmers@iwt.uni-bremen.de 

Abstract 

Light scattering is a useful tool in particle characterization. The simulation of light 

scattering processes can help to understand scattering characteristics and from this 

information about particle sizes, materials or shapes can be retrieved. In this paper we 

demonstrate the application of the Nullfield Method with Discrete Sources for light 

scattering by concave, peanut-shaped silver nanoparticles. Additionally we use the 

Discrete Sources Method for result validation. For the shape model a Cassini-oval based 

model is used, which accords to two sintered silver spheres. This model is compared to a 

simpler two-sphere approach by calculating the corresponding scattering patterns. 

1 Introduction 

With the increasing interest in nanotechnology also the interest in light scattering by such nanoparticles 

increases, as it can help to understand their sometimes complex characteristics and interactions. Often 

systems or clusters of single nanoparticles are the topics of interest. For metal nanoparticles with their 

luminous optical properties Gunnarsson et al. [1] point out, that the localized surface plasmon resonance 

has a key role in nanoparticle optics and that this is connected with the shape of the particles. So suitable 

particle and cluster models are needed and this includes an adequate description of the connection 

between two or more single particles. The easiest connection model is made from single spheres touching 

each other at one point. But this might be a too general approach; the resulting shape of two metallic 

particles sintered together should be more complex, as e.g. was demonstrated by Shimosaka et al. [2]. 

Because of this light-scattering studies can lead to wrong interpretations as soon as the intersection of 

such combined particles has an influence on the scattering pattern. This influence is investigated in this 

work; it is a preliminary study for better cluster models. We compare light scattering by two identical 

spheres with optical properties of silver with a more realistically shaped model based on a three-

dimensional Cassini-oval. For light-scattering calculations we use an advanced T-matrix approach, the 

Nullfield Method with Discrete Sources (NFM-DS). Unlike the conventional T-matrix theory the NFM-

DS allows to calculate light-scattering by such concave particles. A detailed description of the NFM-DS 

together with computer codes can be found in the book by Doicu et al. [3]. To make sure that we get 

reliable results by the NFM-DS we compare the calculated results with those we get from the Discrete 

Sources Method (DSM). More information about the DSM can be found in the book chapter by Eremin et 

al. [4]. The approach to check the validity of scattering simulation results by using these two methods 

worked before when we investigated light scattering by oblate, flat Cassini-oval based particles [5]. 
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2 Particle shape model  

We look for a shape model to approximate two similar spheres that are sintered together. For this we use 

a two-dimensional concave Cassini-oval. The Cassini-oval is defined by 
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The shape of a Cassini-oval by definition depends on the two parameters a and b; by adding a third 

parameter c one can additionally manipulate the overall thickness of the form. Rotating this curve around 

its main axis delivers a three-dimensional, concave peanut-like shape. Carefully choosing these 

parameters enables to create a shape model that fits the two initial spheres; additionally we make sure that 

the volume of the peanut shape is equal to the volume of the two original spheres. Fig. 1 shows an 

example of such a shape. 

 

              

 

 

Figure 1: Cassini-oval based shape model; two-dimensional compared to two equi-volumed spheres (left) 

and the corresponding three-dimensional model (right). a = 0.0340625, b = 0.0365625, c = 1.236; the 

diameter of the spheres is 50nm. Overall particle size is 100nm. 

 

3 Results 

First we compare light scattering results for a peanut-like silver particle calculated by the NFM-DS with 

those we get from DSM to make sure, that both theories deliver the same scattering patterns. This helps to 

estimate the quality of the result; in case of accordance it is very likely that the result is correct. Fig. 2 

shows the scattering patterns for a silver particle with shape and dimension as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Comparison of light scattering patterns calculated by NFM-DS and DSM. Particle shape is a 

Cassini-oval based peanut as shown in Fig. 1, particle length is 100nm. Wavelength is 478nm, incident 

angle is 90° to rotational axis; therefore forward scattering can be observed at 90°. Refractive index is 

0.13-2.729i. 
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As one can see there is a good congruence between both light scattering results. 

In the next step we do a spectral analysis of the scattering behavior of the peanut-like silver particle as 

well as a corresponding two-sphere model as presented in Fig. 1. This spectral analysis will show if the 

shape model has influence on the scattering patterns and at which wavelengths this influence can be 

observed best. Fig. 3 shows exemplary scattering diagrams for both parallel and perpendicular 

polarization for a wavelength range between 250nm and 500nm. The refractive index follows the studies 

made by Johnson and Christy [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Spectral analysis of two spheres (left) and an equi-volume Cassini-oval based peanut (right) as 

shown in Fig. 1. Particle length is 100nm. Wavelength-range is from 250nm to 500nm; direction of 

incident light is along rotational axis. Upper diagrams show parallel, lower diagrams show perpendicular 

polarization. 
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Looking at Fig. 3 one can make several observations: comparing the diagrams for parallel polarization 

one sees, that for both shape models the highest intensity is reached for a wavelength about 366nm (for 

this particular particle size). But for the two-sphere model there is a small second peak at 404nm while 

this is not visible for the Cassini-oval model. On the other side this model shows a kind of small plateau 

before the main peak at 366nm is reached which can not be observed for the two-sphere model. For the 

perpendicular polarization there are also differences, mostly at the 180° scattering angle for the highest 

intensity. Here the diagram for the Cassini-oval model shows a significant indentation. 

 

5 Conclusion 

Fig. 3 demonstrates that there are different light scattering patterns for the different shape models, two 

identical spheres touching each other on one side and a single particle with a corresponding volume based 

on a Cassini-oval on the other side. While this is just one example for a specific particle size, shape and 

material, it is nevertheless reasonable that similar effects could be observed for other particle sizes as 

well. Further studies using light scattering simulations now can help to give a better understanding of the 

characteristics of such particle systems and clusters. One practical application could be to determine from 

measured scattering characteristics if the observed particles are sintered together or just slightly touch 

each other. Simulations results could also provide the information, which wavelengths and observation 

angles are most suitable for observations. Both light scattering theories used for this work are 

advantageous for this purpose: while the DSM is very fast and reliable, the NFM-DS offers all benefits of 

the T-matrix approach, for example fast post-processing calculations for incident angles different from the 

original one or orientation averaging. 

To give a better impression on the topic, more detailed results will be presented at the ELS10 conference.   
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Abstract 

We intend to demonstrate the contribution of ultra short laser light methods for improving the particle sizing of 
dense scattering medium like plumes or engine sprays. We especially focus our attention on the time-resolved 
propagation of ultra short laser pulses in the forward and backward directions considering a Monte-Carlo (MC) 
scheme. We investigate the influence of the detector-source configurations on the retrieval of spectral backscattering 
and extinction coefficients derived from the measurements of the spectral transmittance and backscattering power. 
An efficient method developed to retrieve Particle Size Distribution of aerosols from multi-spectral LIDAR returns 
is then adapted to the investigated case. This method is finally tested on the numerical spectral backscattering and 
extinction coefficients derived from MC simulations. 

1 Introduction and Context 
For aerosols particle sizing, we developed a specific scheme inverting spectral extinction and 
backscattering coefficients that could be derived from single scattering multispectral LIDAR returns 
using Klett method [1]. This inverse scheme includes a self-regularization method built from the data 
uncertainties. 

 
Assuming an homogeneous scattering medium of length L, the extinction α(λ) and backscattering β(λ) 
spectral coefficients could be retrieved from respectively the measurement of spectral transmittance 
( ) ( )( )LT ×−∝ λαλ exp  or backscattering power ( ) ( ) ( )λλβλ 2TP ×∝ .  
 

In LIDAR application, retrieving extinction α(λ) and backscattering β(λ) spectral coefficients is only 
performed from backscattering power ( )λP  and consequently, requires to presume a known relation 
between α(λ) and β(λ). Using simultaneously ( )λP  and ( )λT  prevents from this requirement.  

 
Nevertheless, the characterization of the particle size distribution (PSD) in dense scattering media like 
plumes, engine sprays… using a spectral measurement of the transmission and the backscattering power 
is a challenge as multiple scattering phenomenon scrambles useful information.  

 
Retrieving the Particle Size Distribution f(R) (PSD) from these spectral data requires: 
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o a reduction of the contribution of multiple scattering events and consequently of the errors 
occurring on the derived spectral coefficients. Time-resolved analysis of ultra short laser 
pulses propagation in the backward and forward directions seems to indicate a temporal 
separation of ballistic and scattering photons. As a consequence, studying such phenomenon 
could be used in order to reduce multiple scattering if it is related to appropriate detector 
configurations (FOV, time gate…).  

o an efficient inverse method unaffected by the residual uncertainties. The method developed 
for LIDAR applications could be adapted for this purpose.  

 
In the first paragraph, we present the Monte-Carlo (MC) scheme developed to simulate ultra short laser 
pulses propagation in dense scattering media.  

2 Monte-Carlo Simulations 
The MC scheme developed is based on a temporal photon pursuing method [2] that we have extended to 
include polarization according to the Stokes formalism. To increase the convergence of the MC results, a 
pseudo MC approximation is used to evaluate the temporal intensities collected by two small detectors 
geometries in the forward and backward directions [3].  
The statistical scattering properties are derived from the temporal Mueller matrices ( )tPij ,θ  or the 

integrated ones ( ) ( )dttPP
t

ijij ∫
∆

= ,θθ . Those matrices are evaluated through a scanning of frequency 

coupled with a Lorenz-Mie (LM) theory algorithm associated with a FFT transform of the incident pulse 
and an inverse FFT transform of the scattering matrices [4]. The Figure 1 presents the temporal phase 
function of a50µm sphere illuminated by a 50fs pulse for different times relative to the transmitted time of 
flight. We can observe that the angular direction, where occurs the maximum of light scattered, is time 
dependant.  
The Figure 2 compares the integrated linear depolarization ratio to this obtained for the same sphere and a 
continuous illumination. The pulse integrated ratio smoothes the fluctuations of the "continuous". 
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Figure 1: Temporal phase function normalized to maximum ( ) ( )( ) θθθ ∀tPtP ,max/, 1111   
(Sphere radius = 50µm and 50fs Pulse)  
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Figure 2: Ratio ( ) ( )θθ 1112 / PP for ∆t = 2500fs and a 50fs pulse width compared to the same ratio 
obtained for a continuous wave. 

 
We here specially focused our attention on scattering medium, in which large optical thicknesses (OT), 
various bimodal Particle Size Distributions (PSD) and concentration gradients could be observed. The 
spectral transmittances T(λ) or backscattering received powers P(λ) of those media could be then derived 
considering various detector-source geometries, temporal pulse widths and integration ranges The Figure 
3 represents an example of the transmitted temporal intensities considering various collection angles.  
 
 
 
 
 
 

 
 

 
 

Figure 3: Transmitted temporal intensities considering various collection angles (.the arrow indicates 
an increase of the collection angle) 

 

2 Inverse scheme 

The spectral transmittances ( )λT  and the backscattering received powers ( )λP  are affected by multiple 
scattering, which depends on the optical thickness and the chosen experimental configuration. The first 
challenge is then to derive an optimal experimental configuration (time gate, spectral range, detector 
FOV, pulse width…) where the temporal integration of transmitted and backscattered temporal intensities 
leads to measured intensities that are close to those related respectively to a collimated or a single 
scattering measurement hypothesis.  
Nevertheless, the spectral extinction α(λ) and backscattering β(λ) coefficients derived from the previous 
relations could be still uncertain. As a consequence, retrieving the Particle Size Distribution f(R) (PSD) 
from these spectral coefficients requires regularization.  

 
We propose to use an inverse scheme developed for LIDAR applications. It includes a self-regularization 
method built from the uncertainties ( )iX λ∆  associated to a set of mean data values ( )iX λ . This method 
is based on previous works [5] derived for angular scattering data and spectral extinctions [6]. It is 
adapted to consider simultaneously spectral extinction and backscattering coefficients. This method is 
actually numerically tested to retrieve the PSD of atmospheric aerosols from extinction α(λ) and 
backscattering β(λ) spectral coefficients. These coefficients are obtained from Klett inversion [1] of noisy 
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multispectral LIDAR backscattering signals. The Figure 4 presents the PSD of a maritime bimodal 
aerosol retrieved from an "8 wavelengths (UV to NIR)" Simulated LIDAR Signals (SLS). A 10% 
Gaussian noise is added to the theoretical extinction α(λ) and backscattering β(λ) to perform SLS. 
The retrieved PSD are derived considering one set of spectral data (extinction or backscattering) or both 
of them. For this case, we can observe that only considering backscattering data is insufficient and lead to 
a worth estimation of the PSD.   

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4: Retrieved PSD compared to theoretical one. 
 

3 Further works 
An optimal experimental configuration (time gate, spectral range, detector FOV, pulse width…) 

reducing multiple scattering contributions for the transmittance ( )λT  or backscattering received powers 
( )λP  and having a sufficient Signal to Noise Ratio (SNR) is first evaluated. The extinction and 

backscattering coefficients retrieved from the inversions of the Beer-Lambert law and the single 
scattering LIDAR return equation are then compared to the theoretical values used for the MC 
simulations in order to evaluate the residual uncertainties due to multiple scattering. 

In parallel and considering various spectral data issued from diverse scattering media, we also try to 
evaluate the influence of the spectral range and the mesh grid on the PSD recovering method. The 
influence of the uncertainties level on the inverse scheme efficiency is also estimated and related to the 
field of application of the proposed method. 

Finally, a complete simulation is performed for a specific scattering media and the retrieved PSD are 
compared to the theoretical ones used in the MC simulation; in order to assess the proposed concept.  

These numerical results will be presented in the poster session.  
A time gated experimental setup based on a femtosecond laser associated to a Non-colinear Optical 

Parametric Amplifier (NOPA) is also under development. Preliminary experimental results could be 
presented if they are available.  
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Abstract 

The article is devoted to a new way of choosing the regularization parameters in the 
Tikhonov method as applied to inverse problems of light scattering. The derivative 
spectrum of the calculated solution is used as the selection criterion. The suggested 
method is compared with other well-known techniques such as the L-curve and the 
Generalized Cross Validation. 

1. Introduction 
 

The Fredholm equation of the first kind appears in many applied problems concerned with the 
determination of geometrical parameters of small particles:  

 ( ) ( ) ( )θωθ S

d

c

IdaaaK =⋅⋅∫ ,  (1) 

where  K(θ,a) is the kernel of the integral equation, which characterizes light scattering by one 
particle with a characteristic dimension of а at an angle θ in the spherical coordinate system; ( )aω  is 
the probability density function of particles sizes; Is(θ) is the intensity of light scattered by the particle 
ensemble. It should be noted that Eq. (1) convolves the intensity of the light scattered by the particles 
with their sizes. The case of independent light scattering is considered. 

The Tikhonov regularization method is one of the techniques widely used to solve this equation. 
According to the Tikhonov method, Eq. (1) has the following operator form [1, 2]: 
 ( )* *L A A A Iαα ω+ =  (2) 

where А is an operator that corresponds to the integral equation (1), A* is the complex conjugate 
counterpart of A; ωα is the required function corresponding to ( )aω ;  I denotes Is(θ), and the operator 
L is either the identity matrix or has the following form [1]: 

  
2

2

dL
da
ωω ω= −  (3) 

The article deals with the presentation of the operator L in form of Eq. (3). 
As the problem (1) is ill-posed, certain additional criteria [1, 2] should be applied in order to get 

acceptable results. The first derivative spectrum of the calculated ( )aω  is suggested to be used as one 
of such criteria. It is known [3] that the higher harmonics of the solution of Eq. (1) converge to the 
exact solution slower than its lower harmonics. One should find the solution the first derivative 
spectrum of which contains the smallest number of the highesto-order harmonics. In the symbolic 
form this can be put in the following equation: 

 ( )( )( )m in m a x
m in m a x iF α α α αω < <  (4) 

where Fi is the magnitude of the i-th harmonic of spectrum F solution’s derivative ωα; αmin and αmax 
are the boundaries of the range of variation of the parameter α.  

In Eq. (4), the regularization parameter α varies within certain boundaries. The boundaries are 
determined by the application of some additional requirements. The model investigation of the 
functional given by Eq. (5) below, as described in [4], is used in order to constrain these boundaries: 
 

2

2

L

L

ω

ωω α −  (5) 
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where ωα is the solution of Eq. (1) corresponding to a certain value of the parameter α; ω is the exact 
solution of Eq. (1). 

In [4] it is shown that the functional (5) has one minimum. Since the mentioned functional is in 
fact the analog of relative error in the L2 space, the minimum of the function will be reached when ωα 
is the closest to the exact solution in the L2 space. The optimal regularization parameter value will 
correspond to that ωα. One can state that the value of the optimal regularization parameter and the 
corresponding solution is the best among all possible solutions for a given second term of Eq. (1). The 
results of a model investigation, shown in the next section, are used to determine the variational 
boundaries of the parameter α. 
 
2. Simulations 
 

The conventional Mie theory was used in order to compute the kernel of the integral equation (1). 
From the physics point of view, there are some requirements to ( )aω : this function should be 

defined from 0 to ∞ and should have a finite number of extrema; the values of ( )aω  are above zero; it 
is bounded from above by a given constant C and satisfies the following standardization condition: 

 ( )∫
∞

=
0

1dxxω  (6) 

The distributions of Raileigh, χ2, Nakagami, Gamma etc. satisfy the requirements. In this article 
the distribution of Raileigh and χ2 are used as an approximation of the particle size distribution. These 
approximations are described in [5] and [6]. 

In order to make the analysis more realistic, families of Raileigh and χ2 distributions were used 
instead of one fixed form of the probability density function (PDF). The used PDF families are shown 
in Fig. 1. 

 
The following simulations were performed to determinate the boundaries of the “best” 

regularization parameter magnitudes, i.e., the parameter values that in each case, when the equation is 
solved, correspond to ωα which is the closest to the exact solution. In the simulations such 
regularization parameter values, that minimize Eq. (5), were segregated. 

The frequency diagrams of the regularization parameter values spread are presented in Fig. 2.  

 
Figure 1: Families of Raileigh and χ2 distributions 
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Figure 2 shows that α values are concentrated in certain limits for both families of distributions. In 

the case of the Raileigh distribution family the values of α parameter are within 10–69 – 10–71, as for 
the χ2 distribution family they are within 10–65 – 10–72. These regularization parameter limits were 
used to calculate the solution of the Fredholm equation of the first kind by applying the criterion (4). 

It is reasonable to present the solution of Eq. (1) for distribution families in the form of the errors 
described by Eq. (7): 

 ( )
( ) ( )

( ) 100%
max ( )

j j
j

j

a a
a

a
αω ω

ν
ω
−

= ⋅ , (7) 

where ( )jaω  is the exact solution at aj, ( )jaαω  is the calculated solution at aj. 

 

 

 
Figure 3: Results of ( )aω  computatation for families of Raileigh and χ2 distributions. 

 
Figure 2: Spread of optimal regularization parameter values. 
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In Fig. 3 the results of ( )aω  computations for families of Raileigh and χ2 distributions are shown. 
By fixing the particle size value а one can see the boundary values of ( )iaω  and relative frequency of 
calculated ( )iaω  on the y axis. In fact, having the fixed particle radius magnitude we deal with a 
histogram of the spread of ( )iaω  determination errors values. Instead of the usual histogram 
frequency, the relative frequency is used. The same colors correspond to the ( )aω  values that occur 
with the same relative frequency.  

Similar simulations were also performed for other methods of regularization parameter 
determination such as the L-curve [7, 8] and the Generalized Cross Validation [9]. Comparison of the 
derivative spectrum method with the L-curve and Generalized Cross Validation methods proved the 
advantages of the suggested method. 

  
3. Conclusions  

 
The new way of regularization parameter determination in Tikhonov regularization method is 

proposed. The advantages of the suggested method over the L-curve and Generalized Cross 
Validation techniques are demonstrated. 
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Abstract

Horizontal incidence and reflection by a plane-parallel atmosphere is investigated. A peculiar
discontinuity of the reflected intensity is discussed. Several interesting properties of the bidirectional
reflection function are presented, together with some applications.

1 Introduction

One of the best studied problems in multiple scattering theory is the reflection of radiation by a plane–
parallel medium filled with independently scattering particles and illuminated at the top by a parallel
beam of radiation, see e.g. [1]-[6]. In most publications the limiting case in which both the direction of
incidence and that of reflection become grazing is not treated at all, or only touched upon. To fill this gap
in multiple scattering theory we embarked some time ago in an investigation of this intriguing case. This
has resulted in two papers, [7] and [8], dealing with the intensity (radiance) and polarization, respectively,
of the reflected radiation. Here we focus on properties of the bidirectional reflection function.

2 Theory for horizontal directions

We consider a plane–parallel atmosphere or similar medium filled with randomly oriented particles that
scatter radiation independently and without change of wavelength. The medium may be vertically inho-
mogeneous and semi–infinite or finite with or without a reflecting surface underneath. Suppose a parallel
beam of radiation with net flux,πF0, per unit area normal to itself is incident on every point of the top
of the medium. Ignoring polarization we write the (specific) intensity of the reflected radiation emerging
at the top of the medium in the form

It(µ, µ0, φ − φ0) = µ0R(µ, µ0, φ − φ0)F0, (1)

with arccos µ the angle of the direction of the reflected light with the upward normal,arccos µ0 the
angle of the direction of the incoming radiation with the downward normal,φ andφ0 the corresponding
azimuth angles andR(µ, µ0, φ − φ0) the bidirectional reflection function (BRF). It should be noted that
0 ≤ µ ≤ 1 and0 ≤ µ0 ≤ 1, whereµ = 0 means grazing reflection andµ0 = 0 grazing incidence.
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Before presenting properties of the BRF we summarize some of the main results of [7], in which
rigorous proofs are given. For the medium under consideration we have

lim
µ0→0

It

n(µ, µ0, φ − φ0) = 0 (µ ≥ 0 and n ≥ 2), (2)

lim
µ,µ0→0

It(µ, µ0, φ − φ0) = lim
µ,µ0→0

It

1(µ, µ0, φ − φ0), (3)

lim
µ,µ0→0

It(µ, µ0, φ − φ0) =
at

4(c + 1)
Zt(cos(φ − φ0))F0, (4)

wheren denotes the order of scattering,at the albedo of single scattering at the top,Zt(cos Θ) the phase
function at the top withΘ the scattering angle, andc a number that depends on howµ andµ0 approach
zero. More precisely, if we approach the origin of a Cartesian co–ordinate system, withµ0 as the abscissa
andµ as the ordinate, along a curve given by the functionµ = g(µ0), the slope at the origin ofg(µ0)
is c (see Fig. 1). Thus, for a straight line we haveµ = cµ0. For all curves we have0 ≤ c ≤ ∞, since
µ andµ0 are nonnegative. Therefore, for grazing incidence and reflection only first order scattering at
the top of the medium contributes to the reflected intensity, but it has a peculiar discontinuity. The factor
1/(c + 1) may take any value in the closed interval[0, 1], depending on howµ andµ0 tend to zero. It is
zero if we first letµ0 tend to zero and then do the same withµ, but it is unity if µ is the first to become
zero.

An important consequence of Eq. 4 is that, for a given value ofc, the way in which the reflected
intensity depends on azimuth in grazing incidence and reflection is proportional to the way in which the
phase function at the top depends on the scattering angle. A similar statement was made by Minnaert in
1935 [9], but he did not mention the occurrence of a discontinuity, nor did he provide a rigorous proof.

We can now use the results for the intensity of the reflected light in the case of grazing incidence and
reflection to derive properties of the BRF. Combining Eqs. 1 and 4 we find

lim
µ,µ0→0

µ0R(µ, µ0, φ − φ0) =
at

4(c + 1)
Zt(cos(φ − φ0)). (5)

Multiplying both sides of Eq. 1 byµ/µ0 leads to

lim
µ,µ0→0

µR(µ, µ0, φ − φ0) =
atc

4(c + 1)
Zt(cos(φ − φ0)). (6)

Consequently, a peculiar discontinuity occurs, when the BRF is multiplied byµ or µ0. If c = 1 the two
limits in Eqs. 5 and 6 are the same. Generally, the one is obtained from the other by replacingc by 1/c.
Since both limits are bounded it is clear thatµµ0R(µ, µ0, φ − φ0) = 0 if µ = µ0 = 0.

By adding Eqs. 5 and 6 we obtain the simple relation

lim
µ,µ0→0

(µ + µ0)R(µ, µ0, φ − φ0) =
at

4
Zt(cos(φ − φ0)), (7)

which is independent of howµ and µ0 tend to zero. Hence, adding the two peculiar discontinuities
results in no discontinuity. We have thus obtained a rigorous proof of Eq. 7 for the general case of an
inhomogeneous atmosphere which is semi–infinite or bounded by a reflecting surface. Eq. 7 has been
reported without a rigorous proof for a semi–infinite homogeneous atmosphere by e.g. [3].

For natural and realistic model particles the right–hand side of Eq. 7 is always positive. Therefore,
we must have

lim
µ,µ0→0

R(µ, µ0, φ − φ0) = ∞, (8)
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Figure 1: A point,P , approaches the origin,O, along a curve given byµ = g(µ0), which has a slope,c,
atO with respect to the positiveµ0-axis. The tangent of the curve atO has also been drawn.

irrespective of the way in which this limit is taken, since any other result would be in conflict with Eq. 7.
So the BRF itself has a discontinuity forµ = µ0, but not a peculiar one. This is illustrated in Fig. 2
for a homogeneous, non–absorbing, semi–infinite atmosphere with isotropic scattering andµ = µ0. As
shown by [1] and later by [2] we have in this very simple case

R(µ, µ, φ − φ0) =
1

8µ
H2(µ), (9)

whereH(µ) is a well–known function that can be calculated by solving an integral equation and increases
from 1 for µ = 0 to 2.9 forµ = 1. Figure 2 is based on a table (forϕ(µ) = H(µ)/2) given by [10].
Apparently the factor1/µ is the main cause of the strong increase of the BRF in Fig. 2 asµ tends to
zero. For comparison Chandrasekhar’s functionS(µ, µ0, φ− φ0) [2] for µ = µ0 is also shown in Fig. 2,
illustrating its simpler behavior for small values ofµ as compared to the BRF.

It should not be assumed that the discontinuity of the BRF forµ = µ0 = 0 will never cause any
problems upon integration. For example, in the case of isotropic scattering in a homogeneous, semi-
infinite medium we readily find from the definition of theH-function

∫

1

0

R(µ, µ0, φ − φ0)dµ =
1

2µ0

[H(µ0) − 1] , (10)

which tends to infinity ifµ0 tends to zero [4].

3 Applications

The results presented in Sect. 2 can be used for various applications, as shown by the following examples.
1. Checking formulae valid for generalµ andµ0 in multiple scattering theory by letting both tend to
zero.
2. Similarly, for numerical results, even for complicated models of atmospheres and oceans.
3. Interpolation of the BRF for small values ofµ andµ0, e.g. by first multiplying the BRF by(µ + µ0).
4. Using Eq. 7, approximate values for the phase function in the upper part of a cloud deck or aerosol
layer can be obtained from observations for near grazing incidence and reflection. When this is done for
a sufficient number of azimuthal angles integration over these angles yields an approximate value for the
albedo of single scattering in the top layers, since the spatial average of the phase function equals unity.
The necessary observations can be done, for instance, by a detector at a mountain top or in an airplane.
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Figure 2: Bidirectional reflection function (R) and Chandrasekhar’s function (S) of a non–absorbing,
homogeneous, semi–infinite atmosphere with isotropic scattering in caseµ = µ0. Here,S = 4µ2R.

5. Numerous approximation formulae for the BRF of plane-parallel media have been proposed. It is clear
now that some of these cannot be accurate for near grazing incidence and reflection. This holds especially
for the well-known ”Lambert reflection law”, which implies that the BRF would remain constant instead
of tend to infinity when the directions of incidence and reflection become more and more horizontal.
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Abstract

An overview of the exploitation of boundary symmetries in electromagnetic scattering
problems is presented. The paper follows the historical development of methodologies,
thus starting with method-specific formulations based on boundary-integral equation ap-
proaches, followed by more general treatments based on theT matrix formulation, and
finally reviewing a unified treatment of symmetries within the self-consistent Green’s func-
tion formalism.

1 Introduction

Boundary symmetries of particles allow us to simplify the solution to the Helmholtz equation in electro-
magnetic or acoustic scattering, which results in a reduction of computational costs and and increase in
numerical stability. The symmetries can either be inherent in nature, as in the case of spherical raindrops,
pristine ice crystals, or cubical dry sodium chloride aerosols, or enter through simplifying assumptions by
choosing symmetric model particles. Numerical experiments have demonstrated that the use of symme-
tries can result in reductions of CPU-time requirements by several orders of magnitude. This has paved the
way for applying non-axisymmetric model particles to realistic atmospheric scattering and radiative transfer
problems (see e.g. Refs. [1, 2]).

2 Exploitations of symmetries in light scattering problems

The earliest applications of symmetries in electromagnetic scattering theory have focused on specific kinds
of symmetries or specific solution methods. In the special case of spherically symmetric particles the scat-
tering problem can be solved analytically [3]. Waterman [4] investigated selected reflection symmetries in
his boundary-integral equation (BIE) approach. Mishchenko [5] derived the symmetry properties of theT
matrix of axisymmetric particles independent of the method employed for computing theT matrix.

More general treatments of symmetries in electrostatics and in electromagnetic and acoustic scattering
theory have been conducted since the 1990’s. Symmetries in integral-equation formulations of boundary
value problems were studied by Zakharov et al. and applied to problems of electrostatics [6]. Zagorodnov
and Tarasov studied symmetry groups in a Green’s function approach to boundary value problems [7] and
presented applications to integral-equation solutions to the electromagnetic scattering problem [8].

Symmetry properties of theT matrix for arbitrary symmetry groups were studied systematically for re-
ducible [9] and irreducible representations [10]. The main idea is to investigate the transformation properties
of the basis functions (usually vector spherical wave functions) under symmetry operationsR, and thereby
derive matrix representationsR for each symmetry operationR in the vector space on which theT matrix
operates. The symmetry properties of theT matrix can then be expressed as commutator relations

[T,R] = 0, (1)
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where the commutator is defined as [T,R] = T · R − R · T. These commutator relations reduce the number
of nonzero, independentT matrix elements that need to be evaluated in numerical applications.

A

^
φ̂

θ^

r

r
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r̂’

θ,^φ,̂

Figure 1: Transformation of a vector function under an inversion of all spatial coordinates.

Consider as an example an inversionI of the spatial coordinates given by (x, y, z) −→ (−x,−y,−z). As
shown in the figure a vector function given in spherical coordinates will transform according to


Ar(r, θ, φ)
Aθ(r, θ, φ)
Aφ(r, θ, φ)


I−→


Ar(r, π − θ, π + φ)
−Aθ(r, π − θ, π + φ)
Aφ(r, π − θ, π + φ)

 . (2)

By using the properties of the vector spherical wave functionsM ( j)
n,m,τ (whereτ = 1,2 and j = 1, . . . , 4) this

leads to

M( j)
n,m,τ

I−→ (−1)n+τM( j)
n,m,τ, j = 1, . . . , 4. (3)

Thus a matrix representation of the inversion operation is given in components by

In,m,τ;n′ ,m′,τ′ = δn,n′ δm,m′ δτ,τ′ (−1)n+τ. (4)

If the boundary surface is invariant under the inversion operation, thenT= I · T · I−1, or, analogous to Eq.
(1), [T, I] = 0. Using Eq. (4), this becomes in explicit form

Tn,m,τ;n′,m′,τ′ = (−1)n+τ+n′+τ′ Tn,m,τ;n′,m′,τ′ , (5)
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or equivalently

Tn,m,τ;n′,m′,τ′ = 0, unless (n + τ + n′ + τ′) even. (6)

This method can be used to derive representations and symmetry relations for any symmetry operation
encountered in point groups [10].

The representationsR in the basis of vector spherical wave functions are in general reducible. By means
of group theoretical techniques one can construct a similarity transformation to transform the reducible
into irreducible representations, thus bringing the matrix representations into block-diagonal form. It can be
shown that this transformation also brings theT and Q matrix into irreducible block-diagonal form [10].
The main idea is to construct projection operators

P̃(µ)
j,i =

∑

g∈G
χ(µ)∗(g) Rj,i(g) (7)

that project into theµ-th irreducible invariant subspace. HereG denotes the symmetry group,Rj,i(g) denote
the reducible representations of group elementg, andχ(µ)(g) denote the characters of the irreducible repre-
sentations, which can be computed by standard group-theoretical techniques [11, 12]without prior knowl-
edge of the irreducible representations. By use of the operators (7) one constructs a similarity transformation
into the irreducible basis in which all matrix quantities become block-diagonal.

It was demonstrated by use of irreducible representations in a BIE approach [8] that exploitation of
symmetries can reduce CPU-time requirements by a factor ofM2

0, whereM0 represents the order of the
symmetry group. Interestingly enough, the same was observed in Ref. [13], in which only reducible repre-
sentations were exploited. A recent comparison of BIE computations that exploited reducible and irreducible
representations, respectively, showed that the latter only saved and additional factor of 3–4 in computation
time [10]. However, it was also shown [10] that the block-diagonalisation of theT andQ matrix favourably
pre-conditions theQ matrix, thus increasing the numerical stability of theQ matrix inversion problem inT
matrix computations.

In a recently published treatment [14] of symmetries (which was focused on the exterior problem)
it was shown that one can derive general symmetry relations of the Green’s function of an arbitrary lin-
ear boundary-value problem. From the general symmetry relations, one obtains for the special case of the
Helmholtz equation symmetry relations for the surface Green’s functionG∂Γ of the form

G∂Γ(x, xs) = G∂Γ(Dg(x),Dg(xs)) (8)

wherex lies in the surrounding medium andxs lies on the boundary surface. TheDg denote the representa-
tions in three-dimensional space of the symmetry group’s elementsg. Likewise, one obtains for the volume
Green’s functionGΓ+

GΓ+(x0, x) = GΓ+(Dg(x0),Dg(x)), (9)

wherex0 andx lie in the surrounding medium. For the interaction operatorW∂Γ one obtains

W∂Γ(xs, x′s) = W∂Γ(Dg(xs),Dg(x′s)), (10)

wherexs andx′s lie on the boundary surface. These three symmetry relations are shown to be equivalent
[14]. The volume Green’s function is related to volume-integral equation (VIE) methods, the surface Green’s
function to BIE methods, and the interaction operator to the T-matrix formulation. For instance, from the
symmetry relations of the interaction operator, one can derive the commutator relations of the T-matrix. Thus
one has a general description of symmetries in acoustic and electromagnetic scattering theory that comprises
symmetries in VIE and BIE methods as well as in the T-matrix formalism. This treatment of symmetries
is based on the self-consistent Green’s function formulation of the electromagnetic and acoustic scattering
problem [15, 16].
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Abstract

Errors in mineral aerosol radiative forcing computations due to the spherical particle ap-
proximation (SPA) and the uncertainty in refractive index were studied. These two error
sources are found to be of comparable magnitude, although strongly dependent on optical
depth, surface albedo, and particle size. Thus, the use of the SPA in radiative transfer sim-
ulations may be among the major error sources in quantifying the regional climate forcing
by mineral aerosols.

1 Introduction

Mineral aerosols are radiatively important owing to their widespread distribution and their relatively high
optical depth [1]. Desertification caused by changes in land usage results in rising mineral dust concentra-
tions, which is considered the dominant anthropogenic radiative forcing mechanism in and near arid regions
[2]. Quantification of this radiative forcing effect is subject to various error sources, of which the uncertainty
in the refractive indexm and, to a lesser extent, the uncertainty in the size distribution (SD) have previously
been identified as the most important ones [2]. It is common in climate applications to model optical proper-
ties of dust aerosols by use of spherical model particles. The validity of the spherical particle approximation
(SPA) is rarely questioned in climate research, and it is often taken for granted that the errors caused by the
SPA are small compared to those caused by other error sources. In the present study we put this assumption
to a test.

2 Optical properties of mineral aerosols

Table 1 shows the aerosol samples employed in the simulations, their effective radiireff , and the uncertainty
ranges of their refractive indicesm = n + iκ. Also shown are the optical depths assumed in the radiative
transfer simulations. The optical properties of these nonspherical dust particles are derived from measure-

Sample reff (µm) n κ τ

Feldspar 1.0 1.5–1.6 10−5–10−3 0.25
Red Clay 1.5 1.5–1.7 10−5–10−3 0.25
Green Clay 1.55 1.5–1.7 10−5–10−3 0.25
Loess 3.9 1.5–1.7 10−5–10−3 1.10
Sahara 8.2 1.5–1.7 10−5–10−3 1.10

Table 1: Mineral aerosol samples considered in this study.

ments available in the Amsterdam Light Scattering Database [3] (http : //www.astro.uva.nl/scatter), which
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provides particle SDs and phase matrices at wavelengths of 441.6 nm and 632.8 nm for scattering angles of
5◦–173◦. The full phase function and the asymmetry parameterg are derived by combining the measured
phase functions with Mie-computations of the diffraction peak through a variational data analysis method.
The details of the procedure and a discussion of analysis errors can be found in Ref. [4].

To obtain corresponding results for spheres, and to estimate them-uncertainty, we ran Mie simulations
based on the measured SDs. The refractive index of each sample has been varied within the uncertainty
ranges indicated in Tab. 1. The extreme values ofg are obtained form1 = nmin + iκmax andm2 = nmax +

iκmin. Figure 1 shows a comparison of asymmetry parameters derived from the measurements and the Mie
computations. It is evident from the figure that the SPA-errors andm-related errors (estimated for spheres)

Figure 1: Values of the asymmetry parameterg at λ=441.6 nm for spherical and non-spherical aerosol
particles and for refractive indicesm1 = nmin + iκmax and m2 = nmax + iκmin. The vertical bars indicate
the uncertainty ofg for non-spherical particles, defined as best estimate± measurement error (one standard
deviation). Them-dependence ofg for non-spherical particles is artificially small sincem affects only the
diffraction part of the combined phase function.

in g are of comparable magnitude.
The single-scattering albedo is known to be rather insensitive to particle shape. Hence, values obtained

from Mie calculations were used both for spherical and non-spherical particles.

3 Radiative transfer simulations

Radiative transfer simulations were performed for a standard tropical atmosphere. The aerosols are assumed
to be spread uniformly between 0 and 5 km. The solar zenith angle is 55◦ (a yearly daytime-average at
an altitude of 20◦). Two surface albedos were used:αs = 0.1 (ocean surface) andαs = 0.45 (high-albedo
desert). The lower optical depth (τ = 0.25) indicated in Table 1 lies within the range of typical background
values near arid regions, whereas the higher value (τ = 1.10) is typical for dust-storm events.
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4 Comparison of radiative flux and transmittance errors

We investigate the errors in the net radiative flux at the top of the atmosphere (TOA) (Fig. 2a), the flux ab-
sorbed within the atmosphere (Fig. 2b), the downwelling flux at the surface (BOA= bottom of atmosphere)
(Fig. 2c), and the net flux at the surface (Fig. 2d). For instance, Fig. 2a shows three normalised net radiative
flux errors at the TOA for a wavelength ofλ=441.6 nm and for a surface albedo ofαs=0.1:

δF(net)
spher(m) = 100%×

[
F(net)

spher(m1) − F(net)
spher(m2)

]
/(2Fsolar) (1)

δF(net)
m1 (SPA) = 100%×

[
F(net)

spher(m1) − F(net)
nonspher(m1)

]
/Fsolar (2)

δF(net)
m2 (SPA) = 100%×

[
F(net)

spher(m2) − F(net)
nonspher(m2)

]
/Fsolar. (3)

Here,F(net)
nonspherandF(net)

spherdenote spectral net fluxes computed using optical properties for non-spherical and
spherical aerosols, respectively. Hence,δF(net)

spher(m) (black bars) is the normalised net flux error related to the
uncertainty inm, based on computations for spherical particles. It is defined here by dividing the maximal
m-related uncertainty range by a factor of two. Similarly,δF(net)

m1 (SPA) (shaded bars) andδF(net)
m2 (SPA) (white

bars) represent the net radiative flux errors caused by the SPA for refractive indicesm1 andm2, respectively.
The normalised errors in atmospheric absorptance (Fig. 2b), downwelling flux at the surface (Fig. 2c) and net
flux at the surface (Fig. 2d) are defined analogously. The main result in Fig. 2a is that the SPA-related errors
in the TOA net fluxδF(net)

m1 (SPA) andδF(net)
m2 (SPA) are in most cases comparable to, and sometimes even

larger than the error related to them-uncertaintyδF(net)
spher(m). Another result is that there are clear differences

betweenδF(net)
m1 (SPA) andδF(net)

m2 (SPA). Thus the SPA and the uncertainty in the refractive index are strongly
correlated error sources in net flux simulations.

Similar observations apply to the BOA transmitted and net fluxes in Figs. 2c and 2d. Thus the SPA-
andm-related errors in these radiative quantities are of comparable size. On the other hand, the error in the
absorbed flux (Fig. 2b) is entirely dominated by the uncertainty inm.

Computations for a surface albedo ofαs = 0.45 indicated that for the TOA net flux, them-related error
is larger and the SPA-error is smaller than forαs = 0.10. The absorbed flux error is, as expected, again
dominated by them-error. At BOA, however, the SPA-error still dominates over them-error in net-flux and
transmitted-flux computations.

Finally, we remark that the flux errors considered here can equivalently be regarded as radiative forcing
errors, since radiative forcing is defined as∆F = Faerosols included− Fno aerosols, where the aerosol-free case is
not impacted by the treatment of aerosol optical properties.

5 Conclusions

The primary conclusion of this study is that the use of spherical model particles (Mie theory) can introduce
substantial errors in simulated mineral aerosol radiative forcing at the TOA and at the surface. The errors
are comparable to those related to the uncertainty in the refractive indexm, which is generally believed to
be the largest error source. Due to the widespread use of the SPA in aerosol climate studies, this error source
could have far-reaching consequences in assessing the direct climate forcing effect of mineral aerosols.

The SPA errors arise through the misrepresentation of the phase function and the related error in the
asymmetry parameterg. Moreover, the radiative flux errors caused by the SPA appear rather unpredictable
and defy simplistic corrections, since their magnitude and sign depend on particle size, surface albedo,
wavelength, and optical depth, and since they are strongly correlated with the radiative flux errors caused by
the m-uncertainty. The SPA-related TOA and surface net-flux errors are more pronounced over the ocean,
whereas the significance of the correspondingm-related errors increase over land surfaces. The error in the
downwelling flux at the surface is much less sensitive to surface albedo.
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Figure 2: (a) Normalised spectral net flux errors at TOA (as defined by Eqs. (1)–(3)) for the five aerosol
samples at a wavelength of 441.6 nm and a surface albedo of 0.1. (b)–(d) Same as (a), but for the errors in
atmospheric absorptance, downward flux at the surface (BOA), and net flux at the surface, respectively.
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Abstract 

Interest in metal nanostructures stems from their unique optical properties related 
with single-particle or collective plasmons. This report is focused on optical 
properties of gold nanorods and silica/gold nanoshells, whereas the synthesis 
protocols and biomedical applications are discussed shortly. Our consideration 
includes the following topics: (1) depolarized light scattering by gold nanorods; (2) 
sensitivity of longitudinal dipole plasmon to dielectric environment; (3) scaling 
properties of nanorod multipole plasmons; (4) engineering of silica/gold nanoshells 
for tunable optical properties; (5) collective plasmons in self-assembled nanoshell 
monolayers; (6) applications of plasmon-resonant particles to solid-phase 
immunoassay, photothermal therapy, and OCT. 

1 Introduction 
Gold plasmon-resonant nanoparticles have found various applications in nanobiotechnology and 
biomedicine [1] due to their exceptional biocompatibility. An additional advantage of such 
nanostructures is related to their spectral tuning of the localized plasmon resonance (LPR) by 
variation of metal, size, shape, structure and dielectric environment. The last property includes both 
the local dielectric environment formed by adsorbed probing or target molecules, and the global 
dielectric properties of a liquid medium, dielectric solid matrix, or dielectric substrate with dissolved, 
embedded, or adsorbed particles, respectively. Attachment of biomolecules to the nanoparticle surface 
due to physical adsorption or covalent binding via thiol-modified sites is called functionalization [2], 
and the functionalized nanoparticles are often called bioconjugates. Until quite recently, the colloidal 
gold nanosphere bioconjugates were used in the majority of biomedical applications [3]. New 
activities have been further motivated by recent advances in metal nanoparticle synthesis, including 
nonspherical and/or inhomogeneous particles such as gold nanoshells [4], nanorods [5], “nanorice” 
[6], “nanostars”, etc. These new nanostructures allow for easy tuning of their spectral, scattering, and 
absorption properties. Furthermore, the collective electromagnetic response of multiparticle 
ensembles also shows rich optical properties and great promise to meet the rigorous demands of 
biodiagnostics and nanomedicine.  

Here we discuss the optical properties and possible applications of two popular types of 
nanoparticles, viz. gold nanorods and silica/gold or polystyrene/gold nanoshells. Inhomogeneous 
broadening of the extinction spectra caused by the particle polydispersity and the surface-electron 
scattering has been studied by Westcott et al. [7]. By contrast to this study, we report on the 
mechanisms of spectral broadening in polydisperse ensembles as probed by the differential light 
scattering technique. For gold nanorods, our consideration is focused on the depolarized light 
scattering by usual small rods and on the scaling properties of multipole resonances exhibited by 
larger particles. The optics of interacting nanoparticles is exemplified by a self-assembled monolayer 
of nanoshells. It has been reported [8] that the extinction spectrum of a silver particle monolayer 
exhibits sharp resonance peak related to excited quadrupole and suppressed dipole resonances. Our 
simulations and experiments show that this feature of the monolayer collective response has a general 
physical basis and does not depend on the single-particle properties. In the final section of this report 
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we discuss shortly some up-to-date biomedical applications of functionalized plasmon-resonant 
nanoparticles. 

2 Gold nanorods 
In the Rayleigh (dipole) approximation, a small gold or silver nanorod exhibits two plasmon 
resonances corresponding to the excitation of a particle along and perpendicular to its major 
geometrical axis. In the dipole approximation, the resonance wavelengths are given by expression 

, ,(1/ 1)p ib mLλ λ ε ε⊥ ⊥= + −P P , where pλ  is the bulk electron plasma wavelength, ibε  is the interband 
contribution of valence electrons to the bulk dielectric function, ,L ⊥P  are the so-called geometrical 
depolarization factors, and mε  is the dielectric function of the surrounding medium. The geometrical 
depolarization factors strongly depend on the particle shape, so the LPR peak position can easily be 
tuned by variation in the particle aspect ratio. 

It is well known (van de Hulst, 1957; Kerker, 1969) that the depolarization ratio of the scattered 
intensities vh vv/I I  cannot exceed 1/3 for “usual” small randomly oriented particles. However, for 
plasmon-resonant particles, this constrain does not hold and the upper limit for depolarization ratio is 
equal to ¾ [9, 10]. Our theoretical analysis, based on the Rayleigh approximation1 and the exact T-
matrix calculations, together with experimental measurements confirmed the existence of unusual 
depolarization properties of gold nanorods. 

To date, the dipole plasmon resonanсes of metal nanorods have been studied in details both 
theoretically and experimentally. During past 5-8 years, there appeared several observations of 
multipole plasmon excitations in gold and silver nanowires deposited onto a substrate (see, e.g., [11] 
and references therein) and gold nanorods suspended in water [12]. Here we report on the 
relationships between the multipole plasmons of nanorods and their size, shape, and orientation with 
respect to polarized incident light. We have found that the multipole resonance wavelengths as a 
function of the aspect ratio divided by the resonance number collapse onto one linear curve [13] (Fig. 
1). This scaling property is explained by using the plasmon standing wave concept [14]. 

                                                            
1 Recently, our conclusions about upper depolarized ratio limits for metal and dielectric particles were reproduced by 
Calander et al. (Chemical Physics Letters 434,326–330 (2007)) by using a similar Rayleigh approximation analysis. 
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Fig. 1. The linear scaling of multipole resonance wavelengths nλ  vs normalized aspect ratio /e n . Calculations for 
randomly oriented gold spheroids (a) and s-cylinders (b) in water. The particle diameter 80d = nm, the aspect ratio 

/e L d= = 2-20 (a), 2-12 (b), and the extinction resonance number 1 8n = −  (dipole, quadrupole, etc.). 
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3 Silica/Gold nanoshells 

The effects of the gold nanoshells structural polydispersity and the surface electron scattering in a thin 
metal layer on the resonance light scattering spectra are studied theoretically and experimentally for 
the silica/gold nanoshell water colloids. To test the calculations experimentally, two samples of 
nanoshells (designated 1 and 2) were synthesized. According to the dynamic light scattering data, the 
sample 1 particles have a 90-nm diameter of core and a broad shell thickness distribution (with an 
average value of 30 nm), whereas the sample 2 particles have a 70-nm diameter of core and a narrow 
shell thickness distribution (with an average value of 12 nm). For sample 1, the inhomogeneous 
broadening of the scattering spectrum is completely determined by the polydispersity; therefore, the 
bulk constants of gold can be used in simulation of the particle spectra. For sample 2, the main 
mechanism of the broadening is related to the limitation of the free path of electrons, whereas the 
contribution from the shell thickness distribution can be neglected. 

Recently, Chumanov’s group [8] reported on some interesting optical properties of interacting 
silver nanospheres assembled into 2D array and possessing the dipole and quadrupole single-particle 
resonances. Here we extend these observations for several kinds of nanostructures to illustrate the 
general physical basis of the dipole resonance suppression phenomenon. The extinction, scattering, 
and absorption spectra of silver and gold nanosphere and nanoshell 2D monolayers were calculated by 
the generalized multiparticle Mie solution. Because of the coherent interaction among particles in the 
array, the dipole band of extinction disappeared and only the quadruple component of the spectra was 
observed. In the experimental section, we examined the suspensions and 2D self-assembled arrays of 
nanoshells with a silica core diameter of 210 nm and a gold shell thickness of 28 nm. Although the 
dipole resonance suppression phenomenon was not as spectacular as in the case of silver nanospheres, 
we observed qualitative agreement between the experimental and theoretical data.  

4 Biomedical applications 

Both the gold nanorods and nanoshells are exceptionally biocompatible nanomaterials, which surface 
can be easily functionalized by key probe molecules such as antibodies, oligonucleotides, biotin, 
protein A, lectins, enzymes, etc. Such hybrid nanoparticle-molecule structures are basic build blocks 
for biosensorics, targeted drug or gene vectors delivery, photothermal therapy, and biomaterial 
imaging based the dark-field light microscopy, laser confocal microcopy, or OCT techniques. Recent 
reported examples are application of these techniques to cancer cell experiments in vitro [15] and 
OCT imaging with gold nanoshells and nanorods [16].  

Last year, at St.-Petersburg ELSN-9 Conference, we demonstrated a short dark-filed microscopy 
movie to visualize the dynamic behavior and interaction of gold nanorods and rat macrophages. Quite 
recently, Cortie group reported on successful photothermal destruction of murine microphages labeled 
with gold-nanorod-monoclonal-antibody conjugates [17].  

In this report, we discuss our recent first application of silica-gold nanoshells to a solid-phase dot 
immunoassay [18]. The assay principle is based on staining of a drop (1µL) analyte on a 
nitrocellulose membrane strip by using silica/gold nanoshells conjugated with biospecific probing 
molecules. Experimental example is human IgG (hIgG, target molecules) and protein A (probing 
molecules). For usual 15-nm colloidal gold conjugates, the minimal detectable amount of hIgG is 
about 4ng. By contrast, for nanoshell conjugates (silica core diameter of 70 nm and gold outer 
diameter of 100 nm) we have found significant increase in detection sensitivity and the minimal 
detectable amount of hIgG is about 0.5 ng. This finding is explained by the difference in the 
monolayer particle extinction. 

Finally, we provide an illustration of erythrocyte and living bacteria imaging with silica-gold 
nanoshells as resonance-scattering labels. In this case, nanoshells are seen as bright red dots against a 
dark background, except for yellow areas of aggregation, where nanoshells are in close proximity and 
the plasmon resonance wavelength is changed.  
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Abstract 

The optical behavior of three-component carbonaceous ellipsoidal aerosols is analyzed. 
Compared to compact ellipsoids, the fragmented particles show enhanced backscatter and 
linear polarization. Employment of EMTs may lead to overestimation of both the 
asymmetry parameter and efficiency factor for absorption, but bulk Qext is only slightly 
influenced. Typically the compact particles, whose absorbing component has the largest 
air-carbon interface, absorb less efficiently than particles with random fragmentation. 

1 Introduction 
Fine submicron-sized aerosols can occur in both the solid phase and the liquid phase. Such particles 

are too small to settle rapidly or to be washed out by rain, but they are still sufficiently large to avoid 
coagulation processes. Thus their survival time in the atmosphere is quite long. Solid-phase aerosols are 
almost typically non-spherical and are rarely homogeneous. While the prevailing constituents of aerosol 
particles can be constantly identified in some territories, the internal structure of such particles is a 
notoriously unknown quantity and depends on many factors participating in processes of particle 
formation. The optical response of the particles (having known size, shape, orientation and composition) 
to the incident electromagnetic radiation is still uncertain due to the variety of possible internal mixing of 
individual materials. 

Basically, it is impossible to describe the realistic shapes of ambient aerosols. Instead, it is more 
convenient to characterize the prevailing morphology by means of aspect ratioε  that relates the largest 
and smallest characteristic sizes of arbitrarily shaped particle. One of the easiest ways to simulate non-
spherical particles having different aspect ratios is to employ mathematically well-defined geometries, 
like ellipsoids. Then, the ratio of the major semiaxis a  to the minor semiaxis b  (i.e. the aspect ratio) may 
vary from 1/ ≈ba  (for nearly spherical particles) to 1/ >>ba  (for needle-like particles) or 1/ <<ba  
(for disk-like particles) [1]. 

We present results of numerical simulations of the optical behavior of carbonaceous non-spherical 
particles with random as well as non-random internal mixing of individual materials. The numerical study 
is based on the discrete dipole approximation (DDA). At present, many excellent numerical tools are 
available to calculate optical properties of non-spherical particles, yet there is still a lack of methods 
applicable for composite particles. Therefore a set of effective medium theories (EMTs) was developed to 
overcome computational difficulties (typical e.g. for DDA). However, the correctness of EMTs is 
questionable and their usage may result in errors. 

We perform numerical light-scattering simulations for ellipsoidal aerosol particles composed of 
ammonium sulfate, organic matter and black carbon. Organic matter typically influences the atmospheric 
radiation through both scattering and absorption. Elemental carbon includes strongly light-absorbing 
material and is thought to yield large positive radiative forcing. Ammonium sulfates represent a quite 
important aerosol constituent in urban atmospheres. 
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2 Computational model 
Generally speaking, EMTs approximate the optical properties of the inhomogeneous scatterer by 

those of a homogeneous particle of the same shape. The advantage of an EMT is that a homogeneous 
particle can be calculated much more easily and rapidly than a heterogeneous particle. One of the easiest, 
but physically not-well-justified EMTs is volume (mass) weighted mixing for which the resulting 
refractive index m of a particle is given as follows: ∑=

j jj fmm , where jm is the refractive index of j-

species and jf  is its volume fraction. To render principal differences between the EMT-based approach 
and regular (DDA-based) calculation, we consider the volume weighted mixing rule. 

 

Figure 1: Applied particle models for the low-carbon case. Top shows particles with materials randomly 
distributed. Bottom shows particles with materials in clumps. 

The basic particle model we incorporated into numerical scheme coincides with typical urban 
aerosols composed of ammonium sulfates (volume content ~ 50%, refractive index 1.52-0.0i), organic 
matter (volume content ~ 40%, refractive index 1.46-0.016i), and black carbon with approximately 10% 
volume content and refractive index 1.75-0.3i [2]. However, under some conditions the carbon can occur 
as an abundant component with volume fraction 20-30%. These situations are studied as “high carbon 
content case” (where organic matter is varied between 20-40% of particle volume, and ammonium sulfate 
ranges from approximately 40% to 50 % of particle volume). To check the simultaneous effect of 
asphericity and material configuration on particle optical properties, we model the aspect ratios of 
rotationally symmetric particles to be close to 1.4 - 1.6 as this range is well applicable to tropospheric 
particles [3].  

Two basic approaches are employed to simulate the internal mixing of materials: a) the individual 
pieces of different constituents are distributed randomly in the particle body and b) the individual 
constituents are not scattered over the particle volume but are rather clumped together into compact 
blocks (Fig. 1). For both models we calculate the optical characteristics (phase function, polarization and 
efficiency factors for scattering, absorption and extinction, and asymmetry parameter) using the EMT 
approximation that assumes the effective refractive index is the volume-averaged refractive index of the 
components [4]. We analyze particles with i) prolate, ii) moderate, and iii) oblate forms. The 
classification is based on the mutual relation of particle sizes in X, Y, and Z, which are in our case given 
as follows: i) 1.6/1.0/1.0, ii) 1.6/1.3/1.1, iii) 1.6/1.6/1.0. All computations are made for incident 
monochromatic radiation with wavelength λ = 0.525 µm. 
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3 Numerical results and 
discussion 

When computing the optical 
properties of composite randomly 
oriented particles we especially 
paid attention to modeling the 
phase function, polarization and 
efficiency factors for scattering 
Qsca, absorption Qabs, extinction 
Qext, and asymmetry parameter g. 
The computer model of the particle 
is expanded or contracted to 
produce scattering calculations for 
particles of different size. The 
precision of the DDA scattering 
calculations approximately 
depends on parameter |m|kd, where 
d is the inter-dipole separation, k is 
the wave number (k = 2π/λ) and m 
is the complex refractive index of 
the particle. To guarantee that 
scattering calculations are 
sufficiently accurate, the parameter 
given above should be less than 1. 
We increased the number density 
of dipoles always when necessary 
to satisfy this requirement. 

The computational results 
show slight differences between 
optical properties of particles built 
from compact homogeneous blocks 
and particles composed of 
randomly mixed pieces of material 
constituents (Fig. 2). As expected 
the most affected quantity is Qabs: 
particles with characteristic 
random material configuration 
absorb more efficiently than 
particles built from compact blocks 
(refer to DDA calculations 
presented in Fig. 2). We discussed 
this in [5] for very small particles. 
As known from macrophysical 
studies the light transmitted into a 
material generally is increased if 
the media on either side of the 
interface have similar refractive 
indices. The air-carbon interface 

a) 

Figure 2: Optical properties of three-component carbonaceous ellipsoidal 
particles: a) Bulk properties and b) scattering response of x = 6 particles. 

b) 
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tends to reflect more light than the ammonium sulphate-carbon (or organic matter-carbon) interface. 
Therefore three-segment compact ellipsoids, whose absorbing component has the largest air-carbon 
interface absorb less efficiently than randomly fragmented ellipsoid.  

Compared with DDA results, the volume-weighted EMT results overestimate both the asymmetry 
parameter and absorption efficiency, and usage of the EMT results in a quite evident reduction of 
scattering efficiency. Altogether these effects tend to cancel, leaving the extinction efficiency Qext the 
most accurate quantity reproduced using EMTs. Discrepancies in the behavior of linear polarization and 
phase function is observed at large scattering angles for particles whose size is comparable to the 
wavelength of incident radiation: 1) the fragmented ellipsoids show a bit larger linear polarization than 
the compact ellipsoid, and also 2) the fragmented ellipsoids with high-carbon content scatter more in the 
backward direction than the compact ellipsoid. This can be due to reduced absorption or additional 
internal interactions.  
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Abstract 

The new method for solving the problem of wave diffraction on a group of bodies of 
revolution is presented. The method is based on the simple algorithm and it allows to 
calculate the electromagnetic field and the pattern with high accuracy. 

1 Introduction 
The modified method of discrete sources (MMDS), offered in the paper [1], has been subsequently 

applied for solving a wide class of problems of diffraction theory, and in all the cases high efficiency of 
the method [2] has been shown. The uniform way of construction of the carrier of discrete (auxiliary) 
sources by means of analytical deformation of border of a scatterer is the main idea of the method. Thus a 
priori information of properties of analytical continuation of diffraction field inside the scatterer is 
materially used.  

The major practical issue is how to apply MMDS for solving the problem of wave diffraction on a 
closely located group of bodies. In consequence of diffraction interaction of the bodies the picture of 
arrangement of the singularities of the analytical continuation of wave field inside each scatterer can 
significantly differ from that which takes place in the case of a single body. In the case of close location 
of the scatterers singular points start "to be multiply", i.e. the singularities inside one body generate the 
singularities inside the other. In the paper some modification of MMDS is realized. This makes the 
method efficient for solving the problem of wave diffraction on a closely located group of bodies. The 
essence of this modification is that the carrier of discrete sources for each body is constructed using usual 
scheme of MMDS. However the sources surrounding the singular points, which appear because of the 
interaction between the scatterers, are appended in addition to the basic sources. In the paper the effective 
numerical algorithm for finding the singularities based on the continuation by a parameter is offered.  

 

2 The statement of the problem and main relations.  
Let the group of two bodies of revolution is located on one axis and bounded by surfaces  and . 

We choose the system of coordinates so that the axis  coincides with the axis of revolution of the 
bodies. Assume, that the impedance boundary condition on the surfaces of the scatterers is satisfied: 

1S 2S
z

( ), 1p p p pn E Z n n H p× = × × = ,2 , (1) 

where pZ  is the impedance on the surface  and pS pn  is the outward normal. The secondary field, 

everywhere outside the domains of the bodies, obeys the homogeneous Maxwell equations and the 
attenuation condition at infinity. 

Let's introduce the local systems of coordinates connected with each of the scatterer. We choose the 
origins of the systems inside the surfaces  and . Then the secondary field is equal to the sum of the 
fields scattered by each body: 

1S 2S
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= Σ
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p p
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H k J G dp σ
= Σ

= ⋅ ∇ ×∑∫ , (3) 

where 

exp( )
, , ,

4
p

p p p p p p
p

ikR
G R r r r

kRπ
−

′ ′= = − ∈Σ 1,2.p =  (4) 

Here  is the auxiliary surface of revolution located inside the initial surface  of the p-th body, pΣ pS pJ  is 

the unknown current distributed on the surface pΣ ,  is the wave-number, k η  is the wave impedance of 

the medium. The expressions for the electric and magnetic field components in the spherical coordinate 
system connected with the given body, are presented in [2]. Similarly to the paper [2] we pass to the 
parametrical representation of the surfaces of the scatterers. Then for the surfaces  and  we get: 1S 2S

sin cos , sin sin , cos , 1,2p p p p p p p p px r y r z r pθ ϕ θ ϕ θ= = = = , (5) 

where ( )p p pr r θ=  are the equations of these surfaces in the local spherical coordinates. The auxiliary 

surface  has the following equations: pΣ

sin cos , sin sin , cos ,p p p p p p p p px y zρ α ϕ ρ α ϕ ρ α′ ′ ′= = =  (6) 

where 

arg ( ), ( ) , ( ) ( )exp( ), 1,2.p p p p p p p p p p p p pt t t r t i it pα ξ ρ ξ ξ δ δ= = = + − =
 (7) 

In the formulas (7) pδ  is the positive parameter responsible for the degree of deformation of the contour 

of the p-th body cross-section, 1,2 [0, ]t π∈ . The choise of the parameters pδ  is described 

in [2]. By analogy with the paper [2] we present the unknown currents on the surfaces  in the form: 1,2Σ

2( sin ), ( ) ( )p p p p p p p p pJ I χ ρ α χ ρ α ρ α′= = 2+ , (8) 

where strokes mean the derivatives with respect to the corresponding arguments and 

1 1 2

( )

( )
, 1,

p p

p p
p p p p

p p

I I i I i I i pρ α β

ρ α

ρ α

′
= + + 2.=

 

(9) 

From the formulas (2) - (9) it is easy to get the system of integral equations relative to the Fourier 
harmonics of four unknown currents 11 12 21 22, , ,m m m mI I I I . In the matrix form the system looks like: 

=KI B ,  (10) 

Where the matrix consists of four blocks: 

11 12

21 22

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

K K
K

K K
, (11) 

where each block is: 
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p q q q q p q q q q

pq

pq m pq m
p q q q q p q q q q
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π π

π π
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∫ ∫

∫ ∫
K = = ± ±  (12) 

The kernels pq
i jK of the equations are similar to those presented in [2]. 

 

3 Numerical algorithm and some results.  
The usual scheme of the numerical solution of the system (10) is described in [2]. Let's consider the 

problem of finding the singularities of the scattered field under diffraction on the closely located group of 
bodies. Assume that the body of revolution with the smooth border is placed near the other body, which is 
sharp-pointed. Thus, it is supposed, that the second body singularity is situated close to the surface of the 
smooth one. We name this singular point as the singularity-source. Suppose, that given singular point has 
polar coordinates 0 0( , )r θ  in the coordinate system connected with the smooth body. 
As mentioned above, the singularity-source generates the additional singular point (singularity-image) 
inside the smooth scatterer, which would be absent under diffraction on this single body. To find the 
coordinates of the singularity-image we use the method of continuation by a parameter. As this parameter 
the distance  is used. The coordinates of the singularity-source are also found numerically. The equation 
defining the coordinates of the singularity-image inside the smooth body has the following form: 

0r

0
0( ) iif e r e θθθ −− = , (13) 

where ( )f θ  is the equation of the contour of the smooth body cross-section in the polar coordinate 
system connected with given body. The equation (13) defines the value of the complex angle θ  
corresponding to the singularity-image. The polar coordinates of this point are accordingly equal to: 

| ( ) |, arg ( ), ( ) ( ) i
i ir f e θξ θ θ ξ θ ξ θ θ= = = . (14) 

For further solution of the problem we surround all the singularities-images with the circles of the small 
radius. When these circles rotate they represent the toroidal surfaces with round sections. Thus the 
integrals over these toroidal surfaces are added to the expressions (2) and (3) for the scattered field. This 
gives rise to the additional discrete sources in the presentation for the secondary field. 

Comparison of the stated algorithm with the pattern equations method (PEM) presented in  
the paper [3] has been performed. As an example we have considered the diffraction of the plane wave 

0 exp( )xE i ikz= − , 0 1
exp( )yH i ikz

η
= −  (15) 

on two identical superellipsoids. The equation of the contour of the superellipsoid cross-section is: 

2 2

1
s sx z

a c
⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (16) 

The sizes of the bodies are  and 2.5, 5ka kc= = 10s = . The minimal distance between the surfaces of the 
bodies is . In Fig. 1 the angular dependence of the module of the pattern for the concerning 
group of bodies (solid curve) is presented. The dashed curve demonstrates the results obtained by means 
of PEM. It follows from the figure that the results of calculations coincide with high accuracy. 

0.02kd =

Fig. 2 illustrates the advantages of the modified MMDS in comparison with the usual algorithm, 
which does not consider the singularities-images inside the smooth body generated by the singularities of 
the other body with rough border. The figure shows the residual of the boundary condition on the contour 
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of the cross-section of the spheroid near to which the double-cone is located. The double-cone is modeled 
by the generalized superellipsoid of the following kind: 

2 2

1
s sz x z x

c c
ν ν− +⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= . (17) 

Axial incidence of the plane wave (15) is considered. The sizes of the bodies have the following values: 
semi axes of the spheroid are , the maximal sizes of the double-cone along the coordinate 
axes are equal to 4 , the parameter 

4, 2ka kc= =

1ν =  and 10s = . The distance between the surfaces of the bodies is 
. Curve 1 in the figure corresponds to the standard MMDS, and curve 2 does to the modified 

algorithm considering the singularity-image on the small axis of the spheroid. The number of the 
additional sources surrounding the singularity-image is equal to 7. Note, that the full number of discrete 
sources in both cases are identical and equal to 267. It follows from the figure that the level of the residual 
obtained by the modified MMDS much less the level of the residual obtained with the use of the standard 
MMDS.  

0.1kd =

              

 Fig.1 Fig.2 
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Abstract

The new method for solving the diffraction problem on objects with a complex
geometry is offered. The problem is reduced to solving an algebraic system of
equations with respect to the expansion coefficients of the scattering patterns by using
of a series expansion of the scattering patterns in vector spherical harmonics. It’s
shown, that the method possesses high convergence rate. Examples of modeling of
the scattering patterns of objects by the combination of last of objects of the more
simple form (fragments of a complex objects) are considered. Reliability of the results
obtained is validated by the using of the Optical theorem.

1 Introduction

The problem of effective modeling of the scattering characteristics of electromagnetic waves by
objects with a complex geometry remains actual, because there are practically no effective methods of
its solution. One of the most effective modern techniques for solving of a series of the diffraction
problems is the pattern equations method (PEM). In particular, the high efficiency of this technique
was demonstrated by solving of the diffraction problem for a group of bodies and for objects with a
complex structure in an acoustical case [1]. One of important advantages of the PEM is its weak
dependence of convergence rate of the computational algorithm on a distance between scatterers. In
this paper, this technique is extended to an electromagnetic case.

2 Statement of the problem and it’s solution

Consider the problem of waves scattering of the primary monochromatic electromagnetic field 0E
r

,
0H
r

 on a scattering objects with a complex geometry with latter to be presented as a combination of
objects of more simple structure. Let’s consider the case of two reflecting objects, for determinacy. It’s
possible to use this approach for any number of objects.

Let the impedance boundary conditions are set on surfaces jS , 2,1=j :
( ) ( )[ ]

jj SjjjSj HnnZEn
rrrrr

´´=´ ,

where jZ  – surface impedance, jnr  – the unit normal vector to surface jS , 1
2

1
1

0 EEEE
rrrr

++= ,
1
2

1
1

0 HHHH
rrrr

++=  – the total field, 1
jE
r

, 1
jH
r

 –  the secondary (diffraction)  field,  which satisfies  to  a

homogeneous system of the Maxwell’s equations everywhere outside of jS

 ( emz =  – the wave impedance of a medium), and also to the Sommerfeld’s condition on infinity
Let’s take advantages by series expansion of the scattering patterns in vector spherical harmonics

for reduction of an initial problem to a system of algebraic equations:
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)(cos j
m

nP q  – associated Legendre functions [2], and functions ),( jj
E
jF jq
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 – are scattering patterns of

electric field, satisfying in a so-called far zone (for 1>>jkr ) to asymptotical relations as:
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Thus, our purpose is a deriving of an algebraic system for coefficients j
nm

j
nm ba , ,  which  can  be

expressed as following integrals:
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conjugation.
As a result, with the using of expansions of the wave field:
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where the wave spherical functions are expressed by the following relations:
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All the coefficients in this system represent summation of two components: corresponding values
when the impedance is equal to zero 0=jZ , and additional addends, caused by difference of the value
of impedance from zero.

3 An examination of the convergence of calculation algorithm

Our investigations has shown, that for the scatterers with an analytic boundary (spheres) four or
five valid significant figures are already established when 2,15.19 kdN ==  even at the minimum
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distance between objects ( 1.6=kr ) (where d  – is the maximum size of the scatterer). However in the
case of bodies with nonanalytic boundary (cylinders) three or four valid significant figures are
established only at 2,11.2 kdN = .

These investigations has shown, that the convergence rate of the calculation algorithm remains
almost the same high when scattering bodies are coming close together up to their contact, like in
previously described acoustical case [1]. This fact allows us extend the PEM to solving the diffraction
problem for scatterers with a complex geometry by their representation as a combination of objects of
more simple form at minimum consumption of the computer resources.

4 Examination of mutual influence of objects

The difficulty of solving of the diffraction problem on a group of bodies consists in necessity to
consider interaction of objects, which is related with rereflections between them. Fig. 1 illustrates
dependence of integral scattering cross sections:

ò ò=
pp

jqqjq
p

s
2

0 0

2 sin|),(|
4
1 ddF Er

for two superellipsoids with 2,1 2,12,1 == kcka , 02,1 =Z  on  a  distance  between  them,  where
),( jqEF

r

 –  is  the  scattering  pattern  for  two  bodies  with  (curve  1  and  2)  and  without  taking  into
account the mutual influence, respectively. With increasing of the distance between objects the value
of the common integral scattering cross section come close to summation of cross sections of separate
bodies (curve 3). Besides, one can see on these figures, when bodies coming together there is a
diminution of the aggregate cross section, calculated without taking into account the mutual influence.
This can be explained by the “partial accumulation” of the power of an incident wave in the area
between mirrors during the average period. Curve 4 corresponds to the integral cross section of
superellipsoid of double size, to which the aggregate cross section of two bodies at their contact is
coming close.

Figure 1.

5 Examination of possibility of the scattering characteristics modeling for
bodies with a complex geometry

Let’s carry out examination of the proposed method, based on comparison of scattering pattern of a
single body with scattering pattern of the object, composed of halves of these bodies. Figures 2a and
2b show examples of such comparison for superellipsoids with 8,4 2,12,1 == kcka  for various values
of the impedance. Fig. 2a corresponds to the value of the impedance equal to zero 02,1 =Z , and fig. 2b
– z=2,1Z , in both cases for the perpendicular incidence of wave. Figures show, that the differences of
corresponding patterns are very small.
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Figure 2a. Figure 2b.

5 Verifying of the validity of the optical theorem

One of the methods of an estimation of the validity of the solution of the diffraction problem is verifying
of fulfillment of the optical theorem, according to which [3]:
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jjqq
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2
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,

where ),( 00 jq  – angles of incidence of a primary wave, pr  – a polarization vector, l  – a wave length.
Table 1. Verifying of the validity of the optical theorem for two objects at perpendicular incidence of a wave

Two spheres, 32,1 =ka Two cylinders, 32,1 =ka , 62,1 =kh

kr s { }),(Im 00 jqq
EF- kr s { }),(Im 00 jqq

EF-

6.1 9,03726456130122 9,03726456130087 6.1 14.2118 14.3938

7 9,69071815232501 9,69071815232500 7 15.8345 15.6466

10 9,90163562078583 9,90163562078574 10 14.9745 14.9084

Table 1 shows, that for two spheres the accuracy of fulfillment of the optical theorem practically coincides
with the machine precision of evaluations. However for cylinders the accuracy is noticeably lower, that can be
explained by nonanalytic boundaries of scatterers, but also is quite acceptable.
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Abstract 

The integral-operator equation of the pattern equation method is deduced using a method 
of the continued boundary conditions. Generally speaking the deduced equation has the 
approximate character, however it is applicable for the solution of diffraction problems at 
smaller restrictions on scatterer geometry, than the rigorous equation. Numerical 
examples are considered. 

1 Introduction 
For almost 15 years the pattern equations method (PEM) has been successfully applied to the solution of 
the broad spectrum of wave diffraction and propagation problems. However, essential limitation of the 
method is that in it’s strict formulation it is not applicable to the solution of diffraction problems on 
bodies with non analytical (in particular, piece-smooth) boundary caused by divergence of Sommerfeld-
Weil integral representation in singular points of a wave field. The method of continued boundary 
conditions (MCBC) suggested recently allows to overcome this limitation. The trick is that according to 
MCBC, the boundary condition is satisfied not on boundary S of scatterer, but on some surface Sδ, 
covering S and separated from it by some sufficiently small distance δ. It leads to the approximate 
statement of a problem, however, as a result all difficulties related to singular points of a wave field on 
scatterer boundary in case it has breaks, corners, edges, etc., as well as difficulties related to singularity of 
the corresponding integral equation kernels are removed. Computational algorithm thus becomes 
significantly simpler and practically universal. 

PEM integral-operator equation (in general approximate), which can be deduced using MCBC, is 
applicable under more general assumptions of scatterer geometry, than the exact equation of the method. 
For compactness we consider a diffraction problem on perfectly conducting scatterer. However the basic 
ideas of this approach are entirely extended to the vector problems. 

2 Derivation of PEM integral-operator equation 
It has been shown [1,2], that in framework MCBC the boundary problem can be reduced to the solution of 
Fredholm integral equation of the Ist, and IInd kind with smooth kernel. In particular, in case of perfectly 
conducting scatterer MCBC gives the following equation 

 ( )0
04

S S

kJ J n J G ds

δ

δ δ π

⎛ ⎞
′⎜= − × ×∇

⎜
⎝ ⎠

∫ ⎟
⎟ , (1) 

where ( )
S

J n H= × , ( )
S

J n H
δ

δ = × , 0 0( )
S

J n H
δ

δ = × , and 0H , 1H , 0H H H= + 1  are primary, 

scattered and total magnetic field vectors respectively, 0
exp( )ikRG

kR
−

=  is free-space Green function, 

R r r′= − . 
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By multiplying both parts of the Eq. (1) on exp{ ( , )cos }ik δρ θ ϕ γ , 
cos [sin sin cos( ) cos cos ]γ α θ β ϕ α θ= − + , integrating on Sδ and taking advantage of generalized 
Sommerfeld-Weil representation for function : 0G

 
2 i

d d
ππ 2

0
0 0

1 ˆexp( cos cos )sin
2

G ikr ikr
i

α γ α α
π

′= − +∫ ∫ β
+ ∞

, 

were 
 ˆ ˆˆ ˆcos sin sin cos( ) cos cosγ α θ β ϕ α θ= − + , ˆcos sin sin cos( ) cos cosθ θ θ ϕ ϕ θ θ′ ′ ′= − + , 

 ˆ ˆsin cos sin sin( )θ ϕ θ ϕ ϕ′ ′= − ˆ ˆn sin sin cos cos sin cos( ), si θ ϕ θ θ θ θ ϕ ϕ′ ′ ′= − − , 
we obtain the following integral-operator equation of PEM relative to the scattering pattern ( , )EF α β  
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Here 
S

( , ) ( )exp[ ( , )cos ]EF J r ik dsα β ρ θ ϕ γ= ∫δ δ δ , ˆ ˆ( , ; , ) ( )exp[ ( , )cos ]E

S

F J r ik dsα β θ ϕ ρ θ ϕ γ′ ′ ′ ′ ′= ∫ ′ is the 
generalized scattering pattern [3].  

Generally speaking the Eq. (2) is approximate, since at its derivation it was assumed, that 
( , ) ( , )E EF Fδα β α≅ β

r

. However this equation is now applicable to the diffraction problems on bodies 
with non-analytical boundary. If boundary S is analytical the obtained equation becomes exact. It is 
interesting to note, that integral-operator equation of PEM cannot be derived from standard current 
Fredholm integral equation of a IInd kind even for bodies with analytical boundary because of the simple 
layer potential normal derivative jump. 

If scatterer is weakly non-convex [3], it is more appropriate to use the equation Eq. (2) for solving 
diffraction problem, since the corresponding computation algorithm converges quite fast [3]. However, in 
case of strongly non-convex scattere s or thin screens, the Eq. (1), which is usually solved using local 
approximation of the sought current ( )J r′ , is more suitable. 

3 Numerical examples 
The scattering pattern of plane electromagnetic wave propagating at angles 0 0ϕ = , 0 0θ =  incident on a 
circular cylinder with a radius ka=3 and height kh=10 was calculate using the Eqs. (1) and (2). Results of 
calculations have graphically coincided. The maximal number N of the spherical harmonic used at 
unknown scattering pattern approximation in the Eq. (2) has been set 15, and number of basic functions 
M, used for approximation of unknown current in the Eq. (1) was set 128. The accuracy of the results 
obtained with Eq. (1) was evaluated by the residual of the boundary condition, calculated in points 
between collocation points. This residual is shown on figure. 1.  
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Figure 1: The residual for a circular cylinder with a radius ka=3 and height kh=10. 

Thus, for bodies which geometry allows Eq. (2) for solving diffraction problem, the later is more 
suitable. However, as mentioned above, using approximation Eq. (3) for reducing Eq. (2) to algebraic 
system to solve, for example, diffraction problem on thin screen, is not acceptable. If we approximate the 
pattern ( , )EF α β  in Eq. (2) by sum 

 
1

( , ) ( )exp[ ( , )cos ]
N

E
n n

n
F J r ikα β ρ θ

=

=∑ ϕ γ , 

where  are the position vectors of the points nr nΩ , situated everywhere dense on S, i.e. { } 0n n S∞

=
Ω = , 

Eq. (2) leads to algebraic system with ill-conditioned matrix. In such situation using Eq. (1) is more 
expedient for solution boundary problem. 

Let’s consider now a diffraction problem, for which Eq. (2) is inapplicable. Solution of diffraction 
problem for plane wave at 0 0θ =  was obtained on a parabolic mirror defined as ( )2cos 2( ) f θρ θ = , 
where f is the focal length, kf=20. Figures 2 and 3 show the scattering pattern in the plane [ ]0,ϕ π=  for 

EFθ  (solid) and in the plane [ ]2,3 2ϕ π π=  for EFϕ  (dashed) and the residual of the boundary condition, 

calculated in points between collocation points, respectively, obtained at M=64, Q=1, . It can be 
seen that the solution has the acceptable accuracy.  
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Figure 2: The scattering pattern for a parabolic mirror with kf=20. 
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Figure 3: The residual for a parabolic mirror with kf=20. 

4 Conclusion 
Thus, MCBC allows the reduction of a boundary value problem not only to the integral equations with a 
smooth kernel with respect to sources density on scatterer surface, but also to equations with respect to a 
scattering pattern of a body, i.e. to a field characteristic in a long-distance zone. This gives the reason to 
think MCBC one of the most universal method for solving diffraction problems. 
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Abstract 

The problem of electromagnetic scattering by a system of particles is considered. Starting 
from the integral solution of the inhomogeneous wave equation, the equations for Green's 
and transition operators are derived. By expanding the free-space dyadic Green's function 
in terms of spherical wave functions, equations for determining the matrix elements of 
the dyadic transition operators for system of particles are obtained. The relations between 
the matrix elements of the dyadic transition operator and Waterman's T matrix are 
established. 

1 Introduction 
Waterman's T-matrix formalism is widely used in acoustic and electromagnetic scattering problems [1]-
[4]. For the problem of electromagnetic scattering by aggregated (composite) particles the superposition 
T-matrix approach has been developed (see, for example [2], [4]). 

Alternative methods for treating the electromagnetic scattering problem are the quantum-mechanical 
potential scattering approach [3], [5] and recently developed self consistent Green's function formalism 
[6]. In [6] it is shown that, for suitable choice of expansion functions, the matrix elements of interaction 
operator are related with Waterman's T-matrix. 

In this paper we present rigorous and systematic derivation of the superposition T-matrix approach, 
which directly follows from the inhomogeneous wave equation. Starting from the complete integral 
solution of the inhomogeneous wave equation for a time harmonic field, we obtain first the equations for 
the Green's and transition operators. Then, expressing the free space dyadic Green's function in terms of 
spherical wave functions and separating variables, we find the equation for determining the matrix 
elements of transition operator T  for a system of particles using the matrix elements of T for isolated 
particles. We show that for divergence free electric field the matrix elements of T , expressed in spherical 
wave functions, directly connected to Waterman's T matrix.  

2 Equation for particle-centered matrix elements of the dyadic transition 
operator T  

Let us consider electromagnetic scattering by a system of nonmagnetic scatterers assuming, as usual, that 
the scatterers are embedded in an infinite, homogeneous, linear, isotropic, nonmagnetic and nonabsorbing 
host medium. For this problem, it is well-known that everywhere in space the time harmonic electric field 
satisfies the inhomogeneous differential equation [2]: 

2( ) ( ) ( ).k∇×∇× − =E r E r J r       (1) 
Here 

2 2
0( ) ( ) ( ( , ) 1) ( )k m ω= + −J r J r r E r ,     (2) 
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   (4) 

where 0 ( )J r is a source of radiation, sourV is volume of the source of radiation, hV  and iV  are the volumes 
of the host medium and the i-th particle, respectively, ( , )im ωr  is the complex refractive index of the i-th 
particle relative to that of the host medium, m  and ( , )im ωr  are the refractive indices of the host medium 
and the i-th particle, respectively. k  and ( , )ik ωr are the wave numbers in the host medium and inside the 
i-th particle, respectively. 

The complete solution of Eq.(1) (see, for example [2]) is as follows:  
3

0( ) ( ) ( , ) ( ) ( )inc
V

G U d′ ′ ′ ′= + ∫E r E r r r r E r r ,    (5) 

where 0 ( , )G ′r r  is the free space dyadic Green’s functions, ( )U ′r  is scattering potential [3], [5]. 
Eq. (5) can be written as follows: 

3
0 0 0 0( ) ( , ) ( )

V

G d= ∫E r r r J r r ,      (6) 

where 0( , )G r r  is dyadic Green’s function for whole system of scatterers. Introducing the transition 
operator, related with the i-th particle and transition operators, related with the i-th and j-th particles (see 
for example, [5]), one can write for 0( , )G r r : 

3 3
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i j

i ij i j j i j
i j V V

G G G T G d d′ ′ ′′ ′′ ′ ′′= +∑∫ ∫r r r r r r r r r r r r .   (7) 

Here ( , )ij i jT ′ ′′r r  is transition operator, related with particles i and  j. 
3 3
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0 ( ,  )i
i iT ′ ′′′r r  is transition operator, related with particles i [3], [5]. Let us separate variables r and i′r  ( 0r and 

j′′r  etc.) in Eqs.(7), (8) and express 0G  in terms of spherical wave functions. Then Eq.(7) can be written 
in the following form: 
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(1) (1)( ) ( ) ( , )lm i l i lm i ik h kr Yψ ϑ ϕ=r ,    (11) 
(1) ( )lm ikψ r  are scalar spherical wave functions, ( , , )i i ir ϑ ϕ are spherical coordinates of the radius-vector ir in 

the coordinate system { , , }i i ix y z  associated with the i-th particle. 
ij

lml mT ′ ′  are the matrix elements of the dyadic transition operator ( , )ij i i j jT ′ ′′+ +R R R R : 
* ( ) ( , ) ( )

i j

ij
lml m lm i ij i i j j l m j i j
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T Rg k T Rg k d dψ ψ′ ′ ′ ′′ ′ ′′ ′′ ′ ′′= + +∫ ∫ R R R R R R R R ,   (12) 

( ) ( ) ( , )lm i l i lm i iRg k j kR Yψ β α′ ′ ′ ′=R ,    (13) 

where ( )lm iRg kψ ′R  are scalar regular spherical wave functions. 
The matrix ij

lml mT ′ ′  is a tensor of 2-nd rank (dyad) associated with the particles i and j (the particle-
centered matrix). It contains all possible scattering processes occurring while wave propagates from the 
particle j to the particle i. The matrices ij

lml mT ′ ′  are independent of the incidence and scattering directions as 
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well as of the polarization state of the incident field. They depend only on the configuration of the system 
of particles, the properties of the component particles, their orientation, etc. 

For the matrix elements 0i
lml mT ′ ′ , associated with isolated particles, we can write similar to (12) the 

following relation:  
0( ) *

0( ) ( , ) ( )
i i

i i
lml m lm i i i i i l m i i i

V V

T Rg k T Rg k d dψ ψ′ ′ ′ ′′ ′ ′′ ′′ ′ ′′= + +∫ ∫ R R R R R R R R .  (14) 

Using the definitions (12), (14) and the addition theorems for scalar spherical wave functions (see, for 
example, [7]), from Eq.(8) we have the following equation for matrix ij

lml mT ′ ′ : 
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l
l lC  and 3 3

1 1 2 2

l m
l m l mC −  are Clebsh-Gordan coefficients [7]. 

2 Relation between Waterman's T matrix and the matrix elements of the 
dyad transition operator T  

Eq.(9) for Green's function and Eqs.(12),(14)-(16) for the matrix elements of the transition operators 
are obtained for the following conditions: the Green's function must satisfy vector wave equation and 
must be limited at infinity. Thus 0 0( , )G r r  and 0( , )G r r are not divergence free and contain both transverse 
and longitudinal parts. For the system of uncharged particles electromagnetic field outside of source 
region is purely transverse. Thus in Eq.(9) and Eqs.(12), (14)-(16) one has left just the divergence free 
transverse part of 0 0( , )G r r and 0( , )G r r . For the transverse part of Green's function from Eq.(9) we can 
write following equation: 
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In Eqs.(19)-(22) the dyadic transition operator T  for the system of particles is defined by Eq.(8) whereas 
for isolated particles it is the transition operator related with a particle [5]. ( )lm kM r , ( )lm kN r  are vector 
spherical wave functions [2]. In (19)-(22) the matrix elements 1

1 1

ll
LML MT  ( , 1l L L= ± ) are related with 

cyclical components 1

1 1

qq
lml mT  ( q  and 1q  take values 0, 1± )) of 

1 1lml mT  (see Eq.(12), Eq.(14)) by the equations: 
1 1 1 1 1 1 1 1 1 1

1 1 1 11 1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1
1( 1) ,       ( 1)ll q q L M qq qq q q L M llLM LM

LML M lm q l m q lml m lml m lm q l m q LML M
mm qq LML M

T Tik C C T T C C
ik

+ +
− − − −= − = −∑∑ ∑   (23) 

From Eqs.(5), (6), (18) one can obtain the expansions for scattered and incident fields: 
( ) ( ( ) ( )),       ( ) ( ( ) ( ))sc LM LM LM LM inc LM LM LM LM

LM LM
p k q k a Rg k b Rg k′ ′ ′= + = +∑ ∑E r M r N r E r M r N r ,  (24) 

where scattering coefficients are related with expansion coefficients of incident field through the matrix 
elements (19)-(22) 

1 1

pn
LML MT : 

1 11 1 1 1

1 1 1 1 1 1 1 1

11 12

21 22
1

( 1)
L MLM LML M LML M

L M LML M LML MLM L M

ap T T
T Tq bL L

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠

∑     (25) 

Thus the matrix elements of transition operator, which are defined by the relations (19)-(22), are the 
elements of Waterman's T matrix and the matrix elements of T  defined by the relations (12), (14) are 
related with Waterman's T matrix by relations (19)-(22) and (23). Consequently, for the elements of T 
matrix we have a similar to (15) equation, that allows calculating the T matrix for system of particles 
using T matrices for individual particles of the system. 

3 Conclusion 

In this paper the matrix elements of T  we expressed in terms of spherical wave functions. As a result, 
Eq.(15) for the particle-centered T matrices ( ijT ) is obtained for the condition: the smallest spheres 
circumscribing particles must not overlap with each other. These restrictions are known in the 
superposition T-matrix approach as well [2]. But the expression in terms of spherical wave functions is 
not the only possible one. For example, other possible expressions are the expressions in terms of 
spheroidal or cylindrical wave functions. Being expressed in terms of such function the T matrices for the 
cluster of particles must satisfy the following condition: the smallest spheroids (smallest cylinders) 
circumscribing particles must not overlap with each other. Note that independently of the chosen 
expansion functions, Eq.(15) for ijT  in the matrix form must be the same, since they are the consequence 
of more general equations (8) for operators. The key condition is that in the chosen function basis, one 
could separate variables for the Green's function. 
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Abstract 

Light propagation through a polymer-dispersed liquid crystal film with nanosized 
nematic liquid crystal droplets is considered under the Rayleigh-Gans approximation. 
Multiple light scattering is taken into account by means of the Foldy-Twersky integral 
equation. Polarization state of the coherent component of the transmitted light is 
investigated for films with bipolar droplets. Conditions for circular and linear polarization 
implementation are obtained and discussed. The results are compared with known 
experimental data. 

1 Introduction 
Polymer films with encapsulated liquid crystal (LC) droplets are promising materials for various electro-
optical devices, where light modulation is required. Typically droplets of submicron-to-micron sizes are 
used. Recently films with small droplets as compared with the wavelength of incident light have attracted 
particular attention of researchers. These films possess weak light scattering and enable one to control the 
polarization and phase of transmitted light in the visible and infrared regions. 

A polymer-dispersed liquid crystal (PDLC) film is a polymer film with embedded LC droplets [1]. 
This film is placed between two transparent plates with deposited transparent electrodes. We consider 
liquid crystals with positive birefringence and bipolar structure of molecular arrangement inside the 
droplets [1, 2]. Each droplet is characterized by an axial vector. This vector is commonly called by a 
droplet director. It determines the direction of the droplet optical axis. Under applied voltage, LC 
molecules are reoriented to be aligned along the direction of the electric field and the optical axis of a 
droplet is rotated (an LC droplet is reoriented). Thus one can change optical properties of a PDLC film by 
varying the applied voltage. Numerous devices, such as light modulators, optical shutters, TV projection 
systems, displays, colour filters, polarizers, etc., are developed on this principle. No rigorous theory 
relating parameters of a PDLC film, applied voltage, and characteristics of transmitted light has been 
developed yet. Researchers deal with models, which are valid for specific kinds of the films. Typically the 
transmittance of PDLC films is considered [1, 3].  

We investigate the polarization state of light transmitted through a PDLC film with nanosized nematic 
droplets. Particular attention is paid to the conditions providing linear or circular light polarization. 

2 Model to describe polarization state 
Consider a PDLC film with small nonabsorbing nematic LC droplets randomly distributed in a polymer 
binder. Let this film be illuminated by a monochromatic linearly polarized plane wave normally to its 
surface along z-axis. The x- and y-axes are in the plane of the film. The droplet directors are partially 
oriented along the x-axis. The azimuth angles of the droplet directors are uniformly distributed over the 
interval [ maxmax , dd ϕϕ− ].  

An important characteristic of a PDLC film is the distribution of LC molecules inside droplets. As 
mentioned above, each LC droplet is characterized by an axial vector called by the director of a droplet. 
To describe the alignment of LC molecules, we use order parameters [1], namely S is the molecular order 
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parameter of an LC; Sd is the order parameter of a droplet (it describes the alignment of LC molecules 
inside the droplet); Sx, Sy and Sz are the components of the order parameter tensor of the PDLC film [4]. 
These components show the orientation degree of droplet directors in the laboratory coordinate system. 
Light scattering by a single LC droplet is described under the Rayleigh-Gans approximation. Multiple 
scattering of waves is taken into consideration by means of the Twersky theory [5]. 

Components ,e oE of the coherent transmitted field can be written as follows: 

 oeoeoe aE ,,, cosΦ= ,  (1) 

where ae, o are the amplitudes and Φe, o are the phases of the extraordinary and ordinary waves, 
respectively. They depend on the PDLC film parameters [4, 6]: 
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Here γe, o are the extraordinary and ordinary extinction indices, respectively; l is the thickness of the film; 
α  is the polarization angle of the incident light; k is the module of the wave vector of the incident light in 
the polymer; cv is the volume concentration of the LC in the film; ne and no are the refractive indices of 
the LC; np is the refractive index of the polymer. Using Eqs. (1) - (3), one can investigate characteristics 
of light transmitted through a PDLC film with small LC droplets. 
 

3 Polarization of transmitted light  
Using Eq. (1), we analyze characteristics of polarization states of transmitted light. In general case, light 
is elliptically polarized. Define ellipticity η as a ratio of the minor semiaxis of the polarization ellipse to 
the major one and azimuth ξ as the angle between the major semiaxis and x-axis, counted from the x-axis 
counterclockwise. 
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Here ΔΦ is the phase shift between the extraordinary and ordinary components: 
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Consider conditions providing the linear polarization of transmitted light. Light is linearly polarized, 
when at least one of the following conditions is fulfilled:  

i. Polarization angle α is equal to 0 or π/2. In this case, the transmitted light retains the initial 
polarization state. 

ii. Phase shift ΔΦ between extraordinary and ordinary waves is equal to 0. Then the transmitted light 
is polarized as the incident light as well. 
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iii. Phase shift ΔΦ is equal to π. In this case, the light is linearly polarized. The polarization angle is 
determined as follows: 
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Here V  is the mean volume of LC droplets; g is the function determined by the droplet shape, size, and 
configuration of LC molecules inside the droplet [4]. Function g can be calculated analytically for several 
special cases, but in general it should be computed numerically. To simplify the problem, we assume that 
the LC droplets are of spherical shape. In the case of very small LC droplets, angle ξlin linearly depends 
on angle α ( απξ −=lin ). 

The dependence of angle ξlin on mean droplets radius R  and polarization angle α is shown in Fig. 1. 
 
 

 
 
 

Figure 1: Polarization angle ξlin of transmitted light vs mean radius R of LC droplets and polarization 
angle α of incident light. 

 
Now consider conditions providing the circular polarization of transmitted light ( 1=η ). The solution 

of Eq. (4) shows that the transmitted light is circularly polarized if phase shift 2π=ΔΦ  and the 
incident light is polarized at the angle: 
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Polarization angle circcirc απα −=′  also provides circular light polarization. Figure 2 illustrates the 
dependence of the ellipticity on polarization angle α and on the strength of electric field E applied to the 
film. There are two polarization angles for each mean radius, when the ellipticity equals to unity. The 
ellipticity peaks correspond to the strength of the electric field, at which the condition of 2π=ΔΦ  is 
implemented. The mean radius of LC droplets can be estimated by the polarization angles. 
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Figure 2: Ellipticity η vs polarization angle α of incident light and strength E of applied electric field. 

 

4 Conclusion 
The model to describe polarization state of light transmitted through a PDLC film with nanosized bipolar 
LC droplets is developed. Polarization characteristics of transmitted light are analyzed. The conditions 
providing circular and linear polarization of transmitted light are derived and investigated. The results can 
be used to estimate the mean radius of fine LC droplets in the film. There is a reasonable agreement 
between the theoretical data and the known experimental results. 
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Abstract 

The morphology of peripheral blood mononuclear cells (lymphocytes and monocytes) of 
normal adult individuals is investigated by the methods of specialized light microscopy. 
The geometrical parameters of cells are analyzed. The possibility of optimization of 
mononuclear cells separation by light scattering is discussed. Obtained results can be 
used for the cells discrimination by the angular structure of scattered light. 

1 Introduction 
Biological particles can be characterized by the angular structure of scattered light. Flow cytometry is a 
modern technique for particle identification, which deals with the light scattering data. It is widely used 
for diagnostics of different diseases as well. In flow cytometer the particles are analyzed with the rate up 
to 5000 per second. In conventional flow cytometers the cells are identified by the intensity of forward 
(1°<θ<3°) and sideward (65°<θ<115°) scattered light and fluorochrom emission. In the scanning flow 
cytometer the cells are classified by the intensity of light scattered in a wide interval of angles 
(5°<θ<120°) [1, 2].  

The angular structure of scattered light strongly depends on geometrical and optical particle 
parameters, namely, size, shape, internal structure, and refractive index. The aim of our investigations is 
to give a detail description of cells morphology to solve the problem of cells discrimination by the angular 
structure of scattered light [3]. In our previous work the morphology of lymphocytes was investigated [4]. 
Here the data on monocytes are presented and the comparison of geometrical parameters of lymphocytes 
and monocytes is carried out. The possibility of mononuclear cells discrimination by light-scattering 
profiles is discussed. 

2 Cells morphology. Results and discussion 
Monocytes of peripheral blood of healthy individuals are investigated by the methods of light microscopy 
using a Leica DMLB2 microscope. A cellular suspension is sandwiched between the object plate and 
cover slip as in a microcuvette. To recognise monocytes CD14 –phycoerythrin –staining is used. The 
differential interference contrast and fluorescence modes are applied. The lens with 100X magnification 
and numerical aperture of 1.25 are used. We analyse cell morphology with a Leica image processing 
software IM 1000. The image of peripheral blood monocytes is presented in Figure 1. 

Our observations show, that the shape of lymphocyte and lymphocyte nucleus is slightly elongated or 
round. Usually the nucleus occupies the most part of lymphocyte (about 80%). The mean value of the 
ratio between the major axes (maximum linear sizes) of lymphocyte and its nucleus is 1.2. Lymphocyte 
sizes vary in the range from 4.8 to 11.8 microns. The lymphocyte nucleus sizes vary in the range from 4.1 
to 8.3 microns. The mean value of lymphocyte size is about 7.5 microns and the mean value of 
lymphocyte nucleus size is about 6.2 microns [4].  
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The shape of monocyte is usually round, but the shape of monocyte nucleus is more complicate. The 
nucleus occupies about 65% of monocyte. The mean value of the ratio between the major axes of 
monocyte and its nucleus is 1.5. The sizes of monocytes and their nuclei are measured. The histograms of 
size distribution of monocytes and their nuclei are constructed. The mean value of monocyte size is 9.87 
microns and the mean value of monocyte nucleus size is about 6.44 microns. The investigation 
demonstrates that the monocyte nucleus is eccentric as well as the lymphocyte one. The intervals of 
lymphocyte, monocyte, and their nuclei sizes are overlapped. 
 

 

Figure 1: Peripheral blood monocytes. 

Peripheral blood mononuclear cells can be identified by the angular structure of light scattered in the 
forward hemisphere. The difference in morphology of lymphocytes and monocytes results in the sideward 
scattering. To separate lymphocytes and monocytes the intensity of sideward scattered light is used. To  

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 2: The calculated angular dependence of light scattering intensity for lymphocyte. Diameter of cell 
is 10.4µm, diameter of nucleus is 8.2µm, refractive index of cell is 1.37, and refractive index of nucleus is 

1.39. Refractive index of medium is 1.35. Wavelength of incident light is 0.633µm. 
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optimize the problem of the cells identification, it is important to estimate the range of angles where the 
difference in light scattering patterns of lymphocytes and monocytes has maximum. We simulate the 
scattering from mononuclear cells by bi-layered spherical particles [5] (cell with nucleus) using the results 
of our experimental data on sizing of the cells. Obtained results show that, the main difference in 
scattering profiles of lymphocytes and monocytes takes place in the backward hemisphere. It is 
determined by the difference in cell-nucleus ratios of the cells. As we indicated above, the mean cell-
nucleus ratios for lymphocyte and monocyte are 1.2 and 1.5, respectively. 
 The angular dependences of light scattered by bi-layered spherical particles with close external 
diameters are shown in Figures 2 and 3. These figures demonstrate that the cell-nucleus ratio has the 
maximal effect on the light scattering intensity in the range of angles from 125 to 150 degrees.  

 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 3: The calculated angular dependence of light scattering intensity for monocyte. Diameter of cell is 
9.87µm, diameter of nucleus is 6.44µm, refractive index of cell is 1.37, and refractive index of nucleus is 

1.39. Refractive index of medium is 1.35. Wavelength of incident light is 0.633µm. 

3 Conclusion 
To solve the inverse light scattering problem [6-8] of cells discrimination the optical models of cells are 
necessary. For construction the adequate optical model one has to know the cells morphology. The 
peripheral blood mononuclear cells of healthy adult individuals are investigated by the methods of 
specialized light microscopy. The geometrical parameters of lymphocytes and monocytes are presented. It 
is shown, that the cell-nucleus ratios for lymphocyte and monocyte are noticeably different. It results in 
the angular patterns of scattered light mainly in the backward hemisphere. The obtained data can be used 
to optimize the mononuclear cells discrimination by the light scattering intensity. 
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Abstract

We design and fabricate optically driven micromachines which find the applications in mi-
crofluidics, manipulation of biological cells, microchemistry etc. The micromachines are
driven by tightly focused laser beams. To aid the design of micromachines, we employ a
number of modeling methods such as the Mie theory, the point matching method, finite
difference methods, discrete dipole approximation (FDFD), sometimes in combination, to
simulate the light scattering from the individual components. The micromachines proto-
types are fabricated using a two-photon polymerization process.

1 Introduction

A ’micromachine’, as we have defined it, may be a number of microdevices working in conjunction with
one another or it may be as simple as a single rotor trapped by a tightly focused laser beam. For example,
a single birefringent vaterite sphere is used to determine the viscosity of it’s surrounding liquid medium
by means of measuring its rotational speed and the torque applied by the trapping laser beam that carries
spin angular momentum. We fabricate micromachine components with complex shapes using a two-photon
polymerization process [1]. The components are generally about 1-9µm in size. The design of the microma-
chines are aided by computational simulations of the scattered field from which the torques and forces can
be calculated. A survey on micromachines can be found on [2].

a) b) c)

Figure 1: a) DOE and ’cross’ rotor. b) ’Cross’ rotor with offset blades. c) Spherulitic sphere.

2 Micromachines

There are a number ways a microrotor can be spun using its structure in combination with the nature of
the incident tightly focused laser beam. Upon passing through a diffractive optical element (DOE) with 8
blaised blades as per figure 1a, a gaussian beam will aquire orbital angular momentum of8~ per photon.
The beam then can be used to spin a ’cross’ rotor as shown in figure 1a. However, if the ’cross’ rotor has
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offset blades (figure 1b), it will spin with just a gaussian incident beam due to the asymmetric forces at the
blades.

A focused laser beam with spin angular momentum can be used to transfer torque to the birefringent
object. The bifringent object works a waveplate to change angular momentum of the beam. Although, the
spherulitic sphere in figure 1c is not uniformly birefringent, a nett birefringence is sufficient for the effect to
take place.

3 Fabrication

A 3D microstructure is fabricated by curing the resin to the required shape [1]. This involves pulsing the the
individual voxels of the structure with a femtosecond laser. Two coverslips, which sit on a pedestal, (figure
2) support the resin. The pedestal is moved in the required x, y and z direction such that each voxel is cured
one at a time. When all the voxels are cured, the uncured resin is washed away with acetone, and we are left
with the 3D structure.

Figure 2: Two-photon polymerization fabrication.

4 Simulation Methods

We have used the FDFD/T-matrix method [3] to calculate the torque imparted on a vaterite particle by any
given trapping beam with spin angular momentum. For larger and more complex structures, we have found
the DDA method [5] to be suitable. Nonetheless, as the target model gets larger, we begin to hit the limit of
available memory; the need for memory saving methods arises.

We developed a method to exploit the rotational symmetry of a target structure [4], whereby the inter-
action matrix of the DDA linear equations can be compressed to1/m2 to that or the original size, where
m is the order of rotational symmetry. The matrix can be further compressed by a factor of4 by exploiting
mirror symmetry. This is achieved by only constructing the interaction matrix from the reduced number
of dipoles (figure 3) but still aggregating the contributions from their symmetrical counterparts. Once the
linear equations are solved, the polarizations of the other dipoles can be calculated easily from just applying
the appropriated rotations or ’reflections’ which are merely phase corrections. This holds for the case of
plane wave illumination. However, to generalize for arbitrary illumination, we would need to incorporate
this method with the T-matrix [6].

We propose to exploit the rotational symmetry of the DOE in figure 4a. However the repeated ’wedge’
(figure 4b) of the DOE presents the problem where there are sharp edges where we may need prohibitively
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a) b)

Figure 3: a) Dipoles representing target ’cross’ rotor. b) Reduced number of dipoles due to symmetry.

a) b) c)

Figure 4: a) Diffractive optical element (DOE). b) DOE segment. c) Precalculated block.

small (because of memory requirements) lattice spacing for the dipoles. To overcome this, we would divide
the DOE segment into smaller blocks and precalculate the overall polarizability of the blocks using relatively
small dipoles (figure 4c). The polarizability of those blocks that are repeated throughout the segment need
not be calculated again. Effectively, we calculate the polarizability of arbitrarily shaped dipoles. We then
assemble the DOE segment and hence apply the same symmetry method as for the cross to model the whole
DOE.

5 Conclusion

The fabrication and design of micromachines can be made more efficient with the aid of computational
modelling methods; the cycle time between design, fabrication and testing is greatly reduce due to the
capability of modeling methods to realistically calculate the scattered fields and hence torques and forces.
This means that a bulk of the testing can be done on the computer even before the first fabricated prototype
is produced. The flexibility of modeling methods such as DDA allows for the design of exotic structures.
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1 Introduction

The present paper is concerned with the prediction of the radiative absorption and scattering behavior of a
layer of densely packed, wavelength–sized particles. This problem has relevance to a number of engineering
and scientific applications, e.g., estimation of the effect of particle deposits on heat exchanger surfaces,
modeling the reflection properties of pigment coatings and dust layers, and prediction of Anderson localization
in discretely inhomogeneous media.

A well–developed understanding exists for calculation of the single (or isolated) scattering and absorp-
tion properties of particles – encompassing simple shapes (such as Lorenz–Mie theory for spheres) to more
sophisticated methods for nonspherical and inhomogeneous particles [1]. In the situations of interest here,
e.g., particle deposits, paint pigments, composite materials, etc., the particle concentrations can become
sufficiently high so that prediction of the particle optical properties via single–scattering formulations be-
comes suspect. Specifically, under such conditions the electric field incident on a particle can have significant
contributions due to scattering from neighboring particles (so–called near field interactions) and the far field
scattering can be modified by the correlated positions existing among the close–packed particles (far field
interference). These two effects are typically referred to together as dependent scattering, and generally
become significant for particle volume fractions f > 0.01 and/or particle clearance/wavelength ratios less
than 0.5 [2]; such conditions typically involve packed deposits of particles having size parameters x = 2πa/λ
(where a is a characteristic radius of the particle and λ is the radiation wavelength) on the order of unity or
less.

Initial investigations on dependent scattering primarily dealt with the propagation of a coherent wave
through a particulate medium, with the objective of identifying an effective propagation constant (or, equiv-
alently, complex refractive index) of the medium which describes the attenuation of the coherent wave via
absorption and scattering by the particles [3, 4]. In principle, it is possible to exactly calculate, via an-
alytical superposition methods, the absorption and scattering properties of neighboring particles provided
the single–scattering properties are known. A review of the superposition method, as applied to spherical
particles, is given in Ref. [5]. Until now, the application of the superposition method has primarily been to
determine the optical properties of aggregated particles containing a finite number of spheres. A few inves-
tigations have been conducted which compared direct simulations of wave propagation in large ensembles of
spheres – as exactly calculated with the superposition method – to effective medium theories [6, 7]. Effec-
tive medium theories have also been coupled to the superposition method, with the objective of developing
efficient methods for computation of scattering properties of nonspherical particles [8, 9].

The objective of this paper is to demonstrate the feasibility of using exact methods to directly simulate
the absorption and scattering properties of a plane layer of densely–packed spheres that are exposed to an
incident source of radiation. Such methods could provide benchmark calculations for gauging the accuracy
of effective medium/radiative transfer equation (RTE) models as applied to thin deposits or coatings of
particles. Since the exact methods also provide a detailed description of the electric field distribution both
within and external to the particles, calculations of this sort would also be useful in the examination of
localization phenomena in random media. The motivation for this approach stems from the fact that the
computational algorithms for wave interactions among spheres have progressed to the point that direct
calculations involving large–scale ensembles – i.e., sphere systems that are adequately large to represent a
radiative continuum – have become tractable on typical desktop PCs [5].

The particle layer in this investigation will be represented by a large, yet obviously finite, number of
spheres that are arranged in set positions. The thickness of the layer will be a fixed parameter in the
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simulations, yet the lateral extent should be sufficiently large to represent an infinite expanse of particles.
Meeting this condition is difficult – if not impossible – when the ‘target’ of spheres is exposed to a transverse
plane wave. In this case the lateral extent of the layer will always have an effect on the far–field scattering
pattern, due to diffraction at the edges. This problem is bypassed by using a focussed beam of radiation as
the exciting (or probing) source, in which the width of the beam is smaller than the lateral size of the layer.

2 Formulation

The system under examination consists of an ensemble of NS spheres, each characterized by a size parameter
xi = kai, a complex refractive index mi = ni+iki, and a position (Xi, Yi, Zi) for i = 1, 2, . . . NS . The incident
field consists of a focussed beam which propagates in a direction θ = β0 and φ = α0 relative to the target
coordinate frame and is focussed at a point X0, Y0, Z0. Along the focal plane (which contains the focal
point and is perpendicular to the propagation direction) the beam is approximated as a linearly polarized
transverse wave, i.e.,

Einc(X ′, Y ′, 0) ≈ x̂ exp
(
−X ′2 + Y ′2

ω2
0

)
(1)

in which ω0 is the beam width parameter and the primed coordinates denote the rotated coordinate system
that is centered on the focal point and with a z′ axis pointing in the propagation direction.

The solution method used to obtain the scattered field is a direct extension of Lorenz/Mie theory. The
total field external to the spheres is represented as a sum of fields scattered from the individual spheres in
the ensemble plus the incident field;

Eext = Einc +
NS∑

i=1

Esca,i (2)

The incident field is represented as a regular vector spherical harmonic (VSH) expansion centered about an
arbitrary origin, whereas each of the scattered fields is represented by an outgoing VSH expansion centered
about the origin of the sphere. Application of the continuity equations at the surface of each sphere, and
utilization of the addition theorem for VSH, results in a system of equations for the expansion coefficients
for the individual scattered fields;

1
ai

np

ai
mnp −

NS∑

j=1
j 6=i

Li∑

n′=1

n′∑

m′=−n′

2∑

p′=1

Hi−j
mnp m′n′p′ a

j
m′n′p′ = gi

mnp (3)

In the above, ai
mnp and gi

mnp denote the expansion coefficients, of order n, degree m, and mode p (= 1, 2 for
TM/TE) for the scattered and incident fields centered about sphere i, Hi−j is a translation matrix which
transforms an outgoing VSH centered about origin j into an expansion of regular VSH about i, and ai

np

denote the Lorenz/Mie coefficients for sphere i, which are a function of the sphere size parameter xi and
refractive index mi.

The present application is concerned primarily with the propagation of a collimated beam into a par-
ticulate medium. Accordingly, conditions are sought which minimize the spreading of the beam waist as
a function of Z ′. Such conditions will correspond to relatively large kω0, which is equivalent to a large
diffraction length/spot size ratio (2πω2

0/λ)/ω0. Fortunately, such conditions also allow a relatively simple
formula for the focal–point centered VSH expansion coefficients for the incident beam via the localized ap-
proximation. The expansion coefficient for the beam centered about a sphere origin i, i.e., gi

mnp, can then be
obtained by application of the VSH addition theorem [10, 11].

The complete scattering and absorption properties of the system can be obtained from the solution
to Eq. (3). Such properties include the absorption cross sections of the individual spheres and the bulk
absorptive and reflective properties of the slab as a whole.

3 Results and Discussion

The target used in this work consisted of a cylindrical slab of spheres that were packed into a tetrahedral
lattice. The axis of the cylinder is taken to be the Z direction, and the radius (which is proportional to the
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Figure 1: Re (x̂ · E) vs. position on the Y ′ − Z ′ plane. Sphere size parameter xS = 1 (l), 4 (c), 8 (r),
refractive index m = 1.6 + 0.02i.

number of spheres in the X and Y directions) is chosen to be several times larger than the incident beam
width ω0. The incident beam was characterized by a dimensionless beam width parameter of k ω0 = 10.

Shown in Fig. (1) are surface plots of the X–component of electric field in the Y −Z plane, calculated for
sphere size parameters of xS = 1, 4, and 8. The sphere refractive index is mS = 1.6+0.02i for all cases. The
sphere matrix consists of 5 sphere layers in the Z direction, and the incident beam is focussed in the center of
the matrix and was incident parallel to the z axis (representing normal incidence on the slab). The number
of spheres in the slab depended on the size parameter, with a smaller xS requiring more spheres in order
to extend the slab radius past the width of the beam. For xS = 1 and 8 the model required 1760 and 275
spheres. The latter case used a truncation order of L = 11 for the sphere scattered field expansions, which
corresponded to 44,000 complex–valued equations for the set of scattering coefficients in Eq. (3). Electric
field components were calculated using the superposition of Eq. (2) if the point was external to the spheres,
or using the Lorenz/Mie relations to relate the internal to external fields for points interior to the spheres.

One point to make regarding Fig. (1) is that it demonstrates the veracity of the formulation and com-
putations. The particular plane chosen for the surface plots splits the spheres intersected by the plane in
half, and accordingly the sphere surfaces will be tangential to the x direction along the plane. Since the
tangential components of electric field are continuous at the sphere surface, the plots should demonstrate a
continuity in electric field from the exterior to interior regions. This behavior is completely consistent with
the calculation results. Relatively close inspection of Fig. (1) is needed to discern the sphere positions by
virtue of the small jumps in electric field that occur at the sphere edges, which are due to truncation errors
in the series solution (most noticeably for the xS = 1 case).

The results in Fig. (1) show that the slab of spheres with xS = 1 behaves as a homogeneous medium,
in that the profile of the incident beam is largely unperturbed as it propagates through the slab. This
behavior is somewhat surprising: an effectively homogeneous medium would be expected for xS ¿ 1, for
which the simulation would become equivalent to a discrete dipole model for a homogeneous slab, yet the
xS = 1 spheres do not behave as dipoles. Indeed, three harmonic orders (NO) were needed to represent
the scattered fields from the spheres, as opposed to a single TM order for the dipole. A relevant condition
behind the apparent homogenous behavior has to do with the fact that the sphere radius, for this case, is
significantly smaller than the width of the incident beam. Because of this, a relatively large population of
spheres are excited by the beam. The scattered field produced by the spheres – and the resulting interference
of fields – will therefore be averaged over the large group of scattering sources, resulting in a net field which
is not strongly dependent on position in the slab. This behavior is in keeping with the Quasi–Crystalline
Approximation in effective medium models [4].

Conversely, the results for xs = 4 and 8 show that the field within the slab for larger size parameters can
become highly dependent on position. The peaks in the field amplitudes are associated with the focussing of
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internal fields within the individual spheres, and this effect becomes more pronounced as the size parameter
increases. For both xS = 4 and 8, the effects of multiple scattering among the spheres leads to a broadening
– or diffusion – of the field with increasing depth into the medium. For the smaller size parameter the field
distribution remains symmetrical in the y − z plane – which would be expected due to the symmetrical
conditions imposed on the problem – yet for xS = 8 the field distribution appears to take on a chaotic
structure.

The distribution of absorption in the medium – which allows for determination of the bulk absorption
coefficient – as well as the reflectivity of the slab and the far–field scattering behavior will be presented at
the meeting.
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Abstract 

We study the behavior of the Negative Polarization Branch (NPB), using a scattering 
system which consists of two dipolar scatterers separated by a fixed distance and freely 
floating in space. For such a system, a resonance spectrum is obtained if one plots the 
scattering cross-section as a function of the polarizability. The excited resonances 
correspond with specific oscillation modes of the electric (and magnetic) dipole moments 
and arise due to the interaction between the dipoles. We show that the NPB can be 
generated if the system is put into the right resonance mode, but can also be suppressed if 
placed in a so called longitudinal mode. The effect of a magnetic permeability different 
from one on the NPB will also be considered. 

1 Introduction 
Coherence effects in or close to the backscattering direction have been the focus of attention of many 
researchers involved in the theoretical and experimental analysis of the propagation of electromagnetic 
waves in random dense media where multiple scattering is important. On one hand we have the 
enhancement of the scattered intensity in the backward direction (EBS) and on the other hand we have the 
polarimetric opposition effects. Based on observations, two types of opposition effects are usually 
distinguished. The first one, often called the polarization opposition effect (POE) which appears as a 
narrow asymmetric branch and the second one, often referred to as negative polarization branch (NPB) 
and appears as a wide symmetric branch around the backward direction in the linear polarization 
coefficient (LPC) [1,2]. It is considered that the coherent backscattering mechanism is responsible for the 
EBS, the POE and the NPB [3]. However, it is assumed that the coherent backscattering is not the only 
contribution to the NPB. These phenomena have been observed in experiments related to the scattering of 
unpolarized electromagnetic radiation by astronomical objects [1] and have also been reproduced in 
laboratory experiments with both volume and surface geometries [2,3]. 
 

In this work we present a study of the previously cited NPB using a model constituted by two dipoles 
separated by a fixed distance. We will call this system a Dipolar Bi-sphere (DBS). This simple model has 
already been introduced by other authors to study coupling resonances [4] and the EBS [5]. The aim of 
this contribution is to study the effect of coupling resonances of the DBS on the coherence effects [6], for 
both non-magnetic (μ = 1) and magnetic particles (μ ≠ 1). The reason why we introduce the magnetic 
permeability in our study is because of the high interest for metamaterials during the last six years. While 
only very recently those materials have been seen to operate in the visible region [7] and only for slab 
geometries, an early theoretical study by Kerker et al. [8] showed that small spheres with μ ≠ 1 have some 
very interesting scattering properties. Herein lays the interest of studying scattering systems with 
magnetic properties. 

2. Theory 
To obtain the scattered electromagnetic field from our system, we used a generalized version of the 
coupled dipole method [9] which was introduced by Mulholland et al. in [10]. This generalized method 
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enables us to compute the scattered electric field when the scatterers have a magnetic permeability 
different from 1. However, the method can equally well be applied for particles with μ = 1. The method 
consists in writing each electric (di) and magnetic dipole moment (mi) as a contribution of the incident 
field and the dipole moments induced by the rest of the particles. One has then to solve the system of 2N 
linear vector equations in di and mi given by 
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where Cij and Gij are the interaction matrices and αe

j and αh
j are the electric and magnetic polarizabilities 

respectively. Once the electric and magnetic dipole moments are obtained by matrix inversion, the 
scattered electric field is easily obtained.  

The calculations are made for NT  random orientations of the scattering system, we then obtain an 
averaged value of scattering cross-section σS. 

 

3. Results 

3.1 Particles with μ = 1 

In figure 1(a) we show the averaged scattering cross section for ε = −2.013, μ = 1 and P-polarized 
incident light versus the interparticle distance r between the particles. The results for the S-polarization 
are identical due to symmetry. As can be seen in figure 1a, successive resonances are excited. Each one of 
these resonances correspond to a specific oscillation mode of the dipoles.  
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Figure 1: (a) Scattering cross-section σS  as a function of the interparticle distance  
for ε = −2.013, μ = 1. The arrows show the oscillation mode for each  
dipole when placed in the corresponding resonance. (b) LPC        min and |LPC| max obtained  
for totaly unpolarized incident radiation. 
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Figure 1(b) represents two aspects of the linear polarization coefficient (LPC). LPC  min    represents the 
minimum of the LPC in the interval of scattering angles from 0º to 180º  and |LPC| max  is the maximum of 
the absolute value of the LPC in the same interval. We see that the peaks (2), (3) and (4) of figure 1(a) 
correspond to minima in the LPCmin. This means that the resonances (2), (3) and (4) produce NPB. This is 
not the case for resonance (1), which instead creates a minimum in the plot of |LPC| max vs r. From figure 
1, we could thus deduce that for an interparticle distance r = λ, the produced NPB is entirely generated by 
the contribution of mode (2). However, an other analysis based on the eigenvector decomposition of the 
local dipole moments (see equation (2)) shows that the anti-symmetrical state does also contribute to the 
NBP. 
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n n
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where |n〉 and wn are the eigenvectors and eigenvalues respectively of the total interaction matrix. 
|Eo〉 represents the incident field. These vectors have all 3N elements and contain the oscillation modes 
or the incident electric field on each particle. 

3.2 Particles with μ ≠ 1 

In the previous section we saw that the coupling between two electric dipoles produces four types of 
modes: transversal and longitudinal modes, where both of them have symmetric and anti-symmetric 
variants. If we now introduce magnetic dipoles (μ ≠ 1), new modes appear. We still have the purely 
electric longitudinal modes, but now we have also their purely magnetic counterpart. The transversal 
modes appear now as mixed electric and magnetic states.  

As an example, we will choose here μ = −1.6. The scattering cross section as a function of 
interparticle distance is represented in figure 2(a). We observe similarities but also differences between 
this case and the previous one with μ = 1. The peak centred in r/λ = 1.5 is now the most important. As 
can be seen from figure 2(a), the mode corresponding with interparticle distance r/λ = 1.5 has anti-
symmetrical electric and symmetric magnetic components. 
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Figure 2: (a) Scattering cross-section σS   as a function of the interparticle  
distance for ε  = −2.166 and μ = −1.6. (b) LPC obtained for totally  
unpolarized incident radiation. 

 
In the LPC plot we see for r/λ = 1.5 a strong minimum with negative values, which indicates a negative 
polarization branch. This plot was obtained for a scattering angle of ϑS = 150º which is the direction 
where the minimum of the NPB usually occurs. The same happens for r/λ = 1.0. In r/λ = 0.7, the linear 
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polarization doesn't become negative which indicates again a qualitative difference between the 
resonances.  

 

4 Conclusions 
We studied the resonance spectra and the linear polarization coefficient of a Dipolar Bi-Sphere as a 
function of the interparticle distance where the constituents can be considered magnetic or non-magnetic. 
Depending on the type of excited resonance, we can or cannot produce a negative polarization branch. In 
the case of non-magnetic particles with r/λ = 1.0, we found that both the transversal symmetrical and anti-
symmetrical states do contribute to the negative polarization branch. 

For magnetic particles the highest peak was found for r/λ = 1.5 corresponding with an anti-symmetric 
electric and symmetric magnetic mode and produces NPB.    

These results point out that not only the presence of multiple scattering is important, but that the 
oscillation mode plays also a fundamental role. 
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Abstract 

Analysis of the long-term Global Aerosol Climatology Project dataset reveals a likely 
decrease of the global optical thickness of tropospheric aerosols by as much as 0.03 
during the period 1991–2005. This recent trend mirrors the concurrent global increase in 
solar radiation fluxes at Earth’s surface and may have contributed to recent changes in 
surface climate. Existing satellite instruments cannot be used to determine unequivocally 
whether the recent trend is due to long-term global changes in the natural or 
anthropogenic aerosols. It is thus imperative to provide uninterrupted multidecadal 
monitoring of aerosols from space with dedicated instruments like the Glory Aerosol 
Polarimetry Sensor in order to detect long-term anthropogenic trends potentially having a 
strong impact on climate. 

Recent observations of downward solar radiation fluxes at Earth’s surface have shown a  recovery from 
the previous decline known as global “dimming” with the “brightening” beginning around 1990. The 
increasing amount of sunlight at the surface profoundly affects climate and may represent diminished 
effects of certain counter-balances of the greenhouse warming, thereby making it more evident during the 
past decade.    

It has been suggested that tropospheric aerosols have contributed significantly to the switch from 
solar dimming to brightening via both direct and indirect aerosol effects. It has further been argued that 
the solar radiation trend mirrors the estimated recent trend in primary anthropogenic emissions of SO2 and 
black carbon, which contribute significantly to the global aerosol optical thickness (AOT). Therefore, it is 
important to provide a direct and independent assessment of the actual global long-term behavior of the 
AOT. We accomplish this by using the longest uninterrupted record of global satellite estimates of the 
column AOT over the oceans, the Global Aerosol Climatology Project (GACP) record 
(http://gacp.giss.nasa.gov). The latter is derived from the International Satellite Cloud Climatology 
Project (ISCCP) DX radiance dataset composed of calibrated and sampled Advanced Very High 
Resolution Radiometer (AVHRR) radiances.  

The solid black curve in Fig. 1 depicts the global monthly average of the column AOT for the period 
August 1981 – June 2005. The two major maxima are caused by the stratospheric aerosols generated by 
the El Chichon (March 1982) and Mt Pinatubo (June 1991) eruptions, also captured in the Stratospheric 
Aerosol and Gas Experiment (SAGE) stratospheric AOT record. The quasi-periodic oscillations in the 
black curve are the result of short-time aerosol variability.  

The red line traces the overall behavior of the column AOT during the eruption-free period from 
January 1986 to June 1991. It shows only a hint of a statistically significant tendency and indicates that 
the average column AOT value just before the Mt Pinatubo eruption was close to 0.142. After the 
eruption, the GACP curve is a superposition of the complex volcanic and tropospheric AOT temporal 
variations. However, the green line reveals a clear long-term decreasing tendency in the tropospheric 
AOT. Indeed, even if we assume that the stratospheric AOT just before the eruption was as large as 0.007 
and that by June 2005 the stratospheric AOT became essentially zero (cf. the blue curve), still the 
resulting decrease in the tropospheric AOT during the 14-year period comes out to be 0.03. This trend is 
significant at the 99% confidence level.     
 Figure 2 shows the difference between the GACP AOT averaged over the periods 2002–2005 and 
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1987–1990. As expected, this map reveals increased aerosol loads in Asia and reduced pollution in 
Europe. Another interesting trend is the significant reduction in the amount of dust aerosols coming from 
the Sahara desert. 

Admittedly, AVHRR is not an instrument designed for accurate aerosol retrievals from space. 
Among the remaining uncertainties is radiance calibration which, if inaccurate, can result in spurious 
aerosol tendencies. Similarly, significant systematic changes in the aerosol single-scattering albedo or 
ocean reflectance can be misinterpreted in terms of AOT variations. However, the successful validation of 
GACP retrievals using precise sun-photometer data taken from 1983 through 2004 indicates that the 
ISCCP radiance calibration is likely to be reliable. This conclusion is reinforced by the close 
correspondence of the calculated and observed TOA solar fluxes. Furthermore, the GACP AOT record 
appears to be self-consistent, with no drastic intra-satellite variations, and is consistent with the SAGE 
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Fig. 2. Aerosol optical thickness difference between the early 2000s and late 1980s. 
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Fig. 1. GACP record of the globally averaged column AOT over the oceans and SAGE 
record of the globally averaged stratospheric AOT.  
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record.  
The unique advantage of the AVHRR dataset over the datasets collected with more advanced recent 

satellite instruments is its duration, which makes possible reliable detection of statistically significant 
tendencies like the substantial decrease of the tropospheric AOT between 1991 and 2005. With all the 
uncertainties, the global tropospheric AOT decrease over the 14-year period is estimated to be at least 
0.02. This change is consistent with long-term atmospheric transmission records collected in the Former 
Soviet Union. 

Our results suggest that the recent downward trend in the tropospheric AOT may have contributed to 
the concurrent upward trend in the surface solar fluxes. Neither AVHRR nor other existing satellite 
instruments can be used to determine unequivocally whether the recent AOT trend is due to long-term 
global changes in the natural or anthropogenic aerosols. This discrimination would be facilitated by an 
instrument like the Aerosol Polarimetry Sensor (APS) scheduled for launch in December 2008 as part of 
the NASA Glory Mission (http://glory.giss.nasa.gov).  

The key measurement requirements for the retrieval of aerosol and cloud properties from 
photopolarimetric data are high (i.e., fine) accuracy, a broad spectral range, and observations from 
multiple angles, including a method for reliable and stable calibration of the measurements. The APS 
measurement approach to ensure high accuracy in polarimetric observations employs Wollaston prisms to 
make simultaneous measurements of orthogonal intensity components from the same scene. The broad 
spectral range of APS is provided by dichroic beam splitters and interference filters that define nine 
spectral channels centered at the wavelengths λ = 410, 443, 555, 670, 865, 910, 1370, 1610 and 2200 nm. 
The critical ability to view a scene from multiple angles is provided by scanning the APS IFOV along the 
spacecraft ground track (Fig. 3) with a rotation rate of 40.7 revolutions per minute with angular samples 
acquired every 8 ± 0.4 mrad, thereby yielding ~250 scattering angles per scene. The scanner assembly 
also allows a set of calibrators to be viewed on the side of the scan rotation opposite to the Earth. The 
APS on-board references provide comprehensive tracking of polarimetric calibration throughout each 
orbit, while radiometric stability is tracked monthly to ensure that the aerosol and cloud retrieval products 
are stable over the period of the mission. 

Since APS shares many design features with its aircraft predecessor, the Research Scanning 
Polarimeter (RSP), the latter can be expected to provide a close model of the future APS performance. 
Examples of the fidelity of the AOT, size distribution, and absorption estimated from the APS type of 
remote-sensing measurement during seven different flights are shown in Fig. 4. In panel (a) we see that 
the spectral AOT values retrieved from polarimetric measurements agree well with those measured by 
ground-based sunphotometers over an AOT range from 0.05 to more than 1. The absence of spectrally- 
dependent biases in these retrievals also demonstrates the reliability of the size distribution estimate for 
both small and large modes of a bimodal aerosol distribution. Comparisons have also been made between 
in situ and retrieved size distributions and have also been found to agree extremely well (difference in 
aerosol effective radius of less than 0.04 µm).  

 

Fig. 3.  Along-track multi-angle APS measurements via 360º scanning from the sun-
synchronous polar-orbiting Glory spacecraft. 
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 The aerosol single-scattering albedo (SSA) can also be estimated from polarimetric measurements 
because of the differing sensitivities of polarized and unpolarized reflectances to aerosol absorption. In 
Fig. 4(b), the SSA derived from polarimetry is compared with in situ and ground-based sky radiance 
estimates. The discrepancy between these estimates may be related to the loss of particles in the sampling 
system for in situ measurements, humidification of the in situ extinction (but not the absorption) 
coefficients, and uncertainties in the SSA retrieval from sky radiances that may be caused by horizontal 
variability in the aerosol burden. Nonetheless the polarimetric estimate of SSA is consistent with the other 
measurements given their inherent uncertainties. Overall, Fig. 4(b) illustrates the complexity of retrieving 
SSA from both in situ and remote-sensing measurements and suggests that the validation of SSA 
retrievals from APS data will be a challenging task.  
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Fig. 4. (a) Optical thickness comparison. Sunphotometer measurements at 410/443, 500, 673, and 865 nm 
shown as blue, turquoise, green, and red symbols, respectively, are compared with RSP retrievals for the 
same wavelength. The circular symbols are for retrievals over land while the square symbols are for 
retrievals over ocean. Error bars are only shown for the sunphotometer measurements. (b) Single-scattering 
albedos as a function of wavelength. The red dotted line shows the best-estimate values retrieved from RSP 
data. Also included are estimates from data collected during Convair-580 flight 1874 and from the 
AERONET data.  
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Observatory, Kopernikuksentie 1, P.O. Box 14, FI-00014 University of Helsinki, Finland
tel: +358 9-19122941, fax: +358 9-19122952, e-mail: Karri.Muinonen@helsinki.fi

Abstract

We study light scattering by angular and faceted random particles using the discrete-dipole
and geometric-optics methods. For describing the particle shapes, we introduce a concave-
hull transformation and apply it to the Gaussian-random-sphere geometry. We describe
other potential applications for the concave-hull transformation.

1 Introduction

Naturally occurring small particles provide a world of varying shapes. The Gaussian-random-sphere geom-
etry can be utilized in the modeling of irregular shapes [1]. Based on the Gaussian geometry, first steps are
here taken toward modeling angular and faceted shapes. Knowing the scattering characteristics of angular
and faceted particles is important, e.g., in solar-system remote sensing.

For modeling the angular and faceted shapes, we define a concave hull: For an arbitrary three-dimensional
object, the concave hull coincides with the inner surface formed by a sphere rolling over the object. The con-
cave hull varies as a function of a single scale parameter, the radius of the generating sphere. In the limits
of infinitesimal and infinite radii, the concave hull approaches the original shape and the convex hull of
the object, respectively. In defining the concave hull, we thus mimic a mechanical profilometer sensing the
shape of the object.

We parameterize the concave-hull transformation by the ratio of the generating-sphere radius to a typical
radius of the object. For the Gaussian geometry, we utilize the ratio of the generating-sphere radius to the
ensemble mean radius, denoting that ratio by h. It follows that the relative curvature radii of the concave-
hull concavities cannot be smaller than h. The present concave hull is related to the internal tangenting
spheres introduced in [2] to represent the volumes of sample Gaussian particles. For an illustration of the
concave-hull transformation, see Fig. 1 for shapes generated with h = 0, h = 2, and h = 2 · 104.

In what follows, we show the first application of the concave-hull transformation in discrete-dipole and
geometric-optics light-scattering computations.

2 Scattering by concave-hull-transformed Gaussian particles

We parameterize the Gaussian-random-sphere particle with two statistical parameters, the radial-distance
standard deviation σ and covariance-function power-law index ν [2]. We assess two pairs of these parame-
ters: first, σ = 0.2 and ν = 2; and, second, and σ = 0.3 and ν = 4.

For both geometric-optics and discrete-dipole computations, the complex refractive index of the particles
is fixed at m = 1.55 + i10−4. For the geometric-optics computations, the size parameter is x = ka = 100,
where k is the wave number and a is the mean radius of the Gaussian-random-sphere particles. For the
discrete-dipole computations concerning individual sample particles in Fig. 1 in random orientation, the
equal-volume-sphere size parameter is xev = 5.

The geometric optics computations are carried out for 700 sample shapes with 700 rays incident on each
sample particle in random orientation, totaling altogether 490,000 rays. For σ = 0.2 and ν = 2, decreasing
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Figure 1: Example shapes corresponding to the Gaussian-random-sphere radial-distance standard deviations
and covariance-function power-law indices σ = 0.2 and ν = 2 (left) as well as σ = 0.3 and ν = 4 (right). We
show the original shapes (bottom; h = 0) and their concave hulls generated with spheres of scale radii h = 2
(middle) and h = 2 · 104 (top).
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Figure 2: Ensemble-averaged geometric-optics scattering-phase-matrix elements PG
11 (top) and −PG

12/P
G
11

(bottom) for random particles originating with (a) σ = 0.2 and ν = 2 as well as (b) σ = 0.3 and ν = 4 for the
size parameter x = 100 and refractive index m = 1.55+ i10−4 . The solid, dotted, and dashed lines refer to the
Gaussian particles and their concave-hull-transformed counterparts with h = 2 and h = 2 · 104, respectively.

concaveness results in increasing steepness of the geometric-optics scattering phase function toward the
backscattering direction and increasing degree of linear polarization in the intermediate scattering angles
(Fig. 2a). Clearly, the rougher interface more efficiently neutralizes the polarization characteristics. For
σ = 0.3 and ν = 4, the scattering characteristics are perhaps surprisingly independent of the concavities
(Fig. 2b).

The discrete-dipole computations are carried out for the shapes depicted in Fig. 1 in 1008 orientations
(mimicking random orientation) using the DDSCAT code [3]. For σ = 0.2 and ν = 2, the discrete-dipole
computations show a trend that is the opposite to that in the geometric-optics computations: decreasing con-
caveness results in decreasing degree of linear polarization for unpolarized incident light in the intermediate
scattering angles (Fig. 3a). It is plausible that the original surface with smaller-scale irregularities results
in a more pronounced positive polarization due to the electric dipole moments induced in the irregularities.
Note the backscattering peaks and negative polarization branches close to backscattering (Figs. 3a and 3b;
for explanation, see [2, 4]).

3 Discussion

There are a number of potential applications for the concave-hull geometry presently introduced. The con-
cave hull is unambiguously defined for particles that are aggregates of constituent smaller grains although,
in practice, it can become challenging to compute their concave hulls. For rough solid surfaces, for which
the convex hull has little significance, the concave hull can be highly useful. For rough particulate surfaces,
the concave hull allows studies of porosity as a function of surface height and the concave-hull scale pa-
rameter. Finally, for macroscopic objects such as asteroids, the concave hull can help in determining the
scale-dependent density of the object.

We have studied light scattering by concave-hull-transformed Gaussian-random-sphere particles show-
ing angular and faceted geometries with the help of the discrete-dipole and geometric-optics methods. The
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Figure 3: Discrete-dipole scattering-phase-matrix elements k2σsP11/(4π) (top; σs is the scattering cross
section) and −P12/P11 (bottom) for the particles left and right in Fig. 1 for the equal-volume size parameter
xev = 5 and refractive index m = 1.55 + i10−4. The solid, dotted, and dashed lines refer to the bottom,
middle, and top particle geometries in Fig. 1, respectively.

concave-hull geometry offers a promising tool to study the effects of concavities on the scattering character-
istics of nonspherical particles.
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[2] K. Muinonen, E. Zubko, J. Tyynelä, Yu. G. Shkuratov, and G. Videen, “Light scattering by Gaussian
random particles with discrete-dipole approximation,” JQSRT, in press (2007)

[3] B. T. Draine, and P. J. Flatau, “User Guide to the Discrete Dipole Approximation Code DDSCAT 6.1,”
http://arxiv.org/abs/astro-ph/0409262v2 (2004)
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Abstract

We develop simplex inversion methods for asteroid photometric lightcurves in the case of
limited and/or sparsely distributed observations. We show that the methods can be utilized
in the computation of asteroid spins and convex shapes described using a finite number of
triangles.

1 Introduction

In asteroid lightcurve inversion, the shape and spin of the asteroid as well as its scattering properties are
solved for. Conventionally, the shape model is a convex polyhedron, where the free parameters are either
the individual polyhedron facet areas or the coefficients of the spherical-harmonics series describing the
Gaussian curvature of the surface [1]. Spin and shape models can be obtained using relative photometry by
applying simple scattering laws, such as a combination of the Lommel-Seeliger and Lambert laws. Scat-
tering properties can usually be assumed to be homogeneous over the surface. Extensive results of asteroid
lightcurve inversion have been published by, e.g., Torppa et al. [2]. Deriving the scattering parameters of
more complicated scattering laws constitutes a challenge. As an inverse problem, it is not as stable as plain
spin and shape determination, and improvements in the available scattering models are called for (e.g.,
[3, 4]).

In Sect. 2, we describe the main features of the current simplex algorithms aimed at statistical inversion
of asteroid spins, shapes, and scattering properties (see also [5]). We present some first results in Sect. 3,
and Section 4 contains the conclusions and future prospects.

2 Simplex inversion

Whereas conventional lightcurve inversion consists of two parts, that is, the derivation of the normal-vector
distribution and the subsequent derivation of the convex shape from the normal vectors, in simplex inversion,
the convex shape solution is directly searched for. There are four parameters for the spin characteristics: the
rotational period, the ecliptic longitude and latitude of the rotational pole, and the rotational phase of the
object at a given time. The shape is specified using triangles with the Cartesian coordinates of the nodes as
free parameters. Altogether, there are 3+ 3N free parameters where N is the number of nodes, the rotational
phase becoming redundant because of the general shape model. The initialization of the simplex can be
accomplished, e.g., by using prolate spheroids. For a detailed description of downhill simplex minimization,
the reader is refered to Press et al. [6].

The simplex minimization allows for a flexible incorporation of conditions on the shape to be searched
for. At each iteration step, the convexity of the shape is verified, returning a rejection for concave solutions.
Solutions are constrained into a realistic regime in radial distances, that is, only radial distances within
[0.3, 1.0] are presently accepted. Solutions are further constrained by the requirement that the triangle mesh
be mathematically well defined during the minimization.
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Figure 1: The original lightcurve observations (top left), rotational periods vs. rms (top right), pole longitudes
vs. latitudes (bottom left), and ratios of minimum and maximum nodal radial distances vs. rms (bottom right)
for the near-Earth object 2003 MS2 as obtained by simplex inversion.
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3 Results and discussion

We have applied the simplex inversion methods to the limited lightcurve observations of the near-Earth
objects 2003 MS2 and (1981) Midas, and to the extensive observations of (1580) Betulia. In all cases, we
have succeeded in obtaining realistic spin and convex shape solutions within reasonable computing times.

In Fig. 1, we depict a distribution of 1000 sample solutions for 2003 MS2 based on the single lightcurve
observed at the Nordic Optical Telescope (NOT) [5]. The inverse problem entails the derivation of three
spin parameters and 42 shape parameters, the Cartesian coordinates of the 14 nodes in the discretized shape
(there are 24 triangular facets involved). The low-resolution characterization of the shape is justified by the
limited data and the success of the inverse method in yielding acceptable fits to the data (at best, the rms
difference is 0.054). Simplex inversion indicates forbidden regions in the pole orientation and a ratio of
minimum-to-maximum nodal radial distances within 0.55 ± 0.0.15.

Figure 2 shows four sample shapes for (1981) Midas based on altogether eight lightcurves [8, 7, 5]
spanning 18 years with three differing illumination and observation geometries. Using 54 shape parameters
(32 triangles), the rms values of the sample solutions varied from 0.048 (top left) to 0.055 (bottom right).
For (1580) Betulia, using the same number of parameters, we have obtained tentative solutions with rms
values of 0.05-0.06.
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Figure 2: Four sample shapes for the near-Earth object (1981) Midas as derived by simplex inversion.
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4 Conclusions

We have developed simplex inversion methods for deriving asteroid spins, shapes, and scattering properties
from photometric lightcurve observations using general convex shapes. With the help of the novel methods,
we have successfully assessed both limited and extensive lightcurve observations of three near-Earth ob-
jects. In the future, we will compare the simplex and conventional inversion methods, and plan to apply the
methods to the forecoming sparse photometric observations by the ESA Gaia mission (launch in 2011).
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Abstract

A study of phase-angle, particle-size, and packing-density-related phenomena affecting soft
X-ray spectroscopy of atmosphereless planetary bodies is presented. Both numerical mod-
elling and laboratory measurements are included in the study. The surface properties, such
as particle size and illumination geometry are found to havean effect for the total emission
from the surface observed and on the measured fluorescent characteristic elemental ratios.

1 Introduction

Soft X-ray spectroscopy is a tool that has been used in planetary research since the Apollo 15 lunar mission
[1]. It is used for providing global maps of elements such as silicon, iron, and calcium, which have charac-
teristic fluorescent emission lines in the soft X-ray energyregion (∼0.5-10 keV, i.e., wavelengths of 2.5-0.12
nm). These maps are then used to deduce the rock types and evenmineralogy of the surface, with the help
of instruments from other wavelengths. The standard practice is to normalize the elemental abundances in
the spectrum to some characteristic emission line, e.g., SiKα.

The fluorescent emission from atmosphereless planetary surfaces is induced mainly by solar emission
which, although highly variable in soft X-rays, is weak compared to visible wavelengths. Therefore, soft
X-ray spectroscopy is useful only for inner solar-system bodies, i.e., Mercury, the Moon, and near-Earth
objects (NEOs).

Spacecraft-based X-ray spectroscopy is limited to small phase angles (the angle between the light source
and observer as seen from the surface), i.e., close to the backward direction. The most noticeable phenomena
in soft X-rays take place close to the forward direction, e.g., Bragg scattering and by anomalous diffraction.
Therefore, the backward direction has been left relativelyunstudied.

Historically, the detectors used aboard the planetary missions for measuring the X-ray spectrum have
been quite limited in both spectral and spatial resolution.However, with the advent of the next-generation
space-based imaging X-ray spectrometers, such as MIXS aboard the ESA mission to Mercury BepiColombo
(launch due in 2013), the resolution will improve dramatically imposing new challenges on the data analysis.
One of these challenges is the fact that the instruments willbegin to observe the surface elements with well
defined illumination geometries. As is well known in the visible wavelengths, surface properties such as
regolith grain size (distribution), packing density, as well as illumination geometry etc. affect scattering
from the medium.

In the soft X-ray wavelengths, the situation is complicateddue to the high energy (short wavelength) of
the radiation, introducing a new realm of physics compared to visible wavelengths. The physical interactions
occur mostly between photons and single atoms in the regolith. Therefore, the bulk elemental composition
of the material plays an important role.

Some work has been carried out to understand the particle-size and phase-angle-related phenomena in
soft X-ray spectroscopy (e.g., [2], [6]), but more detailedanalyses are needed to allow a correct use of future
high-spatial-resolution soft X-ray spectrometers in planetary science.
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2 Theoretical modelling

We have developed a Monte Carlo ray-tracing code for modelling X-ray scattering and fluorescence phe-
nomena in atmosphereless planetary regoliths[4] [7]. The current model assumes a medium consisting of
spherical particles, a good assumption considering the very short wavelengths, with fixed particle size and
packing densities. The code computes the first-order fluorescence from the particles induced by incident
radiation. We use a simulated solar X-flare spectrum as inputspectrum to allow realistic simulated spectra.
At the moment, the code allows two different elements in the same medium with arbitrary elemental ratios.

Our theoretical work and the first results were introduced inNäränen et al.[4]. They reported a strong
dependence of the fluorescent radiation on the particle size, smaller particles producing more fluorescence,
as well as a smaller dependence on the phase angle. An opposition effect was also seen to arise due to
shadowing. An interesting result for planetary research isalso that elemental ratios seemed to change as a
function of the viewing geometry. All of the simulations were performed with the illumination source fixed
in the direction of the normal of the surface.

Scattering, which produces most of the background signal insoft X-ray spectroscopy, has not yet been
included in the simulation. It will soon be implemented, as it is required for the correct evaluation of the
fluorescent lines. Secondary fluorescence (characteristicemission is allowed to induce fluorescence at lower
energies), realistic particle size distribution, and capability to produce spectra instead of integrated output
will also be addressed.

We exclude particle processes such as particle-induced X-ray emission (PIXE) from our modelling, at
least at this phase, to limit the amount of free parameters inthe simulations. For comparing the theoretical
results with those from the laboratory measurements (see next section) this is a valid assumption. However,
for analysing the data from planetary missions, also the particle processes need to be included.

3 Laboratory experiments

To complement the theoretical work, we started laboratory experiments in multiangular soft X-ray spec-
troscopy in March 2007. The experimental setup used was originally built for the scientific ground cali-
bration of ESA SMART-1 lunar mission X-ray Solar Monitor (XSM)[3]. It consists of a cylindrical vacuum
chamber (63 cm in diameter, 30 cm tall), inside of which all the measurements are performed, and a titanium
light source (0.5 mA and 10 kV for the initial measurements).Near vacuum (4 mbar) is necessary, as soft
X-rays are readily absorbed in air. The X-rays are directed inside the vacuum chamber through a collimator
tube which has two apertures and an aluminium window. The experimental setup is illustrated in Figure 1.

Figure 1: The experimental setup used for the initial measurements. The distance between the light source
and the sample is 33 cm and the distance between the sample andthe detector varied between 12.8 and 18
cm. The detector can be rotated remotely along the rotation axis indicated.

The first measurements that are reported here were performedon two samples of the same material but
different grain size distributions (< 75µm an 75− 250µm). The sample material was basalt with olivine,
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which is considered to be a good spectral lunar highlands analogue material in the visible wavelengths.
We have studied the sample materials previously in the visible wavelengths for, e.g., effects of extremes of
packing density and surface roughness on the opposition effect [5]. Due to the present experimental setup
restrictions, the samples had to be compressed into pelletswith a packing density of 0.6±0.05. We measured
the samples at four different phase angles; 16.6, 22.8, 30.2, and 38.8 degrees. For the first measurements,
we limited the studies to nadir illumination geometries. Inorder to gain acceptable photon statistics, we
measured each angle for more than 5 hours. The only measureable characteristic fluorescent lines in the
samples were iron and calcium Kα lines (Fig. 2).

Figure 2: Spectrum measured for olivine-rich
basalt sample (< 75µm) at phase angle of 30 de-
grees. The titanium line is produced by the light
source and the copper line by the sample holder.

Figure 3: The scattering background of the<
75µm sample at different phase angles. There
are systematic phase-angle dependent scattering
phenomena. Note also the dependence of fluo-
rescence on the phase angle.

The data were analyzed using custom-written IDL programs. The spectral lines were modeled with
Gaussian functions and the maximum values of the functions were taken as data points. The effective area
of the detector as a function of off-axis angle and energy was corrected for.

During 2007, we aim to continue the measurements with significant improvements in the experimental
setup, including moving the sample to the center of the detector field of view.

4 Results

We report new theoretical results, including nadir-pointing simulations (observing direction normal to the
surface) and results of changing the mixing ratio of elements in the medium. Even a small addition of iron in
calcium-rich medium can cause a noticeable increase in the observed characteristic X-ray flux as illustrated
in Fig. 5.

The initial results from the laboratory measurements are also reported. A significant increase in observed
iron abundance relative to calcium is observed as a functionof phase angle (Fig. 4). The results are quali-
tatively similar to those reported by Okada[6]. The results, if confirmed in more detailed studies, can have
profound implications for the analysis of high spatial resolution soft X-ray planetary spectra.

Assessing the particle-size effect in the laboratory requires a more careful analysis and calibration of the
data (as it deals with absolute values) than studying the relative intensities of elements.
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Figure 4: Measured elemental ratios of the two
samples as a function of phase angle. The line
represents the best linear least-squares fit to the
data.

Figure 5: Total fluorescent emission from media
with varying elemental ratios. Iron dominates
the total output flux which can be at least partly
explained by the fact that iron has over twice the
fluorescent yield of calcium.

5 Conclusions

Our results show that in order to obtain accurate information from planetary soft X-ray spectroscopy,
viewing-geometry-relatedphenomen need to be understood and taken into account. Particle size, packing
density, and phase-angle-related phenomena in the spectrum create basis for solving the direct problem, i.e.,
of how to best calibrate the effects out of the data. But, in addition, they can also be used asinput for the
inverse problem (with data from other wavelengths as well) of actually gaining geometrical information
of the surface. Our theoretical modelling and laboratory experiments are part of that endeavour that is just
beginning.
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Abstract
The impact of particle shape on how scattering depends on the refrac-
tive index m is studied. The goal is to find out whether spherical model
particles provide an accurate estimate for the m-dependence of scat-
tering by nonspherical particles. The results indicate that this is very
unlikely especially when small m intervals are considered.

1 Introduction

The assumption of spherical shape is still widely used in many applications where the
single-scattering properties of nonspherical particles are involved. For example, all cli-
mate models presently use aerosol optics based on spherical aerosol particles. Kahnert
et al.[1] show that this is likely to be a major error source in climate simulations.

The same spherical-particle approximation (SPA) is also used when estimating the
impact of other error sources connected to aerosol particles, such as their uncertain re-
fractive index m. The m-uncertainty has been considered the single most important
source of error in assessing the direct climate forcing effect of dust aerosols[2]. This con-
clusion has been reached by use of the SPA, yet it is altogether unclear how well spherical
model particles can represent the m-dependence of scattering by nonspherical particles.
The shapes of dust particles vary, and it seems plausible to expect a shape distribu-
tion to smooth out different dependencies, implying that the SPA might over-estimate
the m-dependence. The purpose of the present study is to assess the m-dependence of
nonspherical particles and the ability of the SPA to estimate it.

2 Modeling aspects

To address the issue, the m-dependence of scattering was computed for a variety of
spheroids, including spheres. Scattering simulations were carried out using the T -matrix
implementation of the exact Extended Boundary Condition Method by Mishchenko[3].

The computations were performed for four different size parameters, 17 different
shapes, and 14 different refractive indices (seven different values for both the real and the
imaginary part of the refractive index, one being fixed when the other was varied). The
values used are given in Table 1. The size parameter x = kr, where k is the wavenumber
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Table 1: Parameters defining the properties of model particles used in the simulations.

Parameter Values
x 1, 5, 10, 20

Re(m) 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75
Im(m) 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01

ǫ 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6

in vacuo, was based here on the surface-equivalent radius r; control runs with volume-
equivalent radius in selected test cases showed that the results of the investigation are
not significantly affected by the choice of size equivalence. The spheroid shapes were
defined using the aspect ratio ǫ, which is the ratio of major-to-minor axis. The same
ǫ were used for both oblate and prolate spheroids. A narrow, uniform size distribution
within ±1% of the speficied size was used to damp interference effects.

3 Results

The analysis described here is limited to the asymmetry parameter g, which is an im-
portant parameter for radiative fluxes and sensitive to particle shape.

The results showed that the m-dependence of g varies for different spheroids. For
many spheroids it was actually stronger than for spheres, so it was not obvious that the
dependence would be weaker for a shape distribution of spheroids than for the corre-
sponding spheres. To address that, two different shape distributions were used for shape
averaging, an equiprobable and a weighed shape distribution. In the former, all different
spheroids were added together by weighing only by their corresponding scattering cross
sections. The latter is the ’n = 3’ shape distribution introduced in [4], which gives much
more weight to strongly elongated spheroids, and appears to mimic single-scattering
properties of an ensemble of irregularly shaped particles quite well.

Figure 1 shows the results obtained regarding the dependence on the imaginary part
of the refractive index, Im(m). It is seen that for x ≤ 5, g depends on Im(m) similarly
in each case. For x ≥ 10, both distributions of spheroids are more sensitive to Im(m)
than the sphere is. In each case, g is a monotonic function of Im(m).

Figure 2 illustrates the dependence of g on the real part of the refractive index,
Re(m). Again, for x ≤ 5, the dependence is simple and monotonous, but now it is
spheres that show higher sensitivity (quite extreme at x = 5, actually). For larger x the
dependencies become more complicated; neither spheres nor spheroids show monotonic
dependence. At x = 10, the dependence for the weighed spheroid distribution seems
to have the opposite sign to that for spheres or the equiprobable shape distribution of
spheroids. At x = 20 both spheroid distributions have only a weak g-dependence on
Re(m), g decreasing with increasing Re(m), while g for spheres is a non-monotonous
and quite varying function of Re(m).
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Figure 1: Dependence of the asymmetry parameter g on the imaginary part of the
refractive index, Im(m), for spheres (solid line), equiprobable shape distribution (dotted
line), and weighed shape distribution (dashed line).

4 Conclusions

The results show that, somewhat surprisingly, the dependence of the asymmetry pa-
rameter g on the refractive index m is not necessarily stronger for spheres than for a
shape distribution of spheroids. Spheroids appear to be more sensitive to changes in
Im(m) than spheres are, whereas for Re(m) the opposite tend to be true. Moreover, the
dependence of g on m seems to depend much on the size parameter x.

However, the m-dependence of g is much more consistent and conservative for spher-
oids than for spheres. This is especially true for the dependence on Re(m) at large x,
where g for spheres can change very fast as a function of Re(m). Thus, for example, if
one uses spheres to estimate how much an uncertainty in m affects the impact of non-
spherical particles on radiative fluxes, the result obtained may even have the wrong sign.
Of course, in most practical applications one need to consider dependencies over a size
distribution, which is likely to improve the performance of spheres to some degree.
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Figure 2: Same as Fig. 1 but for the real part of the refractive index, Re(m).
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Abstract

We introduce the  method  to  shorten  the  number  of  iterations required  in  the  linear
equation  solutions  of  DDA.  In  the  linear  equation  solution  in  DDA,  the  solution  is
iteratively solved. We give the initial guess, which is close to the actual solution infered
from  parameters  close  to the  selected one.  We apply the  method for  the  orientation
averaging of scattering properties of non-symmetric particles. The method reduces the
number of iterations into less than 10% for non-symmetric particles with moderate shape
variations against the direction of incident light when the interval of the grid angles is set
as  5 degree.  On the  other  hand,  non-symmetric  particles  with  high  shape variations
against the direction of incident lights shows iteration ratio of less than 25%. 

1 Introduction

Discrete Dipole Approximation (DDA) is a powerful tool to treat light scattering problems of irregularly
shaped particles [1]. In the DDA calculations, the shape is described with a number of dipoles, then the
multiple interactions of the incident light between the dipoles are solved. Compared with other methods,
DDA has the advantage in treating shape with dipoles making the calculation possible for irregularly
shaped particles without any symmetry. On the other hand, the disadvantage of DDA is that the linear
equations are required to be solved for every variations in the parameter of the particle (e.g. size, shape,
refractive index, etc.) and for the direction of incident lights.   
    In order to apply the calculation of DDA into the remote sensing, such as retrieval of atmospheric
aerosol  properties,  cometary  dust,  and  dust  on  the  surface  of  Asteroids,  reduction  of  the  DDA
calculations  for  parameter  variations  of  the  particles  are  indispensable.  In  this  study,  we  apply  the
method to reduce the iterations in the DDA calculation for the variations in the particle orientation.

2 Reduction of the iterations 

In the DDA calculation, the polarizability of all the dipoles are solved based on the iterative method (e.g.
Conjugate Gradient Method) [1]. In the iterative method, the initial  value of the dipole polarizability
(hereafter  as  initial  guess)  is  set  arbitrarily  (e.g.  CMPLX(0.0,  0.0))  since  the solution  of  the  linear
equations (i.e. dipole polarizability) is not known at the beginning of the iteration.
    Muinonen and Zubko (2006) proposed the method to give the initial guess by extrapolating from the
results of similar size or of similar refractive index to the selected parameter of the particle. This is
because, small variations in the size or in the refractive index are considered to have only small influence
in the polarizability of dipoles. Then the calculated initial guess is close to the solution of the selected
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parameter resulting in the reduction of iterations. In their study, extrapolation are used to calculate the
initial guess of the polarizability for size variations or for variations in refractive indices.
    In this study, we apply the same method for the orientation averaging of scattering properties. For the
orientation variations, the interpolation of the initial  guess is always possible by using values in both
sides of the selected orientation. Since the interpolation is considered more accurate than extrapolation,
the proposed method has more advantage in the proximity of the initial guess to the solution. We use
spline  interpolation  [3]  to  calculate  the  initial  guess  of  the  selected  orientation  from  the  results  of
orientations close to the selected one.
    We define the orientations, with which the interpolation is conducted, as “grid angles”. Before the
calculation with the proposed method, the dipole polarizabilities for grid angles are calculated with the
DDA method and are stored into the files. Then, the calculation with the proposed method is performed
after  interpolating  initial  guess  from  the  stored  polarizabilities  of  grid  angles  close  to  the  selected
orientation. 
    We define “iteration ratio” as the ratio between the number of iterations in proposed method and those
in original calculation to investigate the efficiency of the method applied for orientation variation. We
use public domain DDA code “DDSCAT6.1” developed by Dr. Draine and his colleague [1].

3 Efficiencies and Accuracies

As non-symmetric particles, we use “Gaussian Sphere (hereafter as GSP)” and “Overlapping mixture of
multiple tetrahedra (hereafter as OMMT)” as shown in Fig.1.  The former is produced to have moderate
surface  roughness  with  the  selected  parameters  of  Gaussian  Sphere  while  the  latter  shape has  high
surface roughness  causing  high orientation  dependence of  the shape against  the direction  of incident
light. The GSP described originally with a number of triangular facets [4] are converted into the shape
described  with  dipoles  following  Muinonen  et  al.  (in  Press)  [5].  OMMT  is  created  by  using  the
tetrahedra composed of dipoles, which is produced with “calltarget” program in DDSCAT6.1 [1], then,
by sequentially adding randomly rotated tetrahedra into the particle.
     In the DDSCAT6.1, the angle of the particles against the direction of incident light is configured with 
beta, theta and phi [1]. In this study, we arbitrarily set theta=20.0 and phi=15.0, then rotate the particles
in the direction of beta from 0 to 360 degree. 
     In this study, we set grid angles as 5 degree. Therefore the precalculation of dipoles for 73 grid angles
are  required.   After  calculating  for 73 grid angles,  we performed the  calculation  with the proposed
method with interpolation. The interpolation for orientations is conducted by using 8 grid angles close to
the  selected  angle.  The “8”  is  arbitrarily  chosen  in  this  study.  We investigate  for  the  particle  size
parameter for the equivolume sphere as 7.0. The refractive index is selected as m=1.60 + 0.01i.
     Fig.2 shows the iteration ratio for GSP and for OMMT. The iteration ratios are less than 10% for GSP
and less than 25% for OMMT. This iteration ratio depends on the interval of grid angles, which is set as
5 degree in this study. We also investigate the iteration ratio for GSP and OMMT with the grid angle
interval of 10 degree.  The result (not shown here) is that the iteration ratio is increased for the central
angle between grid angles, while for the orientations close to the grid angles, the iteration ratio become
small similar to those shown in Fig. 2.
    In order to investigate the accuracies of calculated scattering properties, we have compared scattering
properties calculated 1) with original DDASCAT and 2) those with the proposed method for the angles
beta from 0 to 360 degree with the step of 0.5 degree. Fig.3 shows the example of the comparison of
absorption (Qabs) and scattering properties (Qsca) of the OMMT for the variation of the  beta angles.
Fig.4  shows  the  comparison  for  the  scattering  function  S11  and  polarization  -S12  /  S11  where
beta=113.5 for OMMT.  The errors (i.e.  |    Qoriginal  -    Qproposed   | / Qoriginal*100   [%]  ) caused by the
proposed  method  are  less  than  0.013%,  0.08%,  0.09%,  5.58%  for  Qabs,  Qsca,  S11,  -S12  /  S11,
respectively. The errors of S11 and -S12 / S11 for different beta angles are also in the same order.
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Figure 1: Shapes of the particles composed of a number of dipoles shown in XY (left), YZ (middle), and
XZ plane (right). Gaussian sphere (upper panel) and overlapping mixture of multiple tetrahedra (lower

panel) are considered.

Figure 2: The iteration ratio for GSP and OMMT where the interval of grid angles is 5 degree.

4 Summary

The reduction method of the iterations in the linear equations are applied for the orientation variations of
irregularly shaped particles. Non-symmetric particles with moderate orientation dependence of the shape
(i.e. Gaussian Sphere) have gained large advantage with the iteration ratio of less than 10%. While, non-
symmetric  particles  with  large  orientation  dependence  of  the  shape  (i.e.  OMMT)  has  also  gained
advantage with iteration ratio of  less than 25%. We have known that the iteration ratio becomes larger
for larger intervals of grid angles at central angles between grid angles. We are now trying to devise
efficient division of orientation angles to reduce total number of iterations in DDA calculations in order
to conduct DDA calculation efficiently for the 3D orientation averaging.
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Figure 3:  The comparison of Qabs and Qsca of OMMT for the original and the proposed method

Figure 4: The comparison of S11, and -S12 / S11 of OMMT where beta=113.5.
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Abstract 

 
Adequate modeling of light scattering by nonspherical particles is one of the major 
difficulties in remote sensing of atmospheric aerosols, mainly in desert dust events. In 
this paper we test a parameterization of the particle shape in size distribution, single 
scattering albedo, phase function and asymmetry parameter retrieval from direct and 
sky-radiance measurements, based on the model skyrad.pack taking into account the 
principal plane measurements configuration. The method is applied under different 
Saharan dust outbreaks. We compare the results with those obtained by the almucantar 
measurements configuration. The results obtained by both methodologies agree and 
make possible to extend the parameter retrieval to different zenith angles. 

  
1    Introduction 
  
Modeling the impact of mineral dust aerosols on radiative net flux is of particular interest in climate 
research, because mineral dust aerosols can have a strong direct climate forcing effect. Thus, this is 
especially relevant in southern Europe and in some Atlantic islands [1]. North African dust is injected 
into the atmosphere through resuspension processes at the source areas, and it is then transported at 
different altitudes (from sea level up to 4-6 km), being the maximum dust transport in summer when 
large quantities of dust are carried across the Mediterranean basin to Europe and the Middle East and 
across the Atlantic ocean to the Caribbean, the southeastern United States, and the midlatitude western 
North Atlantic. In winter, there is also considerable transport when large quantities of dust are carried 
toward South America and sporadically to Western Europe. As example, in 2001 was recorded 77 days 
with African episode at the Iberian Peninsula [1]. 
 
The satellite sensors provide a global coverage, but the retrieval algorithms to determine atmospheric 
aerosol characteristics used need validation so they can be tested and improved. In the last decades, 
there have been continuous efforts to establish inversion algorithms for determining the columnar 
aerosol optical properties of suspended aerosol polydispersions from ground measurements of solar 
extinction and almucantar sky radiance, taking into account spherical or spheroid particles 
approximation (i.e. [2-5]). The columnar aerosol properties of interest are: size distribution, phase 
function, asymmetry parameter, single scattering albedo and refraction index. Nevertheless it would be 
convenient to include nonsphericity features for improving the retrieval qualities in particular for large 
dust particles. Scattering phase function, including scattering angles larger than 90º, are important 
because this angular range of scattering determines the aerosol effect on climate and is used for remote 
sensing. Aerosol scattering at large angles 100º-140º is affected by the particle shape. The results show 
that the use of spheres causes considerably larger sky radiance errors for mineral particles than the use 
of spheroids, and the effect is particularly pronounced at Top of Atmosphere (TOA), which is most 
relevant for satellite remote sensing computations. Thus, different authors have shown that in presence 
of mineral particles the modeled phase function of spheres strongly deviates from that of non-spherical 
particles. Simulations based on spherical model particles were found to give TOA spectral radiance 
results with an error range that is larger by a factor of 4 than those results obtained with spheroidal 
shape distributions [6]. 
 
On the other hand, using the almucantar sky radiance data the authors show that the single scattering 
albedo can be retrieved with reasonably high accuracy only for high aerosol loading and large solar 
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zenith angles (i.e. [3], [7]). But the aerosol load can change along the day also due to the different local 
sources or meteorological conditions. To extend the columnar aerosol properties derived by inversion 
methods along the day, including scattering angles larger than 90o, in this work we test a 
parameterization of the particle shape in size distribution, phase function, single scattering albedo and 
asymmetry parameter retrievals from direct and sky-radiance measurements, based on the model 
skyrad.pack using the principal plane approximation. The method is applied under different 
atmospheric conditions, including Saharan dust outbreak. We compare the results with those obtained 
by the well tested almucantar inversion using the spheroids particles approximation [3-5].  
 
2    Instrumentation 
 
For this study we use solar extinction and diffuse sky radiance measured with a CIMEL CE-318 at 
Granada, Spain (37.18ºN, 3.58ºW and 680 m a.m.s.l.). The instrument is part of AERONET network 
[8]. This instrument obtains solar transmissions, aureole and sky radiances observations through a 
large range of scattering angles from the Sun through a constant aerosol profile. The solar transmission 
measurements are performed at 340, 380, 440, 500, 670, 870, 940 and 1020 nm to retrieve the aerosol 
optical depth, and the sky radiance measurements are carried out at 440, 670, 870 and 1020 nm by 
means of almucantar and principal plane observations. Together with the AERONET calibration 
procedures, Langley plots at high location in Sierra Nevada Range (2200 m msl) have been made to 
determinate the spectral extraterrestrial voltage for this instrument.  The aerosol optical depth was 
derived from the total optical depth subtracting the Rayleigh, O3 and NO2 contributions. The total 
uncertainty in aerosol optical depth and sky radiance measurements are <±0.01 and <±5%, 
respectively [8]. 

   
3    Methods 

  
The retrieved information from sky radiance at large scattering angles requires accurate correction for 
the effects of multiple scattering and for the contribution of light reflected from the Earth’s surface and 
scattered downward in the atmosphere. Nakajima et al. [2] developed and applied an inversion scheme 
that includes accurate radiative transfer modeling to account for multiple scattering (Skyrad.pack 
code). The method use specified wavelengths, selected outside the gas absorption bands, in order to 
reduce the radiative transfer problem to a pure scattering problem. The inversion procedure uses the 
normalized sky radiance (almucantar and principal plane configuration) and the aerosol optical depth 
measured by means of a method that requires absolute calibration. The connection between the optical 
measurements and the aerosol features occurs through the radiative transfer equation in a multiple-
scattering scheme for a one-layer plane-parallel atmosphere. The code is developed originally for 
spherical particles and Olmo et al. [5] was adapted the methodology including a shape mixtures of 
randomly oriented spheroids using the almucantar measurement configuration. In this paper, we also 
modified this method including the same parameterization of the particle shape to calculate the 
efficiency factor for extinction and the phase function using the principal plane measurement 
configuration. All scattering angles in the range measured, which depend on the measurement time, 
were used to retrieve the aerosol volume radius distribution in the radius interval 0.06-10 µm. 
 
The EBCM, or T-matrix [9], theory has been used to calculate light scattering calculations for 
nonspherical matrices (kernel matrices) instead of previously used Mie simulations by Nakajima. Both 
incident and scattered electric fields can be expanded in vector spherical wave functions. Incident and 
scattered expansion field coefficients can be related by means of a transition (T) matrix, whose 
elements depend on the particle's size, shape and orientation.  In the case of randomly oriented, axially 
symmetric particles, the T-matrix is calculated for the so-called natural reference frame (z axis along 
the particle symmetry axis) and results are then averaged for all particle orientations. T-matrix sizes 
have been chosen so that phase matrix elements are calculated with an accuracy of 10-3; cross sections 
are accurate to within one part in 104 [10]. Accordingly, we defined in code the aerosol single-
scattering properties as functions of the volume size distribution of randomly oriented polydisperse 
spheroids, and we have computed the kernel matrices for randomly oriented prolate and oblate 
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spheroids, using equiprobable distributions, following the recommendations of Dubovik et al [3]. 
 
For the complex refractive index we have selected for each experimental case a unique value 
independent of wavelength. The selected value is the one that minimize the residuals between the 
measured and the simulated radiances. We assumed a Lambertian surface with a constant albedo in the 
wavelength range. The procedure allows the retrieval of particle size distributions, the complex 
refractive index, the single scattering albedo, the phase function and the asymmetry parameter. 
 
4    Results 

 
In order to verify how representative are the retrieval improvements of the method using the principal 
plane configuration we processed several measurements data (extinction and sky radiance –almucantar 
and principal plane-) collected at Granada in different atmospheric conditions. Figure 1 shows the 
comparison of the aerosol size distributions retrieved using the two spheroids scattering models in a 
day influenced by desert dust. We can appreciate the good agreement for the range of radius where the 
codes are applicable. Figure 2 shows the codes comparison for the columnar single scattering albedo 
(670nm) for July 31 (2006), also influenced by a Saharan dust outbreak. In addition, this day is 
influenced by the local pollution due to the traffic emissions that affect the aerosol absorption proper-  
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ties decreasing the single scattering albedo along the day. Figures 3 shows the asymmetry parameter 
evolution (670nm) derived by the two methods for July 31 (2006). Both results display that the 
columnar aerosol properties derived by the principal plane inversion agree with the almucantar inver- 
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Fig. 1.- Aerosol size distribution at Granada in a 
day with Saharan dust influence. 

Fig. 2.- Single scattering albedo evolution at Granada in a 
day with Saharan dust influence.  

Fig. 4.- Aerosol phase function at Granada in a 
day influenced by desert dust. 

Fig. 3.- Asymmetry parameter evolution at Granada in a 
day with Saharan dust influence.  
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sion using the spheroids approximation. Figure 4 shows the comparison of the phase function (670nm) 
also derived by the two methods for measurements close in time. As we can observe, the result for the 
phase function also agrees from sky-radiance aureole and for scattering angles higher than 90o.  
 
5    Conclusions 

 
We have modified the skyrad.pack code to take into account the non-sphericity of the aerosol particles 
as polydisperse, randomly oriented spheroids (equiprobable distributions of oblate and prolate), to 
retrieve the columnar aerosol optical properties from measurements of extinction and sky atmospheric 
radiances –almucantar and principal plane- at Granada (Spain). The aerosol size distributions, single 
scattering albedo, asymmetry parameter and phase function obtained by the two methods have been 
compared for different atmospheric conditions (Saharan dust influence). The results of the two 
methods agree well, showing the feasibility of extending the retrieval of atmospheric aerosol optical 
properties along the day, not only for large solar zenith angles. Nevertheless, this study is only a first 
attempt to explore the columnar aerosol optical properties with this method. We also plan to explore 
the parameters taking into account different particle aspect-ratio and computing more accurate 
spheroids kernel matrices. 
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Abstract

Light scattering properties of rough thin circular films of constant thickness are studied us-
ing the discrete-dipole approximation. Effects on the intensity distribution of the scattered
light due to different statistical roughness models, model dependant roughness parameter,
and uncorrelated small-scale porosity of the inhomogeneous media are investigated. The
effects due to inhomogeneity of the scattering media are compared with the analytic ap-
proximation by Maxwell Garnett and the results are found to agree well with the theory.

1 Introduction

The latest advances in computing power and numerical methods—such as the distribution of the geometry
to different computing nodes as in the ADDA-code [1]—has allowed the DDA simulations of objects with
ever extending sizes. We are approaching the range where we can study the wave-optic effects due to the
rough boundaries between extended media of different physical properties (i.e. rough-surface scattering),
together with the volume effects from the internal structure of the scattering media. This study considers
computationally light rough-surface analogs, deformed thin circular films, which allow us to study the wave-
optics effects due to surface roughness, and to investigate the volume scattering effects to some extent.

Rough Thin Films The film geometry is represented as a thin circular slab of constant thickness t along
the z-axis. The deformation along the z-axis is modeled by a two-dimensional homogeneous isotropic ran-
dom field h(x, y) [2]. The distribution of heigths follows Gaussian statistics, and is defined by the standard
deviation σ. The generation of the geometry realizations is based on the spectral synthesis method [3].

Figure 1: In the upper row we show the fBm model, in the lower the Gc model. Horizontal roughness
parameter changes from left to right as H = 0.25, 0.5, 0.9 and l

L = 0.215, 0.5, 0.75.

As in [4], two different types of roughness models were chosen for the study: fractional Brownian mo-
tion (fBm) and Gaussian correlation (Gc). The two models are shown in Fig. 1. Gc-surfaces show roughness
features of a certain scale, determined by the correlation length l, while the fBm-surfaces are of self-affine na-
ture showing roughness features in all scales, distribution determined by the Hurst exponent H. For brevity,
both l and H are denoted in the following text by a horizontal roughness parameter τ.
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2 Simulations

2.1 Numerical Methods

Simulations were carried out using a modified version of the DDSCAT-code [5] by B. Draine, and the results
were verified against the ADDA-code [1]. The modifications consisted of inclusion of several F90 features
into the F70-code, such as dynamical allocation of memory for more convenient working with geometries
of varying sizes. The modifications were tested not to affect the simulation results.

The geometry was discretized into cells of 0.025 µm width and height. The radius of the circular film
was 5.0 µm, and the thickness of the film was set to 4 cells, corresponding to 0.1 µm. This discretization
scheme leads to effective radius Aeff of 1.12, and size parameter x of 12.64 for the value of λ = 0.557µm
used in the simulations. Only the effects due to the horizontal roughness parameter were studied, and the
amplitude of the roughness deformations in the z-axis was considered as constant, σL = 0.01.

Geometries with packing density ρ < 1 were generated by randomly removing n × n × n dipole chunks
from the solid geometries. While this method lacks the elegance of using, e.g., a random field to define ρ, it
allows us to study the scattering dependency of the films due to the varying size of the voids in a simple and
well-determinated manner.

The Sepeli computing cluster of the Finnish IT center for science (CSC) was used to carry out the
simulations. The memory usage for a single geometry was around 4-6 GB, and computation time varied
from several tens of minutes to hours, depening on the packing density and the index of refraction of the
scattering medium.

2.2 Simulation Sets

The main focus of the study was on the the behaviour of the scattered intensity M11(θi, φi, θe, φe)—where
(θi, φi) are the angles of incidence, (θe, φe) the angles of emergence— as a function of the horizontal rough-
ness parameter and composition of the scattering media. The simulations were divided into five sets, each
studying different aspects of the scattering problem. For each value of the studied variable, the results are
averaged over 30 geometry realizations to obtain statistically meaningful results. When possible (i.e., for
normal incident radition, sets 1-4), the averaging is also carried out over 20 values of φe, thus giving M11(θe)
as an average of 600 samples.

Set 1 studied the behaviour of M11(θe) as a function of the horizontal roughness parameter and density of
the medium for normal incident radiation (θi = 0). The simulations were carried out for five values of
τ ( l

L = [0.25, 0.3, 0.4, 0.5, 0.75] for the Gc model, H = [0.25, 0.375, 0.5, 0.625, 0.9] for the fBm
model), and three values of packing density (ρ = [1.0, 0.5, 0.3]) for a void size of a single dipole.

Set 2 considered the effects due to the imaginary part of the refraction index. Simulations were carried out
for films with ρ = 1.0, n = 1.5, k = [0.01i, 0.1i, 1i] and H = [0.5, 0.625].

Set 3 treated the approximation of the inhomogeneous media by a homogeneous one with an average index
of refraction using the Maxwell Garnett relation [7, 6]. Simulations were carried out for films with
ρ = 1.0, H = [0.5, 0.625], and N = n + ik computed using the Maxwell Garnett relation.

Set 4 was a follow-up study for the sets 1 and 3. The behaviour of the scattered intensity was studied as
a function of the size of square-shaped voids. Simulations were carried out for films with ρ = 0.5,
H = 0.5, with size of the voids n = [2, 4, 8] dipoles.

Set 5 was a follow-up study for the set 1. The simulations of the set 1 were carried out for θi = 15◦, and
no averaging over φe was done. This was to test the consistency of the results obtained from the set 1,
especially the behaviour of the specular reflectance as a function of varying ρ.
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3 Results and Discussion

3.1 Results

Figures 2 and 3 sum up the primary results of the simulations. In Fig. 2 is shown the effects due to varying
density, horizontal roughness parameter and different roughness model. Figure 3 illustrates the agreement
of results between porous media and solid media with index of refraction computed using the relation by
Maxwell Garnett, as well as the effects due to increasing void-size. The most prominent results are:

1. The Gc and the fBm models lead to rather a different distribution of the backward scattered intensity.
For the fBm model, the transition from the specular reflection to diffuse is smoother than with Gc
model. For both models, the specular peak smoothens when the mean scale of the roughness increases.
This agrees with the theories based on wave-optics: the directional-diffuse component of the scattered
radiation starts to dominate when the scale of the roughness approaches the scale of the wavelength.

2. Approximation of the inhomogeneous media using solid geometry with the relation by Maxwell Gar-
nett agrees with the simulations. The shape of the reflectance is not sensitive to the inhomogeneities
of scale l

λ ≈ 0.05, even for a loose geometry with ρ = 0.3. Decreasing density is manifested as a mul-
tiplicative factor constant over θe, with minor differences in the shape of the reflectance distribution.

3. While the thinness of the geometry prevents us from studying the volume scattering effects in depth,
basic conclusions can be made from the behaviour of the reflectance as a function of void size. From
Fig. 3b. we see that the results deviate from the effective medium approximation along with the in-
creasing void size, but the relative deviation reduces near the specular direction. Nevertheless, more
simulations for off-normal incidence and significantly increased thickness are required for a serious
study of the effects due to size distribution of the inhomogeneities.
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Figure 2: Distribution of the scattered intensity (M11) as a function of θe computed for the films with fBm
roughness and Gc roughness and normal incident radiation.
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Figure 3: On the left, distribution of scattered intensity for inhomogeneous films with ρ = [0.5, 0.3], and
solid films with effective index of refraction. On the right, the effects due to the increasing void size.

3.2 Discussion

The study considered light scattering from simple nanoporous media, that is, inhomogeneous media with
pore size in the nanometer range and simplified pore structure. The results can be generalized to situtations
where the pore size is very small compared to other structures of the media—such as the surface roughness—
and to the wavelength of the radiation. The results can not be generalized to particulate media with coherent
particle structure, or to porous media with pore structure exceeding the scale of the wavelength.

Possible sources of error include the dominance of the surface dipoles over the total dipole count of
the volume, and the use of normal incidence. The latter makes the separation between backscattering,
directional-diffuse and the specular reflectance effects impossible

For a scattering object to be considered analogous to a surface, we must have r
t >> 1. Here r is the radius

of the cylinder, and t the thickness. This is especially important for off-normal incident radiation, since the
cylinder walls contribute to the scattering. Nevertheless, to include realistic volume scattering effects, we
would like to have t >> λ, where λ is the wavelength of the radiation. With DDSCAT, The size of the
geometry is restricted by the available memory of a single computing node. This imposes a strict limit to the
geometry thickness. This limit can be raised by applying codes with capability to slice the geometry between
different nodes, such as ADDA. Geometry slicing will allow us to maximize r

ts
for a single computing node,

where ts is the thickness of a slice, and use appropriate number of nodes to achieve the total thickness.
The use of more extended rough-surface analogs will allow for the comparison between the different

analytic wave-optics approximations for random rough surfaces [8] and independent numerical simulations.
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Abstract

We use the Discrete Dipole Approximation method to simulate light scattering from a dense
cloud of wavelength-sized spherical particles. We will mimic the set-up that was used in
recent articles from Mishchenko et al.[1, 2] where the superposition T -matrix method was
used to simulate the scattering characteristics. We will show that the same demonstration of
the evolution of the coherent backscattering phenomena can be produced with the Discrete
Dipole Approximation.

1 Introduction

The coherent backscattering (CB) or the weak localization effect of electromagnetic waves has been studied
both theoretically and with laboratory experiments, and recently also by numerical simulations[1, 2, and the
references therin]. Mishchenko et al.[1, 2] have used the superposition T -matrix method to study the scat-
tering characteristics from a dense cloud of wavelength-sized uniform spheres. They were able to simulate
scattering from systems with up to 240 spheres. Mishchenko et al. make the (probably legitimate) claim,
that they were able to show the evolution of the CB effect directly for the first time.

The superposition T -matrix method has some practical limitations in its convergence and the size of the
system in [1, 2] is the largest that can be computed with current implementations and computing resources.
On the other hand, the Discrete Dipole Approximation (DDA) method, among some other methods, can also
be used to compute scattering from a cloud of spheres. Currently, there is only one implementation of the
DDA as far as we know, the “Amsterdam DDA” (ADDA) code[3], that can handle as large systems as in
the experiment by Mishchenko et al. The reason for this is that the ADDA can be run in parallel computing
clusters where the system matrix in DDA can be divided among the operating memory banks of different
processors. The other DDA codes suffer from the limitation of the available operating memory in single
processor environments.

In this article we will show that the DDA approach can produce the same results as the superposition T -
matrix implementations with the same set-up as in [1, 2]. The idea behind this is that once the applicability
of the DDA is verified in this case, it can be used in larger or more complicated problems when studying
the CB. The T -matrix approach is limited to solids with rotational symmetries, while the DDA can be used
with arbitrary geometry. In the future it could be studied, e.g., if the CB effect needs a cloud of separated
constituents, or could it also be produced by e.g. a large single random and porous particle.

2 Numerical results

We will mimick the set-up in [1, 2] and place either 80 or 160 spheres with size parameter kr = 4 randomly
inside a large sphere with size kR = 40, where r and R are the radii of the small and large spheres and k is
the wave number k = 2π/λ. The refractive index of the particles is 1.32.

This experiment uses just one realization of the random particle positions. With T -matrix method the
scattering is averaged over all orientations of the system, thus producing different ’views’ to the system. The
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DDA method is not capable to produce exact orientation averaging, but the DDA computations can be run
with different target orientations and then averaged, producing an estimate of random orientation scattering.

Currently, we have computed 22 different orientation directions placed systematically in spherical coor-
dinates (θ, φ). In the DDA method the different rotations of the scattering plane in some orientation direction
(θi, φi) are cheap to compute and we have used 256 different planes, making a total of 22x256=5632 orien-
tations. Because one of the rotational angles is so overrepresented in the orientation averaging, the deviation
in the random orientation estimate is larger than in the case of more balanced systematic sampling over the
rotation angles.

The results of the simulations are presented in Figs. 1 and 2. In Fig. 1 are the scattering characteristics for
both the 80- and 160-sphere systems computed with both the T -matrix and the DDA method. The elements
of the Mueller matrix are labeled with a1, . . . , a4 for diagonal elements and with b1 for element (1, 2) and
(2, 1) and with b2 for element (3, 4) and −(4, 3). Different combinations of these elements are presented, e.g.
intensity a1 in subfigs. (a) and (e), and linear polarization −b1/a1 in subfigs. (d) and (l).

3 Conclusions

Mishchenko et al.[1, 2] analyze the behavior of the different scattering characteristics of the sphere clusters
in question. Most obvious signs of the coherent backscattering phenomena in these clusters are seen in the
peaks in the backscattering region in intensity (Fig. 1(e)) and in different polarizations states in Figs. 1(f)-
(k). It is clear that the DDA method produces the same effects and is therefore well applicable in CB studies.
The errors due to the limited number of orientations, as seen in Fig. 2 are still large, but will decrease as
more orientations are computed.

The CPU times needed for the DDA computations are much larger than for the T -matrix method.
Roughly estimated CPU-time for the T -matrix solution of the 80-sphere problem is ∼ 100 CPU-hours[2]
with a modern PC. CPU-time for one orientation (with 256 scattering planes) with the ADDA code was ∼ 70
CPU-h. For 22 orientations it was roughly 1500 CPU-h, and at least twice this much orientations would be
needed for the result to fit better to the exact results from the T -matrix method. Nevertheless, the available
computing resources grow rapidly and the flexibility of the DDA method with arbitrary geometry does make
the DDA approach very advantageous.
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Figure 1: Different scattering characteristics for both the 80- and 160-sphere systems computed with the
T -matrix or the DDA method as a function of the scattering angle.
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Figure 2: Scattering characteristics for the 80-sphere system and a typical error of the DDA orientation
averaging. The lower and upper error lines are the 4th smallest and largest values in the 22 orientations at
that scattering angle. This non-parametric error estimate encloses 64 % of the observations. The widely used
mean-±-σ -error encloses 68 % of obervations, but it is symmetric while the errors in e.g. backscattering
region in subfigs. (g) and (h) are not.



Merging Spheres, Petrov 161 

 

Applying Sh-matrices to two merging spheres  

Dmitry Petrov,1 Yuriy Shkuratov,1 Gorden Videen2,3 

1Astronomical Institute of Kharkov V.N. Karazin National University. 35 Sumskaya St, Kharkov, 61022, 
Ukraine, phone +38-057-707-50-63, petrov@astron.kharkov.ua 

2Army Research Laboratory AMSRD-ARL-CI-EM, 2800 Powder Mill Road Adelphi Maryland 20783 USA 
3Astronomical Institute “Anton Pannekoek,” University of Amsterdam, Kruislaan 403, 1098 SJ 

Amsterdam, The Netherlands 

Abstract 

The introduction of the Sh-matrices in the T-matrix method allows the shape-dependent 
parameters to be separated from size- and refractive-index-dependent parameters. In many 
case this allows analytic solutions of the corresponding surface integrals to be obtained. In 
this manuscript we derive and analyze the analytical solution for merging spheres at 
different degrees of merging.  

1 Introduction 
The T-matrix method is widely used for calculations of scattering properties of non-spherical particles [1]. 
In the T-matrix method, the incident and scattered electric fields are expanded in series of vector spherical 
wave functions, and then a relation between the expansion coefficients of these fields is established by 
means of a transition matrix (or T matrix). T-matrix elements depend on the optical and geometrical 
parameters of the scatterers and do not depend on the illumination/observation geometry, so the T-matrix 
approach allows for the separation of the influence of illumination/observation parameters and inner 
properties of a scattering object such as its size, shape parameters, and refractive index. Our modification 
of the T-matrix approach (specifically we use here the Extended Boundary Condition Method) consists of 
a further development, namely, we separate the contributions of the different inner parameters of the 
scattering object [2-6].  

2   Sh-matrices  
Mathematically our approach consists of introducting the so-called Sh-matrices, which depend on the 
scattering object shape only. The elements of the T-matrix can be expressed through the Sh-matrix 
elements. For example, the elements 11

''nmnmRgJ  and 11
''nmnmJ  of the T-matrix for particles with an axis of 

symmetry are found with the following equations (see designations in [1,2]):  

( ) ( ) ( ) ( ) ( )[ ] ( )( ) ( )( ) ( )( ){ }∫
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'' sin12 RRhRmjdAiJ nnnmmnmnnmnn

mm
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Calculating these elements numerically requires much time, especially if we consider an ensemble of 
particles polydisperse in size or refractive index. We have suggested modifications making such 
calculations much easier. For example, the elements 11

''nmnmRgJ  and 11
''nmnmJ  can be expressed using the 

Sh-matrix as follows [2]: 
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where λπrX 2=  is the size parameter, r is the size of the major axis of a particle, λ is the wavelength 
of incident light; m0 is the refractive index of the particle, Sh and RgSh are the shape matrices or just Sh-
matrices: 
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where ( )
X

RR θ
=0

, ( )θR  is the shape function of axi-symmetric particles 

in spherical coordinates; θ is the polar angle. Thus the Sh-matrices 
depend on the shape of the scattering particle only, and are independent 
of the particle size and refractive index, so they need to be calculated 
only once. Moreover in many cases the integrals in (5) and (6) can be 
calculated analytically, e.g., for Chebyshev particles [3], bi-spheres 
(osculating spheres), and capsules [5], and finite circular cylinders [6]. 
We here study the analytic solution for two merging spheres at different 
degrees of merging (see Fig. 1). The shape of the merging spheres of the 
same diameter is described by the equation ( ) θµ+=θ 2cos10R , 

where θ is the polar angle in a spherical coordinate system centered midway between the two sphere 
centers, µ < 1 is the parameter of merging. At 0=µ  the particle is a single sphere and at µ = 1 it is an 
osculating spheres (Fig. 1). Examples of analytical expressions for the elements of Sh-matrix are  
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It can be shown that at µ →1 the expressions tend to corresponding formulas for osculating spheres [5]. 
We also note that such a system of spheres has been examined previously using the T-matrix method [7], 
but performing numerical integrations over the surface integrals. 

3 Results  
Calculations using the analytical solution are represented in Figs. 2 and 3. One can see the development 
of the interference structure arising from varying µ in Figure 2.  

 

Figure 2: Maps of the forward-scattering hemisphere intensity (left panel) and polarization degree (right panel) 
produced by merging spheres at several fixed orientations (φ = 0° is the case when the incident light is parallel to the 

major particle axis). The refractive index of the particle and size parameter is m0 = 1.5+1.5i and X = 15.0.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure: 3 Phase dependence of intensity and polarization degree for merging spheres at different degree of merging. 
The (a) entire and (b) narrow backscatter ranges of scattering angles are presented.  
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Figure 3 shows orientation-averaged intensities and polarizations for different merging parameter µ. 
Previous studies have shown that the negative polarization branch of a single sphere can be damped 
significantly by the presence of another sphere [8]. For the parameters of Figure 3, no backscattering 
phenomena are obvious for the single sphere. When the system evolves into two osculating spheres none 
develop.   

4 Conclusion 
In the framework of the T-matrix method we have used the Sh-matrices to find an analytical solution for a 
system composed of merging spheres. Sample results show that the interference between the spheres 
becomes obvious even for a relatively large degree of merging µ > 0.5. In a system for which no 
backscattering effects were obvious for a single sphere, none become apparent when the system evolves 
into two merging spheres even for large values of µ.  

References 
[1] M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by 

nonspherical particles: a review”, J. Quant. Spectrosc. Rad. Transfer, 55, 535–575. (1996). 

[2] D. Petrov, E. Synelnyk, Yu. Shkuratov and G. Videen, “The T-matrix technique for calculations of 
scattering properties of ensembles of randomly oriented particles with different size,” J. Quant. 
Spectrosc. Rad. Transfer 102, 85-110. (2006).  

[3] D. V. Petrov, Yu. G. Shkuratov, G. Videen, “Analytical light-scattering solution for Chebyshev 
particles,” J. Opt. Soc. Am. A (2007) in press.  

[4] D. Petrov, Yu. Shkuratov, E. Zubko, G. Videen, “Sh-matrices method as applied to scattering by 
particles with layered structure,” J. Quant. Spectrosc. Rad. Transfer, (2007) in press.  

[5] D. Petrov, G. Videen, Yu. Shkuratov, M. Kaydash, “Analytic T-matrix solution of light scattering 
from capsule and bi-sphere particles: Applications to spore detection,” J. Quant. Spectrosc. Rad. 
Transfer (2007) in press.  

[6] D. Petrov, Yu. Shkuratov, “Application of Sh-matrices in light scattering by circle cylinder,” Optics 
and Spectroscopy (2007) in press.  

[7] M.I. Mishchenko, G. Videen, “Single-expansion EBCM computations for osculating spheres,” J. 
Quant. Spectrosc. Radiat. Transfer 63, 231-236 (1999).  

[8] D.W. Mackowski and M.I. Mishchenko, “Calculation of the T matrix and the scattering matrix for 
ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996). 
 



Photometry at small phase angles, Psarev 165 

Photometry of powders consisting of dielectric and metallic spheres 
at extremely small phase angles  

 
V. Psarev,1,2  A. Ovcharenko,1,2  Yu. Shkuratov,1,3  I. Belskaya1, G. Videen,4,5  A. Nakamura,6   

T. Mukai,6  Y. Okada6  

 
1Astronomical Institute of V.N. Karazin Kharkov National University, 35 Sumskaya St, Kharkov, 61022, Ukraine  

tel. +38-057-700-5349. e-mail: pva@astron.kharkov.ua  
2Main Astronomical Observatory of NASU, 27 Akademika Zabolotnogo St., 03680, Kyiv, Ukraine 

3Radioastronomical Institute of NASU, 4 Chervonopraporova, Kharkov, 61002, Ukraine  
4Army Research Laboratory AMSRL-CI-EM, 2800 Powder Mill Road Adelphi Maryland 20783 USA  

5Astronomical Institute ‘‘Anton Pannekoek’’, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The 
Netherlands  

6Graduate School of Science and Technology and Department of Earth and Planetary Sci., Faculty of Science Kobe 
University, Nada, Kobe 657-8501, Japan  

 

 

Abstract 

We present results of our photometric measurements of three samples of particulate 
surfaces consisting of dielectric and metallic spheres at extremely small phase angles. 
Monolayers of the spheres show satisfactory coincidence with the results of Mie-theory 
calculations. In particular, no opposition effect of the monolayer was found at the phase 
angle range 0.008 – 1.6° in accordance with Mie theory prediction. On the other hand, 
thick layers of the spheres reveal the opposition effect at phase angles less than 0.8°. In the 
case of dielectric spheres the opposition spike is due to the coherent-backscattering effect; 
whereas, for iron particulate surfaces the main contributor is perhaps the shadow-hiding 
effect. Measured dependencies do not allow us to separate these effects.  
 
 

1   Introduction 

The motivation of this study is an astrophysical problem: Photometric observations of Kuiper belt objects 
reveal a prominent brightness opposition spike that is very narrow [1]. These objects are observed at very 
small phase angles (< 2°) and to reproduce these conditions in a laboratory requires the use of very small 
angular apertures of the light source and the receiver. Using an old laboratory of our Institute, which had 
been exploited as an analog processor for Fourier transformation of large images, we have constructed a 
laboratory laser photometer to study extremely small phase angles; this setup provides measurements in 
the range 0.008 – 1.6° [2]. This instrument allows us to measure the scattering properties of structural 
analogs of the surfaces of Kuiper belt objects. First of all it allows studies of the opposition spike effect in 
a wide physical context. For example, we here compare phase dependencies of intensity for dielectric and 
metallic small spherical particles that form a monolayer and thick layer in order to study the opposition 
effect related to the shadowing and coherent backscatter enhancement.  
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2   Instrument, measurements, and samples  

Using the laser extra-small-phase-angle photometer we investigate the opposition effect of complicated 
surfaces in a vertical and horizontal position in the range of phase angles 0.008 – 1.6°. The extremely 
small phase angles are feasible due to small linear apertures of the light source (a laser) and receiver 
(photomultiplier Hamamatsu H5783-01) and the large distance from the light source and detector to the 

scattering surface (samples) that is 25 m. The linear diameter of the apertures is 2 mm. In the laboratory 
we use a clean-room environment that helps eliminate scattering by dust particles in air, which is very 
important for small-phase-angle measurements covering a large distance. In these measurements we use a 
gas monomodal non-polarized laser (50.0 mW) with wavelength 0.658 µm as a light source. All 
measurements are carried out in full darkness. For light detection we use a pinhole camera, a circular cone 
with a truncated top [2]. The linear diameter of the samples we use is about 7 cm. A checking procedure 
includes measurement of the light background from the small totally reflecting prism of the light source 
that is used in the optical scheme to turn the laser beam. We make this check by bringing the detector 
aperture to the laser beam (toward minimal phase angles). We change the phase angle by moving the 
detector block. The block consists of the pinhole camera with the photomultiplier inside and a coaxial 
guiding spyglass. The spyglass is needed for aligning the sample after a phase-angle displacement of the 
detector block. Each sample is measured at least twice at increasing and decreasing phase angles. 
Coincidence of these two dependencies is an indicator of the reproducibility of the measurements. An 
important verification is to estimate parasitic light scattering by dust in air for low-albedo samples at 
extremely small phase angles. To test we use as a sample an optical filter that absorbs light at the laser 
wavelength (Fig. 1). We tilt the filter so the specular reflection is diverted from the detector. Thus we 
obtain the signal from the dust in air [2]. To avoid problems with speckle pattern we move samples during 
measurements providing averaging. Figure 1 shows an image of the sample block in the mode allowing 
measurements of horizontal surfaces; for such measurements a large, totally reflecting prism (10×10 cm) 
is used to direct the laser beam vertically. The sample is mounted on a moveable spring hanger. 

    We here study metallic and dielectric materials (Fig. 2). We use two iron powders. One sample consists 
of small spheres whose average size is 2 µm. The distribution covers a range from a tenth micron to 4 µm. 
The second sample consists of coarse particles of different sizes whose average is 150 µm, which reveals 
very complicated surface structure of the particles. The characteristic scale of the particle surface 

Figure 1: The sample block of the instrument.  
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roughness is several microns. The dielectric sample is composed of 1 µm silica spheres (see Fig. 2). We 
show results of measurements of the samples in Fig. 3. Each point of these phase curves (open circles and 
crosses) is a result of averaging three measurements. The duration of each measurement is 2 s; at this time 
the movement of the spring hanger shown in Fig. 1 produces good averaging of the speckle pattern. We 
measured thick layers of the powders with a thickness ≈ 5 mm. In addition we measured thin (mono) 
layers that were prepared by drying an alcohol suspension of the particles on a substrate, a dark leatherette 
with frost coating, that does not have any opposition features. The albedo of the thick layer samples was 
determined at 1° phase angle and is given relative to the photometric standard Halon [3]. The bright 
(dielectric) sample shows very high albedo, higher than that of Halon. The iron samples have albedos near 
21 % and 32 %, respectively, for the coarse grain sample and the fine sphere powder.  

3   Results and discussion  

Figure 3a shows that the thick layer sample of silica spheres has a very prominent opposition spike at 
phase angles less than 1.0°. This spike is related to the coherent backscattering effect that is ubiquitously 
observed in nature, e.g., [4]. This spike is similar to what was observed for some Kuiper belt objects. The 
monolayer of the small spheres does not show the opposition effect, and these results are consistent with 
the Mie theory shown prediction as a solid line; thus, the scatter from the monolayer is dominated by 
single-particle scattering. For Mie theory modeling we use m = 1.45 + 0i and 3.57 + 4.02i [5], 
respectively, for dielectric and metallic spheres. It should be emphasized that the monolayer phase curves 
were calculated with a weighted subtraction of the phase dependence of the substrate.  
          (a)                                                      (b)                                           (c) 

 

 

 

 
 

Figure 2: Electron microscope photographs of samples used. Silica spheres with size ≈ 1.0 µm (a), iron powder with 
coarse particles having complicated surface structure (b), and iron spheres with average diameter 2 µm (c).  

               (a)                                                                         (b)  

 

 

 

 

 

 

 

 
Figure 3: Photometric phase curves for silica spheres (a) and iron particles (b). Open circles and points designate 

measurements, respectively, for thick and thin layers. Solid lines correspond to calculations with Mie theory.  
Crosses represent measurements for thick layer of coarse iron particles. All the dependencies are normalized at 1.4°. 

The insert demonstrate the Mie theory curve at wider range of phase angles.  
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    The sample of coarse iron grains shows a spectacular opposition feature; whereas, the iron sphere 
sample demonstrates only a small amplitude and very narrow opposition peak starting from 0.2° (Fig. 
3 b). The particulate surface consists of coarse iron grains that have two scales of roughness: the first one 
is produced by the grains and the second one is related to the complicated surface structure of the grains 
(Fig. 2). It is well-known that surfaces with such a hierarchical structure produce much more prominent 
shadow-hiding effect than single scale roughness [6]. We suppose that the spike seen in Fig. 3 b for the 
sample of coarse iron particles is related at least partially to this double-shadowing. This spike also may 
have a contribution from the coherent backscatter effect. This contribution can be estimated from the 
phase dependence of the small-sphere sample that forms a non-hierarchical particulate surface. Like in the 
case of the small dielectric particles, the independent iron spheres reveal a very neutral behavior of 
brightness over the phase-angle range. This can be seen for monolayer measurements that are in good 
agreement with the Mie theory.   

4   Conclusion  

We have initiated research with a new laboratory laser photometer covering an extremely small phase-
angle range (0.008 – 1.6°). Our measurements of dielectric and metallic spheres have shown a narrow 
opposition spike of the samples at phase angle less than 0.8°. From measurements at such small phase 
angles, we are not able to determine whether the brightness spike is produced by metallic or dielectric 
surfaces. From comparison of our measurements with the Mie theory we also may conclude that the 
scattering from a thin layer (monolayer) of particles on a dark substrate is dominated by single-particle 
scattering at such small phase angles.  
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Abstract 

Total aerosol scattering and backscattering atmospheric values are typically obtained with 
an integrating nephelometer.  Due to design limitations, measurements usually do not 
cover the full (0º-180º) angular range, and correction factors are necessary.  The effect of 
angle cutoff is examined for a range of particle size distributions and refractive indices.  
Scattering data for sub-micron particles can be corrected by the use of a modified 
Anderson approximation, while data for larger particle distributions can be approximated 
by a function of the effective size parameter.  Such approximation will help more 
accurate corrections for angle range. 

1 Introduction 
In order to determine the influence of atmospheric aerosols on climate, visibility and photochemistry, 
several key aerosol properties are required.  These include the aerosol light extinction, single scattering 
albedo, backscattering fraction and asymmetry parameter.  Integrating nephelometers are well suited for 
this kind of measurements., but only on the condition that operation procedures are followed to minimize 
practical limitations.  Such procedures include accurate calibration and consistent sampling practice, as  
well as corrections for nonlambertian and truncation errors. 
 

In this paper, the influence of limited angular range measurement (7º-170º) on scattering and 
backscattering values is analyzed.  The need for a correction factor to account for such truncation has 
been studied [1], but only a limited set of refractive indices and particle size distributions (PSD)  was 
considered, and nonsphericity effrects were neglected.  An alternative approach, based on the assumption 
that the diffraction forward-scattering peak is the same for spherical and nonspherical particles of the 
same projected area, combines experimental measurements in the 5º-173º angular range with a Lorenz-
Mie calculations of the forward scattering (0º-5º) peak.  The resulting phase function and that determined 
experimentally yield similar values for the asymmetry parameter [2]. 

 
  The purpose of the present work is to provide a more complete set of correction factors for scattering 

measurements on particle size distributions of both spheres and spheroids. 
 

2 Theory 
Light scattering values (extinction, scattering, backscattering coefficients) were calculated at five 
different refractive indices.  Mie theory was used for spheres, and T-matrix was used for randomly 
oriented prolate and oblate spheroids.  The numerical angle integration needed to calculate the correction 
factors was done by substraction of the forward (0º-7º) and the backward (170º-180º) contributions from 
the full integrals, e.g.: 
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for the scattering cross section.  Results were then size-averaged assuming a power-law distribution: 
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where x stands for the equivalent-volume size parameter in the case of spheroids.  A correction 

ratio Fs=Csca/Csca* was adopted as a measure of the effect of angular range limitation.  Instead of using 
integration limits (x1,x2),  PSDs are represented by the effective size parameter xeff and the effective 
variance <eff, as they have been found to best characterize any plausible PSD [3]: 
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The maximum xeff, <eff values for spherical PSDs were chosen as 100 and 10, respectively.  Large as 

they might seem, they are sometimes found airborne, for instance as the combustion products of 
powdered coal in a power plant,  or in the aftermath of large volcanic eruptions [4].  For the case of 
nonspherical scatterers, computer limitations impose a maximum equivalent-sphere-volume size 
parameter restriction of about 61-62, thus limiting the range of effective value parameters.  In all cases, 
light scattering parametere were calculated to a minumum accuracy of 10-5. 

 

2 Results 
Correction factors for scattering Fs have been compared to the Angstrom exponent over the 81 to 82 range, 
defined as follows: 
 

( )[ ]
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(for the present work, 81=450 nm, 82=700 nm).  The near-forward (0-7º) scattering is quite insensitive 

to shape effects for moderately wide PSDs, so the dependence of nonsphericity on the correction factor 
can be expected to be small.  This effect has been observed in our results.  For all but the narrowest size 
distributions, Fs values for equivalent-volume-size spheroidal particle distributions are identical to those 
for spheres to within 1-2%.    This result has been confirmed for all five refractive index values, at sizes 
for which T-matrix calculations converged, and for <eff∃0.2.  This supports the view that particle 
populations of interest can be regarded as spheres as far as scattering correction factors is concerned. 
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The correction factor Fs can be partially approximated in the form Fs=a+b∀ (Anderson 
approximation), as Fig 1 shows (∀>0.5 zone).  The validity of this approximation depends on both <eff 
and m, and covers only the sub-micrometer size range, but the approximation itself is <eff-independent and 
depends on the value of the refractive index alone.  For the smallest size distributions, the correction 
factor can be better approximated by the  Rayleigh-limit value 1.01717. 

 
For lower ∀ values, (higher effective size parameters), an Anderson-like approximation is unworkable.  

The reasons are clear from Fig. 1.  First, the functions become multivalued.  Second, even in the case of 
the widest PSDs (where the curve can be represented  as another  lineal function),  such a fitting would 
have a large slope, so a small uncertainty in the value of ∀ could results in large Fs errors.  In those cases, 
the monotonic behavior of the Fs -xeff curve allows for an approximation in the form Fs =a+bLn(xeff) or Fs 
=c+d*xeff, the range of validity depending on the PSD and m value. 

 
The correction factor for backscattering Fb is not monotonic and cannot be easily represented by a 

lineal function of either xeff or Ln(xeff), but it is in general a small amount.  For nonspherical scatterers, it 
has values in a small range, Fb =1.01-1.02 for nonspherical particles, as the example of Fig. 2 shows.  
Only for the smallest PSDs (xeff<1) is a higher correction factor needed, as it slowly increases towards the 
Rayleigh limit 1.02314.  Spherical scatterers show a larger Fb range (except the high-absorbing case, 
m=1.6+i0.6).  This result suggests that a correction based on Mie theory yields worse results than not 
correcting at all.  Only when a natural particle population can be regarded as spherical should Mie-based 
corrections be considered. 

 
Figure 1: Scattering correction factor   Figure 2: Backscattering correction factor 
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Abstract 

Predicting the radiative properties of diluted scattering media and determining the BRDF-
BTDF for dense scattering media require a good estimation of microphysical parameters 
such as particle size distribution. Polarized light scattering bears information that can 
favor the characterization of these media. Our study aims to introduce polarized data into 
the optimization scheme to find the optical thickness, the albedo, and the Mueller matrix. 
Direct 1D codes (adding-doubling) and 3D codes (Monte Carlo) have been developed to 
solve the polarized radiative transfer equation (VRTE).  After a study of sensitivity, we 
adopt the inversion strategy. The optical thickness, albedo and others parameters which 
describe the Mueller matrix are identified recursively and coupled by optimization 
methods. The particle size distribution is then extracted from the Mueller matrix. After 
numerical validation of this concept, an experimental validation is conducted on 
reference media, using a specifically developed system (MELOPEE bench). 

1 Introduction 

Optical properties of scattering media are important for several applications like remote sensing, 
climatology, biomedical imaging, spray or paint coating... Considering absorbing and scattering made-
man media, some effects as multiple scattering should be investigated. Three ways of study are possible: 
measurements, direct modeling by radiative transfer or electromagnetic methods, and identification of 
radiative parameters. In this paper, we choose an identification of the radiative parameters for spherical 
particles in cell or coating media. Simulation of scattering properties requires a good knowledge of the 
Particle Size Distribution (PSD), the shape or the optical indexes. Moreover, dense scattering and 
absorbing media can be affected by dependent effects. Therefore, direct modeling is quite difficult to 
perform. Radiative parameter identification is a useful tool to look into scattering media but a lot of works 
consider unpolarized data [1-2]. It generally implies the optical thickness (OT) to be known and functions 
which represent the scattering parameters to be simplified. Then, the identification is more difficult for 
high optical thickness. This paper’s aim is to improve actual optimization schemes in order to develop a 
robust method and to analyze the contribution of polarized data to a better and simultaneous estimation of 
all the radiative parameters (OT, albedo and Mueller matrix). 

2 Identification of radiative parameters 

We already demonstrated that the polarization state after scattering gives information to characterize 
scattering media [3]. The Stokes-Mueller formalism is selected to describe the evolution of the 
polarization of the light. In fact, it uses real quadratic values directly measured by detectors. The degree 
of polarization is represented by the ratio between the second and the first elements of the scattered 
Stokes vector. During an optimization process, it allows to be free from the uniqueness of the solution 
when we consider a multiple scattering media. 
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2.1 Optimization principle  

To represent the Mueller matrix (M) efficiently in an optimization scheme with limited CPU time, we 
consider particles randomly oriented. M can be describe by a Legendre polynomial decomposition where 
µ is the cosine of the quadratic angle. 
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There is no assumption on particles but this method needs too many parameters to represent the 

Mueller matrix (e.g. 240 parameters if λ=gr  for spherical particles). If optical indexes and particle 
morphology are known, a second way consists in building a base of scattering matrices against the radius. 
During the optimization, we make an integration over the PSD. It is a sum of log-normal distributions 
each represented by 3 parameters (f, rg, sg). 
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The general optimization scheme is described by Figure 1. First, we model the polarized scattered light 

using “direct” codes. We consider an heterogeneous and 1D media with N homogeneous layers. The 
Vectorial Radiative Transfer Equation (1D-VRTE) is solved by an adding-doubling method and a Fourier 
decomposition of the radiance [4]. We take into account the layers’ modification as the optical index. In 
this study, the method is limited to flat interfaces with unpolarized or linearly polarized incident beam. 
The approach is validated with referenced analytical data [5] and by comparison to data generated by a 
Monte Carlo model (3D). Then, we define an objective function to make a comparison between 
referenced (e.g. experimental) and simulated data. The minimization of this function is done by 
considering optimization methods (quasi-Newton or simulated annealing process). 

 

Experimental data 

Parameters 
τ*, ω*, M* 

Comparison  
Parameters 
optimization  

 « Direct » code Scattered Stokes vector
(simulation) 

Measurement bench 

Calibration 

 

Figure 1: General optimization scheme. 

2.2 Sensitivity analysis  

This section aim is to determine the domain of validity for an objective function used in the optimization 
process. The analysis is restricted to spherical particles and to two polarized data of interest witch are the 
BRDF-BTDF (µ.I) and the degree of linear polarization (DOLP or Q/I). The study is performed 

considering a non polarized incident radiance ( T
incL )0,0,0,1(= ) and an incident vector collimated with 

the normal of the surface ( 1=incµ ). Both polarized data (µ.I and Q/I) are invariant for all azimuth planes. 

The normalized sensitivity coefficient is proportional to the scattered-Stokes-vector derivative and is 
defined by Eq. (3). This value is calculated for each interest parameters described above. 
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Then, it may be deduced a restricted angular range (cf. Table 1) where the objective function of each 

parameter should be done. The originality of our study is that all angular ranges are not dependent on 
each other in order to steer clear of parameters dependence in the optimization process. The BRDF-BTDF 
is used to make the objective function depending on the albedo whereas the degree of depolarization is 
used for the OT determination. 

Table 1: angular range. 

 OT Albedo PSD (rg) 
µ . I  reflected - -0.75<µ<-0.25 -1<µ<-0.75 

µ . I transmitted - 0<µ<0.25 0.75<µ<1 
Q / I  reflected, if albedo ~ 1 

 
Q / I  reflected, if albedo ≠ 1 

   -0.5<µ<0 if OT<1.5 
   -1<µ<-0.5 if OT>1.5 
   -0.5<µ<0 

- 
- 
- 

-
-
- 

Q / I transmitted - - 0.75<µ<1 

 
 
The global objective function F is a sum of functions defined for each parameter: 

PSDPSDOTOT FFFF ⋅+⋅+⋅= ααα ωω . This conditioning problem advantage is that the optimization is 

improved. Nevertheless, we must weight the sum in the global objective function ( iα ). 

 

2.3 Numerical validation of the optimization 

Referenced data are generated by numerical models. First, each objective function is validated and then 
the global objective function is tested. Parameters are identified with less than 10% of accuracy.  

However, some limits appear in this approach. For high OT it is more difficult to retrieve the albedo or 
the PSD (cf. Figure 3a). Furthermore, the particle optical index should be known. The error is quite equal 
to 50% when the optical index is set to 1.65 instead of 1.58 for latex particles. In fact, phase functions are 
mainly affected by its value. Considering measurement noise simulated by a standard deviation, the OT is 
well optimized but the albedo is more difficult to be assessed (cf. Figure 3b). 

 

 
 

Figure 3: Error on the retrieved parameters according to the value of the OT (a) and to the standard 
deviation parameter χ  (b). 

a) b) 
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3 Optimization based on experimental data 

We intend also to validate experimentally the method. A polarized light scattering measurement setup 
based on the work of Kuik et al. [6] was developed. This automated setup could measure in the incident 
plane both the polarized BRDF-BTDF and the degree of linear polarization on a cross polarized way. 
Direct measurements of the optical thickness on a dedicated way are also available. The calibration is 
done using referenced materials like spectralon or calibrated latex particles into an analysis cell. This part 
of our study will be explained in detail during the oral session. A first experimental validation is 
performed with latex particles into an analysis cell (rg = 530 nm). The albedo is assumed to be equal to 1 
(no absorption). The measured OT on the dedicated experimental setup is equal to 2.1. The retrieved 
values after optimization on the 3 parameters (OT, albedo and PSD) are displayed on Table 2. 

Table 2: Retrieved values of the OT, the albedo and the PSD. 

 OT Albedo PSD (rg) 
Retrieved values 2.13 0.96 0.517 nm 

Error 4% 4% 3% 

 

5 Conclusion and perspectives 

To conclude, this approach involves a good efficiency of the optimization scheme with limited CPU time. 
Moreover, we have verified the identification method sturdiness for several perturbing phenomenon even 
for a high optical thickness. The inverse approach has been assessed by numerous numerical simulations 
in order to determine its validity domain. The retrieved parameters accuracy derived from the optimized 
outputs is less than 10%. A numerical validation of this concept is actually performed with non-spherical 
particles. All of these results will be presented in the oral session. We also intend to expend the 
experimental validation of this method on scattering media made of non-spherical particles. Calibrated 
media made of non-spherical particles will then be used in the future. 
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Abstract 

We present the results of new polarimetric observations of comet C/2001 Q4 (NEAT). 
Measurements of circular and linear polarization were made with the 2.6-m Shain 
telescope of the Crimean Astrophysical Observatory on May 21−23, 2004. A significant 
correlation between variations of circular and linear polarization measured along the cuts 
through the coma and nucleus of the comet was found. It means that single scattering of 
light on aligned non-spherical dust particles can produce circular as well as linear 
polarization. We call particular attention to the fact that the measured circular 
polarization in four comets, 1P/Halley, C/1995 O1 (Hale−Bopp), D/1999 S4 (LINEAR) 
and C/2001 Q4 (NEAT), was predominately left-handed. This question is discussed in the 
frame of light scattering by optically active organic particles.  

1 Introduction 
Circular polarization is sensitive to the shape, structure, and composition of the scatterers and thus may 
provide further proof of a complex structure of cometary grains and put constraints on their shape and 
composition. However, the measurements of circular polarization in comets are still rare. Attempts to 
detect circular polarization in comets C/1969 T1 (Tago−Sato−Kosaka), C/1973 E1 (Kohoutek), C/1974 
C1 (Bradfield), and C/1975 VI (West) were unsuccessful [1,2]. Notably nonzero circular polarization was 
measured only for comets 1P/Halley [3], C/1995 O1 (Hale−Bopp) [4,5], and D/1999 S4 (LINEAR) [6]. 
Therefore it is still unclear if circular polarization is an inherent feature of all comets. In this connection 
any new attempt to detect of circular polarization in comets is critically important.  

2 Observations and data reduction  
Measurements of circular polarization in comet C/2001 Q4 (NEAT) (hereafter Q4 (NEAT)) were made 
with a one-channel photoelectric photometer-polarimeter mounted at the 2.6-m Shain telescope of the 
Crimean Astrophysical Observatory. The photopolarimeter works on the same principle as was described 
by Shakhovskoj et al. [7]. However, instead of four counters we used eight ones for registration of 
impulses. It allowed us to measure simultaneously both circular and linear polarization of the comet.  

The comet was observed during three nights on May 21−23, 2004. The wide-band R filter and 10 
arcsec diaphragm (4350 km at the comet) were used. The phase angle, the heliocentric and geocentric 
distances of the comet were α ≈ 76°, r ≈ 0.97 AU, and ∆ ≈ 0.60 AU respectively. The comet had the 
straight gas tail orientated at position angle PA=100.5° and the dust jet located approximately 
orthogonally to the gas tail. This comet was very active. The measurements of the total intensity and 
parameters determining the circular and linear polarization of the scattered light were made along cuts 
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over the coma. The diaphragm was placed on the northern side of the coma in such a way that each cut 
passed through the nucleus. The cuts over the coma were determined by proper motion of the comet at 
position angle PA = 189.4° and passed along the dust jet. The single exposure time was 4 s and each cut 
consisted of 64 measured points that corresponds to approximately 9000 km at the distance of the comet. 
To improve the signal-to-noise ratio, we obtained from 15 to 20 cuts during a given observational night 
which were subsequently summarized. The results in the form of distributions of total intensity I, degree 
of circular Pc and linear Pl polarization, and position angle of the polarization plane θ r relative to the 
scattering plane are presented in Fig. 1. Each data point is result of averaging over the area 2000×4350 
km along the cuts. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Figure 1: Distribution of intensity I, degree of circular and linear polarization and position angle of the 
polarization plane relative to the scattering plane θ r along the cuts in coma of comet Q4 (NEAT). 
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3 Results and discussion 
As Fig. 1 shows, the variations of circular polarization along the cuts correlate with the changes of 
parameters of linear polarization Pl and θr. We have found that the coefficients of correlation between Pc 
and Pl are 0.740, −0.225, and 0.618 on May 21, 22, and 23 respectively, while the coefficients of 
correlation between Pc and θr for the same dates are 0.762, −0.405, and 0.705. A significant correlation 
between these parameters means that there is a common reason which gives rise to changes in circular 
and linear polarization of the comet. Such reason may be aligned non-spherical particles. It is generally 
believed that scattering of light on aligned non-spherical particles is most effective mechanism for 
producing circular polarization in comets. Thus, the same changes of the parameters of linear and circular 
polarization along the coma testify that there is significant component of polarization that is not related to 
the scattering plane and can be explained by inhomogeneity or anisotropy of dust medium in which the 
particles are partly aligned. 

The measurements of circular polarization in comet Q4 (NEAT) as well as in three others (Halley, 
Hale−Bopp, and S4 (LINEAR)) show that the left circularly polarized light was mainly observed over the 
coma. This effect is well seen in Fig. 2.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: Composite phase-angle dependence of circular polarization for comets Q4 (NEAT), S4 
(LINEAR), Hale−Bopp, and Halley. Data for comets Halley and Hale−Bopp are taken from [3, 5]. 
 

Circular polarization indicates a violation of symmetry in the medium. However, circular polarization 
may appear as a result of intrinsic asymmetry of the particles themselves, i.e. scattering of light by 
particles composed of optically active materials. Optically active substance has different refractive 
indexes for right- and left-circularly polarized light and therefore light of different handiness has different 
speed in the medium that leads to separation of left- and right-handed polarized waves and rotation of the 
plane of linearly-polarized light [8]. These effects are especially strong for organic molecules since they 
are not only optically active, but also possess circular dichroism, i.e. such substances have different 
absorption for left- and right-handed circular polarization [9]. It is known that complex organic molecules 
exist in two forms: L (left-handed) and D (right-handed). For terrestrial biomolecules, there are only L-
amino acids and D-sugars. For a long time it was believed that asymmetry in the number of L and D 
biomolecules, i.e. homochirality, has Earth origin and relates to the birefringence of some Earth minerals. 
But then L-enantiometric excess was found in amino-acids from the Murchison and Murrey meteorites 
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[10], suggesting an origin in the pre-solar nebula. This idea was confirmed when the high degree of 
circular polarization was measured in star-forming regions [11]. The origin of homochirality is explained 
by illumination of cosmic organics by circularly polarized light in protoplanetary nebulae. In that case 
chiral organics should be found not only in meteorites but also in other primitive bodies, including 
comets. Predominantly left-handed circular polarization in comets may testify in favour of L-
enantiometric excess in cometary organics. 

4 Conclusion 
We present the results of the measurements of circular and linear polarization in comet Q4 (NEAT). 

The correlation between the degree of circular polarization and the degree and plane of linear polarization 
was found. We have also revealed that all comets with a significant value of circular polarization show a 
common feature, namely predominantly left-handed circularly polarized light. It testifies in favor of L-
enantiometric excess in cometary organics. 
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Abstract 

Mueller polarization experiments on the epidermis layer of the chlorophytum leaf are 
presented. Three anisotropy parameters (from among the six) are presented and 
interpreted. 

1 Introduction 
Plant leaves have been fine tuned by evolution to capture red and blue photon energy from the sun, 

transfer electron energy without radiation loss from chlorophyll to chlorophyll molecule to reaction 
centers, and convert that energy to photosynthetic products. The electric potential required to split water 
occurs across the thylakoid membrane at these reaction centers.  A chlorophyll molecule consists of a 
porphyrin ring, and a pytol tail. The plane of the poryphyrin ring with respect to the incident electric 
vector determines the singlet state of the π-orbital electron.   In general, the majority of the chlorophyll 
molecules in mesophyll cells aren’t preferentially aligned but rather randomly oriented, except perhaps 
for the chlorophyll molecules in the PSI and PSII reaction centers [1].  First light must transmit through 
the leaf surface – which can contain waxes and hairs, and epidermis cells before it reaches the 
carbohydrate factories in mesophyll cells. Like all plant cells, the epidermis has an outer cell wall 
providing structural rigidity; buildings are only as good as the strength of their walls. We know much 
about the biochemical reactions, and atomic scale structures of the molecules regulating photosynthesis 
[2]. Yet we don’t know much about the role that light properties have played in constraining the structure 
and location of cells and molecules in the leaf.  We know from other instances in nature that bees use the 
polarization of the sky for navigation; UV sensitive rhodopsin is preferentially oriented in specialized 
microvilli in the dorsal part of the compound eye helping focus and detect plane polarized light.  Many 
other arthropods also seem to use polarization to navigate their way about [3-4].   
 
Do plants control incident light polarization? 

2 Method 
In order to elucidate the role played by the epidermis cells in controlling light polarization, we performed 
Mueller polarimetry experiments as shown in Fig.1. The laser beam (λ = 630 nm) was normally 
transmitted through the epidermis layer and imaged on a 512 x 512 CCD camera after microscopic 
magnification. Epidermis layers from the mid-section were mechanically separated from Chlorophytum 
leaves, and experiments repeated for 10 samples. The polarimeter consisted of two main parts: sensing 
channel and receiving channel. The sensing channel produced incident radiation in various states of 
polarization: a source of electromagnetic radiation with isotropic (completely unpolarized or circularly 
polarized) polarization 1, ideal polarizer and quarter-wave phase plate 3, both with computer controlled 
azimuth of orientation. The receiving channel represented an arrangement for Stokes vector components 
(Stokes-polarimeter 5): a continuously turning quarter-wave phase plate, fixed analyzer, and, 
photodetector (number 7).  The six parameters characterizing anisotropy and depolarization of epidermis 
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were generated from the inverse polarimetric technique given in Savenkov et al. [5-6]: ∆  ( 0 2π≤ ∆ ≤ ) 
is the phase shift between two orthogonal linear components of electric vector of incident light, α  
( 0 2α π≤ ≤ ) is the azimuth of linear phase anisotropy (linear birefringence), ϕ  ( π≤ϕ≤ 20 ) is the 
phase shift between two orthogonal circular components of incident light or measures circular phase 
anisotropy (circular birefringence), P  ( 0 1P≤ ≤ ) is the relative absorption of two linear orthogonal 
polarizations, and γ  ( 0 2γ π≤ ≤ ) is the azimuth of linear amplitude anisotropy (linear dichroism); R  
( 1 1R− ≤ ≤ ) is the  relative absorption of two orthogonal circular polarizations of circular amplitude 
anisotropy (circular dichroism).  Finally entropy [7] which characterizes depolarization was calculated. 
For additional details on entropy derivation, the reader is referred to [7]. 

 
Figure 1: Polarimeter setup. 

 
We present results for P, γ , and ∆  [5]. 
 

3 Results & Discussion 

Figure 2a shows the linear dichroism P : the cell walls have about equal absorption for both components 
of electric vector, where as, the cell cytosol and vacuole absorbed one of the electric vectors. Figure 2b, 
which shows the orientation γ  of linear dichroism, suggests random orientation (or size) except on cell 
wall, except along the cell wall. Figure 3a for linear birefringence ∆  is due to the differences in the 
chemical make up of the cell wall and cytosol/vacuole. From entropy (Figure 3b), we surmise light goes 
directly through the cytoplasm of the cells without being multiply scattered inside the cell i.e., the 
polarization state of the preferentially absorbed electric vectors is not altered. The poincare sphere (Figure 
3c) for leaf without the epidermis (generated from a separate experiment) showed that relative to the 
epidermis, the internal cells in the leaf were highly depolarizing the incident light: once the electric vector 
(either Ex or Ey, but not both) entered the inner leaf, it was multiply scattered/absorbed. Figure 4 shows a 
more magnified view of the epidermis cells. The cell walls are composed of a plasma membrane on the 
surface of which a primary network of cellulose cross linked with glycans forms microfibrils which is 
embedded in a secondary network of pectic polysaccharides, which in turn is inside a structural protein or 
phenylpropanoid network [1]. The pectin matrix regulates wall porosity, and cellulose synthesis occurs 
outside the plasma membrane. The proteins, pectins and other other chemicals for the secondary and 
tertiary networks are synthesized inside the cell in the endoplasmic reticulum, and golgi apparatus which 
are then exported to the surface in vesicles. The tiny specks in Figure 4 likely shows the vesicles, golgi 
apparatus, or the endoplasmic reticulum. Our results open up an interesting discussion.  The cell walls are 
very thin, not more than 100 nm. Our results suggest that the epidermis cytoplasm does control the 
polarization state of incident light.  
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Figure 2a: Dichroism parameter and histogram of values; b: angle of dichroism and histogram for light 
transmission through epidermis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3a: Phase shift for linear anisotropy; b: Entropy, and c: Poincare sphere (the outer sphere 
represents incident light) for leaf without epidermis. 
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Figure 4: Magnified view of the area between two epidermis cells for amplitude of linear polarization 
anisotropy; the histogram of values is shown below. 

4.   Conclusion 
 
Our polarization experiments are the first ever observations on the polarization optics of leaf epidermis. It 
is highly likely that the epidermis “filters” the incident sunlight to a specific polarization state. 
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Abstract 

We derive the Mueller matrix for single scattering from inhomogeneous medium 
characterized by simultaneous linear and circular birefringence. Simulations for 

maxmin II  showed a simple dependence on wavelength of incident radiation.�

1 Introduction 
The Mueller matrix is a rich source of information about the properties of media investigated in a wide 
variety of disciplines [1-3].  And unique experimental methods are being rapidly developed to measure 
the matrix. The challenge is to interpret the measured Mueller matrix, and relate the matrix elements to 
observable phenomena. A polarization model for anisotropic media aids in these interpretations. 
 
Mueller matrices for homogeneous anisotropic media are well known [4]. There are four basic 
anisotropies characterizing the homogeneous anisotropy of deterministic media: linear and circular 
dichroism, and linear and circular birefringence. Inhomogeneous media can depolarize the incident 
radiation, and, therefore, can not be directly described in terms of these four basic anisotropy properties. 
In [5], we derived and analyzed the Mueller matrix model for the rough plate parallel slab with linear 
birefringence. The main goal this paper is to derive the single scatter Mueller matrix model for an 
inhomogeneous medium with simultaneous linear and circular birefringence.  

 

2 Theory 
The geometry of the problem is given in Fig. 1. The object under discussion is a slab of anisotropic 
medium located in the 0=z plane. Inhomogeneity of the slab is specified by variation of its thickness 
( )ρh  which sets the conditions for single scattering; ( )ρh  is assumed to follow a known statistical model 

– a uniform Gaussian process:  

 ( ) ( ) ( ){ }22212 2exp2 hh hhhf σ−−πσ=
−

    (1) 
with mean thickness h , mean-square deviation hσ , and correlation coefficient between screen thickness 
at two points given by: 
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where, the distance between points is given by: 12 ρρρ −=− .  The correlation radius is 0ρ . 
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Fig. 1. Geometry for anistropic medium. 

Anisotropy of the medium is given by its polarization eigen states, and the corresponding eigen values. 
Interaction of radiation with such medium is described by its Jones matrix written in eigen coordinate  
system ( )UOV  by: 
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Where, vug ,  are the corresponding eigen values which are the complex transmittance coefficients of 
radiation in eigen polarization states.  
 
We will consider the case when fast eigen polarization of the studied object is associated with basis vector 
OU . We assume that field distribution of incident radiation to be Gaussian in the plane normal to its 
propagation direction, with the center of the beam located in the 0=z  plane: 

( ) { }22exp ainin ρEρE −= ,     (4) 
Here, inE  denotes Jones vector in the center of the beam; a  is the beam's radius. It has been shown in 
[5], that the Mueller matrix in the eigen coordinate system in the far field limit is (refer to [5] for 
definition of variables): 
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In the general case, the Jones matrix in the laboratory coordinate system can be presented as:  
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If eigenvectors 1χ  and 2χ , ( 12 EE=χ ) are known, then the transformation matrix B  is:  
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The Jones (as well as Mueller-Jones) matrix model of homogeneous anisotropic medium characterized by 
simultaneous linear and circular birefringence is defined by the first Jones’ equivalence theorem [6,7]: 

( ) ( )
( ) ( )( )
( )( ) ( ) 












ϕφ

ϕ−ϕ













α+δ−αδ−−αα

δ−−ααδ−α+α
=ϕδα

cossin

sincos

sinexpcosexp1sincos

exp1sincosexpsincos
,

22

22

ii

ii
CirLin JJ .        (8) 

Then, the medium’s eigenvectors [ ]T2,11 χ  can be calculated as: 
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and matrices uβ  from Eq.(6) are:  
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And finally, from Eqs.(5) and (6) after some algebra, the Mueller matrix model, in the laboratory 
reference, for the inhomogeneous medium with generalized birefringence in single scattering case for 
large inhomogeneities given by ( )[ ]λ−π>σ −1

2127 nnh  [5], is: 
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3 Discussions  
As can be seen from Eq.(12), the matrix M  is singular i.e., M  exhibits dependence of output intensity 
on input polarization. From the fact that matrix M  is non-deterministic, there are no input polarizations 
for which the intensity of output radiation is equal to zero. Maximum and minimum values of output 
intensities are obtained for input radiation with polarizations describing by the following Stokes vectors 
respectively: 

( ) ( )[ ]Tκ±κ±ξ±κ+ξ= ImRe22minmax,S .    (13) 
The ratio of minimum and maximum output intensities is therefore: 
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Figure 1. Dependence of ratio maxmin II versus 
wavelength for 2TeO  

Figure 1 presents the results of simulations 
performed to study the dependence of ratio 

maxmin II  versus wavelength from 4.0  to mµ0.1 . 
The data for refractive indices for this simulation 
was taken from [8] for paratellurite 2TeO .  
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Abstract 

Artificial ice clouds have been generated in the laboratory by using the large cloud 
simulation chamber AIDA of Forschungszentrum Karlsruhe. Experiments have been 
conducted in the 0C to -30C temperature range. Temperature and saturation ratio regimes 
with distinct predominating ice crystal habits in a varying ice crystal complexity could be 
identified by probing the ice clouds with a contact-free, single particle imaging device 
developed in our institute. Backscattering linear depolarization ratio measurements have 
been performed on the overall ice cloud simultaneously to single ice crystal 
characterization. A clear dependence of the linear backscattering depolarization ratio on 
the ice crystal habit was observed. Ice clouds composed predominantly of compact 
columnar crystals exhibit a higher depolarization ratio than clouds composed of thin 
plate-like crystals. Ice crystal growth at high ice saturation ratios increases the particle 
complexity and lowers the depolarization ratio.   

1 Introduction 
Quantifying the role of cirrus clouds in the climate system requires the determination of the microphysical 
properties like size and habit of cirrus ice particles and their radiative properties in the infrared and visible 
region [1]. Fundamental knowledge of scattering, absorption, and polarization properties of ice crystals is 
also required for reliably retrieving the microphysical particle properties of visible and subvisible cirrus 
clouds from remote sensing data. Especially the knowledge of the link between the backscattering 
depolarization ratio δ of ice crystals and their size and habit is a prerequisite for the interpretation of 
LIDAR remote sensing measurements of cirrus clouds. Interpretations of LIDAR depolarization data 
usually rely on results from ray tracing models that calculate laser depolarization ratios for large pristine 
ice crystals, i.e. hexagonal columns and plates [2]. These models predict backscatter depolarization ratios 
in the range from 0.1 to 0.65, depending on the size and shape (aspect ratio) of the crystals [2, 3]. 
Depolarization generally becomes larger for larger ice crystals and is larger for columns compared to 
plates [3]. Moreover, it was found that the depolarization ratio of columns will be significantly reduced, if 
the basal facets become distorted, e.g. by the formation of pyramidal inversions (like in “hollow” 
columns) [4]. Although thin plates and “hollow” columns are also not very effective in depolarizing laser 
light, low depolarization ratios (0.1<δ<0.3) frequently observed in cirrus clouds by Sassen and Benson [5] 
were attributed to the existence of supercooled water droplets and to crystal orientation due to 
gravitational sedimentation. However, the authors concluded that the linear depolarization ratio of more 
realistic, complex-shaped ice crystals might differ significantly from that of pristine and simplified crystal 
geometries modeled so far. 
In order to shed some light on the depolarization capabilities of ice clouds with ice crystal shapes that 
closely resemble those found in natural ice clouds, we started to run well-defined ice crystal growth and 
characterization campaigns at the large cloud simulation chamber AIDA of Forschungszentrum 
Karlsruhe. Such campaigns became feasible after the development and installation of two new 
instruments at the chamber in 2006, namely the in situ laser scattering and depolarization device 
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SIMONE and the contact-free single particle imaging probe PHIPS. A brief introduction of these 
instruments is given in section 2. Experimental results are discussed in section 3.         

2 Experimental methods 
The experiments were conducted at the cloud simulation chamber AIDA [6] in the temperature range of 
0C to -30C and at initially ambient pressure. The chamber was humidified to near ice saturated conditions 
prior to the experiments. Water vapor concentration within the chamber is determined by a long-path 
tunable diode laser spectrometer. Small seed ice crystals with sizes of a few micrometers were generated 
outside of AIDA by mixing a cold gas stream containing crystalline ammonium sulfate aerosol particles 
with warm and moist air in a turbulent mixing chamber with a temperature maintained at -60C. By 
directing the resulting ice particle/air flow into the AIDA chamber an ice crystal number concentration of 
about 1 to 10 cm-3 can be generated within 10 minutes in the huge AIDA volume of 84 m3. Ice saturated 
or supersaturated conditions can be achieved by a controlled expansion of the chamber gas and, thus, a 
controlled cooling of the chamber volume. Overall homogeneous conditions within the chamber are 
assured by a mixing fan at the bottom of the chamber. 
   
Light scattering measurements 
The laser light scattering and depolarization instrument SIMONE uses a cw semiconductor laser with an 
emission wavelength of λ=488 nm to generate a polarized and collimated light beam which is directed 
horizontally along the 4 meter diameter of the cylindrically shaped AIDA chamber. The polarization 
vector of the light beam can be arbitrarily changed by using a liquid crystal polarization rotator in front of 
the laser head, but is usually aligned parallel to the scattering plane. The latter is defined by the light 
beam and the overlapping detection apertures of two telescope optics that probe scattered light from the 
chamber interior from the 1.8° and 178.2° directions. The intersection between the laser beam and the 
detection apertures defines a detection volume of 7 cm3 in the center of the chamber. The intensity of 
light scattered in forward direction is measured by a photomultiplier. The backscattered light is 
decomposed by a Glan-Laser prism according to the parallel and perpendicular components with respect 
to the incident laser polarization. The corresponding intensity components I⊥ and I|| are measured by two 
photomultipliers. From these measurements the backscattering linear depolarization ratio δ is determined 
by 

bgbg IIIIδ ||||/ −−= ⊥⊥ , 

with bgI⊥ and bgI || the background intensities of the particle-free chamber. 
 
Ice particle habit characterization  
Bright field microscopic imaging of single ice crystals was conducted online using the novel PHIPS 
imaging instrument. The PHIPS instrument is installed underneath the aluminum chamber within the 
temperature controlled housing of AIDA. It vertically extracts chamber air via a 10 mm in diameter 
stainless steel flow tube that extents to about 200 mm into the chamber volume. A stable sampling flow of 
10 SLM is maintained by a flow controller backed by a vacuum pump. When a cloud particle passes the 
detection volume of the instrument, which is defined by the intersection of the laser beam cross section 
and the field of view of an optical detector, scattered light generates a trigger pulse that opens the shutter 
of the microscopy unit and fires – with a short delay – the flash lamp. The half width of the flash is only 
10 ns. In this way an 8 times magnified bright field image of the moving ice crystal is generated without 
any motion blurring. The system has an optical resolving power of about 2 µm and a depth of field of 
about 150 µm. The magnified image of the particle is captured by a 1392×1024 pixel CCD camera with 
6.45×6.45 µm2 pixel size. This results in a field of view of about 1.1×0.8 mm2 with a pixel resolution of 
0.8 µm in the object plane. Image processing algorithms have been developed for automated analysis of 
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the geometric properties of the particles, like projected area, sphere equivalent diameter, roundness and 
aspect ratio. 

3 Results 
An example of an ice growth experiment is shown in Figure 1. The experiment was started at a 
temperature of -5C. Ice crystals with columnar shapes are expected in this temperature range [7]; pristine 
habits for a growth near ice saturation and complex shapes (like “hollow” columns or needles) for a 
growth at intermediate and high saturation ratios. Within the first 300 sec experiment time supercooled 
water droplets were sprayed by a two-component nozzle directly into the chamber to gradually increase 
the ice saturation ratio by droplet evaporation. Ice saturated conditions were eventually achieved at about 
300 sec experiment time. 
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Figure 1: Ice growth experiment conducted at an initial temperature of -5C. See text for details. 

Note that the saturation ratios given in Figure 1 are mean values. Locally, the saturation ratios might 
differ from these values due to temperature and water vapor inhomogeneities, especially near the injection 
positions of the water droplets and the seed ice crystals. The presence of a droplet cloud is reflected by a 
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low depolarization ratio δ in Figure 1. Ice seeding was started roughly 1 minute after the water droplet 
injection has been stopped. Thus, small seed ice crystals were added to an evaporating water cloud. To 
maintain ice saturated conditions in the chamber during ice seeding, the chamber gas was slowly 
expanded by pumping, resulting in a temperature drop to -7.5C during 300 to 1500 sec experiment time. 
Immediately after the beginning of the seed ice addition a mixed phase cloud was observed for a short 
time period of about 60 to 100 sec by PHIPS (first row of plate (a) in Figure 1). Needles and almost 
“hollow” columns were indeed observed in this period of high saturation ratio as expected from [7]. After 
the water droplets have been evaporated the remaining ice cloud was predominantly composed of 
“hollow” columns and bundles of needles (shown in the second row of plate (a)), which results in a low 
depolarization ratio of only about 0.1 to 0.15. Newly added seed ice crystals then grew at lower saturation 
ratios which resulted in a gradual change of the cloud composition between 500 and 700 sec experiment 
time. An uniform cloud predominantly composed of rather solid columns with less structural complexity 
was eventually achieved at about 700 sec experiment time. By keeping the saturation ratio at about ice 
saturation while continuously feeding new seed ice crystals, a stable cloud could be maintained over 
about 900 sec (plate (b) of Figure 1). A significantly higher depolarization ratio of about 0.3 was 
measured during this time period of compact, solid crystals. In further experiments, conducted in 
temperature regions where the ice crystals grow into plate-like shapes (-12C and -25C), we measured very 
low depolarization ratios of 0.1 or even less. Such ice clouds cannot easily be distinguished from 
supercooled water clouds by LIDAR applications. Our experimental results confirm, at least qualitatively, 
the trends in the ray tracing modeling results by Takano and Liou [4] and Noel et al. [2], i.e. very low δ 
values in case of very thin plates and a strong decrease of δ by the formation of basal inversions in case of 
columns. However, for the distorted ice crystals shown in plate (a) of Figure 1, we measured a 
significantly lower depolarization ratio of 0.1<δ<0.15 than modeled so far for columns with deep 
inversions in the basal facets (δ=0.24).  
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Abstract 

A laser heterodyne receiver of scattered light was used to detect dust grains vibrations. 
We made experiments for estimation of the technique sensitivity. The vibrations were 
excited in cigarette smoke with a loudspeaker. The results obtained indicate that dust 
grains vibrations with amplitude of about 30 nm can be detected. 

1 Introduction 
Heterodyne detection of scattered light is one of the most informative techniques used for investigation of 
the static and dynamic characteristics of micron and submicron particles. The parameters of modern laser 
heterodyne receivers of scattered radiation make it possible to detect nanoparticles and nanoclusters [1]. 
Application of heterodyne detection of scattered light when studying various biological objects in vivo 
seems very promising [2]. 

The objective of our work is to estimate feasibility of investigation of the dynamic characteristics of 
microparticles with a laser heterodyne detector of scattered radiation. We determined the potentialities of 
this technique and carried out pilot experiments on determination of vibrational amplitude for 
microparticles (cigarette smoke, colophony smoke) exposed to external actions. 

2 Estimation of technique sensitivity 
Let us estimate the laser heterodyne receiver capabilities when measuring vibrations of dust grains. The 
signal-to-noise ratio (S/N) of heterodyne detector peaks under conditions when its sensitivity is 
determined by shot noise [4, 5]: 

( )
Fh

Ps

∆
≈

ν
η

powerS/N .                                                                (1) 

Here Ps is the detected signal power, h Planck’s constant, ν radiation frequency, η detector quantum 
efficiency, and ∆F pass bandwidth of the receiver. Then the expression for the minimal detected signal 
power Ps, min (S/N = 1) is 

FhPs ∆≈
η
ν

min, .                                                                 (2) 

When the wavelength is 0.6328 µm, η =0.5, losses in the receiving optical system up to 60%, and pass 
bandwidth of the receiver 10 kHz, then one obtains Ps, min ≈ 1×10-14 W. If the entrance aperture cross 
section is 1 cm2, probing radiation power 1 mW, and distance to the scattering surface 50 cm, then the 
power coming to the detector input will be about 6×10-8 W (with the assumption that the surface 
scattering is isotropic and albedo is 0.8). Thus, a signal scattered from a surface with albedo of about 
1×10-5 can be detected at a distance of 50 cm. If the scatterer is an assembly of 5 µm grains, with single 
albedo of 0.5 and the distance between particles of about 100 µm, then the resulting albedo of a layer 
about 0.5 mm thick will be 0.6×10-2. In this case, the signal from radiation scattered by the dust layer will 
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be 600 times the threshold of sensitivity, so one obtains S/N = 0.6×103. It can be shown that the S/N ratio 
at a frequency of scattering surface vibration is determined by the following expression: 

( )
min,

22S/N
s

s

P
P

a
i







≈Ω± λ
π

ω
.                                                       (3) 

Here ωi is the difference between the heterodyne and probing radiation frequencies, a amplitude of 
scattering surface vibrations, and Ω vibrational frequency of the surface. For vibrational amplitude of 10 
nm, the ratio S/N ≈ 6; this means that one can easily detect in-phase vibrations of particles in a layer of 
about 0.5 mm thick. 

3 Experimental setup 
The threshold of sensitivity of our detector was 2×10-14 … 2×10-12 W (depending on the pass bandwidth); 
the detector sensitivity to vibrations of a surface (with albedo of 0.8) at a distance of 1 m was no worse 
than 0.1 nm (in the 10 kHz band). The probing and heterodyne beams of the detector were formed with 
acoustooptical shift of laser radiation frequency in the same direction by the frequencies Fs and Fh, 
respectively. As a result, the information signal (which is formed when the frequencies of the radiation 
from heterodyne and that scattered by particles are mixed in the photodetector) is a phase-modulated 
signal whose carrier frequency Fs – Fh is about 10 MHz. 

Digitization of that phase-modulated signal was made with a two-channel A/D converter AD6600. 
Extraction of quadrature components digital heterodyning, decimation and filtration were performed with 
a digital filter/receiver AD6620. The information on phase value and rate (and consequently on the 
scattering surface displacement and velocity) was extracted by calculating the modified function atan2 of 
the ratio between the in-phase and quadrature components of a phase-modulated signal. 

 

Figure 1: The experimental setup. 

The experimental setup (Figure 1) involved a laser heterodyne receiver and a volume for dust 
component (cigarette smoke, colophony smoke) bleeding. A loudspeaker (to excite vibrations of air with 
dust component) was located in the above volume. A probing laser beam was focused (through a window) 
at a chosen point inside the dust cloud at a distance of about 50 cm from the collecting aperture. The focal 
spot diameter was 100…200 µm. A TV camera was used for visual focusing at a chosen region of the 
dust cloud. The detector was a bistatic optical system (with an angle φ ≈ 5о between the transmission and 
reception optical axes), so there was a depth of focus for such detector: object shifting led to change in the 
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scattered spot position relative to the heterodyne spot, thus resulting in signal decrease. For the angle of 
about 5о and distance of 50 cm, the depth of focus was 0.25…0.5 mm. One can state that the information 
signal was formed by scattering from those particles which occupied a region whose cross section was 
equal to the focal spot diameter and whose length was about five times that diameter. 

4 Experimental results 
Before measuring particle vibrations, we have measured piezoelectric cell vibrations (of the known 
amplitude) to refine the measurement procedure and receiver calibration. Shown in figure 2a is the 
spectrum of the Fs – Fh signal obtained at scattering from the vibrating surface of piezoelectric cell 
(vibrational amplitude of 10 nm and frequency of 1 kHz). Figure 2b presents the signal spectrum after 
phase recovery and attenuation of low frequencies with a 6th order filter (the cutoff frequency of 200 Hz). 
Such measurements were performed for different frequencies and amplitudes of surface vibrations. 
 

         
a)                                                                                   b) 

Figure 2: Frequency spectrum signal from light, scattered by piezoelectric cell vibrations 

When measuring particles vibrations, the probing beam was focused at a point inside the dust cloud at 
a distance of several millimeters from the inlet window. Shown in figure 3 are trails of the probing beam 
in the dust cloud and heterodyne spot (in center, a 104-fold attenuation). After the information collection 
area is chosen and detector is set, the heterodyning intensity is increased up to the operating level (about 
50 µW). The diameter of the beam entering the dust cloud is 0,3 mm. The bright spots on the right are 
formed due to scattering from the inlet window surfaces. 

 

 

Figure 3: Trails of the probing beam in the dust cloud 

Figure 4a presents the spectrum of the Fs – Fh signal obtained at scattering from cigarette smoke exposed 
to sound action from a loudspeaker (power of 0.1 W at a frequency Ω = 1 kHz). The components with the 
above frequency appear in the spectrum of the Fs – Fh signal (Fig. 4a). The spectrum is broadened 
considerably due to chaotic motion of the particles. Figure 4b presents the signal spectrum after phase 
recovery and attenuation of low frequencies with a 6th order filter (the cutoff frequency of 200 Hz). Such 
measurements were performed for different frequencies and power of loudspeaker. 
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                                              4a                                                                  4b 

Figure 4: Frequency spectrum signal from light, scattered by smoke 

From figure 4b it is visible, that the noise level at measuring a scattering from a smoke makes quantity 
about 40 dB. It corresponds to vibration amplitude about 30 nm. 
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Figure 5: Signal-to-noise ratio for vibration of grains  

In figure 5 is presented  the dependence of the signal/noise ratio from a vibration amplitude of grains.  

5 Conclusion 
We developed a laser heterodyne detector of scattered radiation to be applied for investigation of the 
dynamic characteristics (vibrational amplitude and frequency) of dust grains in a dust cloud. Such 
detector makes it possible to register micron particles vibrations with amplitude of 30 nm. 

References 
[1] Stéphane Berciaud, Laurent Cognet, Gerhard A. Blab, and Brahim Lounis. Photothermal 

Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals, Phys. Rev. Lett. 
93, 257402 (2004) 

[3]    Gross M, Goy P, Forget BC, Atlan M, Ramaz F, Boccara AC, Dunn AK. Heterodyne detection of 
multiply scattered monochromatic light with a multipixel detector. 
Opt. Lett. 2005 Jun 1; Vol. 30, No. 11, pp. 1357-1359. 

[3]      Oliver, B.M. (1961). Signal-to-noise ratio in photoelectric mixing. Proc. IEEE, 49(12):1960–1961. 

[4] M. C. Teich and R. Y. Yen, "On the Signal-to-Noise Ratio for Optical Heterodyne Detection,"       
J. Appl. Phys. 43, 2480-2481 (1972). 



Researching the physical conditions in Jupiter atmosphere, Shalygina 201

Researching the physical conditions in Jupiter  atmosphere using  remote 
sensing methods

O.S. Shalygina, V. V. Korokhin, L.V. Starukhina, E. V. Shalygin, G. P. Marchenko,          

 Yu. I. Velikodsky, O. M. Starodubtseva and L. A. Akimov

Astronomical Institute of Kharkov V.N. Karazin National University,
Sumskaya Ul., 35, Kharkov 61022, Ukraine

tel: +38 (057) 700-53-49, fax: +38 (057) 700-53-49, e-mail: ksusha@astron.kharkov.ua

Abstract

New results of studying the north-south asymmetry in polarization of light reflected by 
Jupiter  are  presented.  On  the  basis  of  24-year  (1981-2004)  observational  period, 
anticorrelation between asymmetry of Jupiter polarization and insolation has been found. 
The mechanism of influence of seasonal variations (with temperature changes) on north-
south asymmetry of polarization has been proposed. Our estimates show that components 
of Jovian stratospheric haze which consists of  polycyclic aromatic hydrocarbons (PAH) 
(crystal naphthalene, phenanthrene) particles may be formed by homogeneous nucleation. 
Temperature variations in Jupiter stratosphere have strong effect on PAH condensation; 
benzene does not condensate at T > 120 K. We have found that fluxes of solar cosmic 
rays may influence upon concentration of aerosol haze particles only through series of 
chemical reactions that produce source material for aerosol formation.

1 Seasonal variations of the north-south asymmetry of polarization

Remote sensing methods are effective for researching the atmosphere of the planets. The main mechanism 
of polarization origin in planetary atmospheres is the light scattering on electrons, atoms, molecules and 
aerosols. Light reflected by Jovian atmosphere is polarized in various atmosphere layers. Studying the 
distribution of polarization parameters over the planet disk and analysis of their temporal changes may 
promote to obtain new information about physical conditions in Jupiter atmosphere. As known, ground-
based and cosmic polarimetric observations of Jupiter in visual spectrum range show the dependence of 
linear polarization degree P on phase angle and polarization increasing with latitude (even at zero orbital 
phase angle): polarization degree increases from zero (equatorial regions) to 7-8% (polar regions). Also it 
is known, that there is a north-south asymmetry of linear polarization at Jupiter [1-4]. 

To explain these observational facts, we have started regular polarimetric observations of Jupiter in 
1981. In our previous works [e.g. 2], on the basis of Jupiter photopolarimetric observations in opposition 
at blue light during 1981-1999, seasonal variations of north-south asymmetry (PN-PS) of linear polariza-
tion P in polar regions and anticorrelation between PN-PS and insolation have been found. Parameter of 
asymmetry PN-PS  is defined as a difference between values of linear polarization degree on north and 
south at the latitudes ±60° at the central meridian. PN-PS data are well organized if plotted in accordance 
with Jupiter’s orbital location and there is some relation between PN-PS and insolation [2]. We are continu-
ing our studying: 1) our new observations were used; 2) our old data (1981-1998) have been reprocessed 
using  new improved technique;  3)  Hall  and  Riley data  [3] (1968-1974)  (ultraviolet,  visual  spectrum 
range) are involved for analysis. New variant of P-asymmetry dependences on Jupiter’s orbital location 
are presented in the Fig.1. To investigate the nature of the dependence the approximations have been 
made using different functions. Earlier, in paper [2], we used sinusoidal function with  period  180°, but 
this approximation was difficult for physical interpretation. For new data the approximation by this func-
tion is  unsuccessful. At  the  same time,  one-periodic  functions  make a good approximation:  sinusoid 
(Fig.1, Fig.2, curve 1) gives significant decrease of dispersion in comparison with approximation by con-
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stant according to F-criterion with confidence probability 0.76 and “saw-shape” function (PN−PS = 1.83−
0.005LS, for 160°<LS<520°, period is 360°) with 0.96. 

Figure 1: Dependence of North-
South asymmetry of polarization 
PN-PS on  planetocentric  orbital 
longitude  of  the  Sun  Ls  (upper 
plot).  Points  correspond  to  the 
data obtained by averaging from 
our observations, crosses are the 
Hall and Riley data 1968-74 [2]. 
Bars are errors of mean. Dashed 
line is approximating curve:  PN-
PS=  -0.67sin(LS+0.32°)  +  0.05. 
Solid line is  theoretically calcu-

lated asymmetry of insolation of polar regions (intensity ratio IN/IS at latitudes ±60°).
Figure 2: Approximation of PN-PS dependence on Ls (for continuous Ls axis) by different functions: (1) 

sinusoid calculated over all observational data, (2) sinusoid calculated only using CCD observations.

To check stability of solution, we have carried out the experiment: approximative function was found only 
on part of data obtained using the CCD (1989-2004) (Fig.2, curve 2). Obtained dependence, prolonged to 
small values of Ls, shows a good agreement with our earlier data and Hall and Riley data. So, one might 
assert that periodic variations of polarization are exist.

Correlation coefficient between PN-PS and IN/IS is -0.7, i.e. there is significant anticorrelation. Our ear-
lier assumption [2] is confirmed by new data and we can speak about seasonal variations of polarization.

2 Causes of seasonal variations of Jupiter polarization

We assume that variations of insolation are the principal cause of the seasonal variations of polarization. 
Jupiter has a small axial tilt (about 3 degrees). However, the orbital eccentricity of 0.05 results in 20% 
variation in the dilution factor 1/r2  values due to the change of the distance r from the Sun. Besides, the 
perihelion and maximum of Jovian latitude of the Sun are almost coinciding in time. These factors pro-
duce significant seasonal fluctuations of the incident solar radiation and result in north-south asymmetry 
in insolation and temperature. Thus, seasonal variations of stratospheric temperature appear: temperature 
difference at the polar regions in Jupiter’s atmosphere may vary in the range ±25 K [5, 6].

As known, observational data and theoretical modeling indicate the presence of stratospheric aerosol 
haze on p ~ 20 mbar pressure level with greatest abundance at polar regions [7,8]. This haze conceivably 
consists of benzene and polycyclic aromatic hydrocarbons (PAH) like naphthalene, phenanthrene, pyrene 
[8]. Model calculations [9] estimate the mean radius of haze particles r=1-1.5 µm. We have shown in [10] 
that main contribution in registered polarization in Jovian polar regions is produced by the light reflected 
from underlying surface (clouds) and then scattered on aerosol haze particles. Aerosols of this haze may 
be in unstable state, and temperature changing may influence on forming/dissociation of particles.

Anticorrelation of polarization asymmetry and insolation may be caused by following mechanism. Be-
cause of essential heating of thin stratospheric aerosol layer (during Jovian summer) the substance of haze 
may leave state of supersaturated vapor. Condensation becomes slower, concentration of particles  de-
creases and polarization also decreases (as known, the rate of condensation decreases when temperature 
increases). Thus, possible scenario of polarization asymmetry appearance is: seasonal variations of insola-
tion are led to  −> seasonal  variations of temperature  −> changes of activity of aerosol  formation  −> 
aerosol concentration changes  −> polarization changes  −> changes of north-south asymmetry of linear 
polarization.

Figure 1.
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2.1 Temperature effect on aerosol haze formation

Average temperature in polar regions of Jovian stratosphere is about 150 K [8]. This temperature is lower 
than triple points of naphthalene and benzene (359 K and 278 K, respectively), so they may produce crys-
tal nucleus from gaseous phase. Let’s consider homogeneous particle nucleation (i.e. proceeding without 
additional condensation centers). Equilibrium condition for nuclei of a crystal with radius r and surround-
ing gas is defined as following [11]: 

 ,           (1)
   
where rc – critical radius (nuclei with smaller radius evaporate, and bigger ones grow); Ω is specific vol-
ume of molecule in crystal; µ = kTξ is chemical potential; ξ = ln[p(T)/p0(T)] is supersaturation, p(T) is 
vapor pressure in atmosphere; p0(T) is saturated vapor pressure; α is surface tension coefficient; for parti-
cles in solid phase α is close to the value in liquid phase near melting temperature.

Eq. (1) is unstable. For formation of a nucleus with radius r, the system should overcome potential bar-
rier G: 

 ,                                   (2)

where G is Gibbs potential. Homogeneous nucleation takes place when radius of critical nucleus is close 
to molecular sizes; at the same time, supersaturation ξ is about or larger 
than 1. For example, for naphthalene (α=30 erg/cm2) at  Т=150 К and 
ξ = 10 critical radius rc = 6 Å, i.e., in Jovian stratosphere homogeneous 
nucleation can occur. 
To study the effect of temperature changes on PAH formation, we used 
altitude concentration profiles from [8]. Temperature values for calcula-
tions (Fig.3) were selected because of average temperature at the pres-
sure level 20 mbar (probable aerosol haze location) is 150 K [12], and 
its season changes in north and south Jupiter polar regions reach up to 
±30 K [6]. Our estimates show (Fig.3) that temperature changes have 
strong effect on processes of homogeneous nucleation in Jupiter strato-
sphere: benzene does not condensate at T>120 K (negative supersatura-
tion means vapour undersaturation), whereas probability of naphthalene 
and phenanthrene nucleation at T=120 K and T=150 K is considerable.

2.2  Mechanism of the effect of irregular factors (solar cosmic rays) on aerosol haze 

We have investigated influence of solar wind, solar cosmic rays and X-rays on Jupiter polarization. One 
can see (Fig.4), there is some relation between PN-PS and solar cosmic rays flux (protons, E>10 MeV). 
Marked points (1998, 2000, 2001) greatly deviate from general group. In what way extremely large flux 
of high-energy protons registered in this years had influence on increasing of polarization values? First, 
high-energy protons may increase concentration of ions that participate in chemical reactions, which can 
enhance synthesis of source material (PAH molecules) for aerosol formation. Second, the ions may serve 
as additional condensation centers of aerosols. At last, chemical reactions stimulated by additional ioniza-
tion of the atmosphere occur with heat release or absorption, which may result in temperature change at 
high altitudes (similar effect is well known for the Earth stratosphere [13]). This can change aerosol con-
centrations and, consequently, polarization values at both poles. Because of nonlinear dependence of va-
porization-condensation processes on temperature, the stratosphere aerosol concentration is different in 
both polar regions, which may produce polarization asymmetry. Only second mechanism (nucleation in 
gas containing ions) can be described quantitatively. Gibbs potential in this case is:
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where r is the radius of charged sphere, r* is the ion radius; q is ion charge, and ε is dielectric permeabili-
ty of nucleus. The new term on the right in Eq.(3) describes screening of a charge q by growing particle. 

Figure 4: Comparison of solar cosmic rays flux (amount of high energy protons, GOES-10 data) with 
polarization asymmetry (left) and Fig.1 (right).

Figure 5: Thermodynamic potential ∆G (ξ,q,r) changing of system which content nucleus with radius 
r was formed on ion with charge q (q in charges of electron): a: small supersaturation, big charges, r∼μm, 
∆G (0.01,0,r) (1), ∆G (0.001,103,r) (2), ∆G (0.01,103,r) (3), b: high supersaturation, real charges, r near 
molecular sizes, ∆G (8,0,r) (1), ∆G (8,1,r) (2), ∆G (0.01,2,r) (3), ∆G (8,2,r) (4).

Assuming ε = 2.3, r* = 2 Å the plots in Fig. 5 have been obtained. As shown in Fig. 5a, additional do-
main of stability (local minimum of function G  (ξ,q,r)) does not appear in the range of our interests (par-
ticles sizes  ∼1 µm) even for unreally great charges (Fig. 5a, lines  2,  3). At real values of charges (1-2 
charge of electron), stability appears only very close to molecular sizes (Fig. 5b, line 3), i.e. only charged 
molecular clusters (not particles) can be stable (not evaporating and not growing). Thus, mechanism of 
aerosol particles formation on charges is not effective.

3 Conclusion

(1)  There  is  an  anticorrelation  between  polarization  asymmetry  and  insolation  Jupiter's  atmosphere. 
(2) Seasonal variations of insolations (through variations of temperature) is the principal cause of varia-
tions  of  north-south asymmetry of  polarization.  (3)  Jovian stratospheric  haze which consists  of  PAH 
(naphthalene, phenanthrene) particles may be formed by homogeneous nucleation. (4) Temperature varia-
tions in Jovian stratosphere have strong influence on PAH condensation; benzene does not condensate at 
T>120K.  (5) Flux of solar cosmic rays may influence on concentration of aerosol haze particles only 
through series of chemical reactions that produce source material for aerosol formation.
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Abstract 
At small phase angles the Moon reveals a wide negative polarization branch whose 
inversion angle is 22° and whose average amplitude is 1%. We present results of 
polarimetric mappings of the Moon in Pmin at a phase angle near 11°. The observations in 
the red and blue spectral bands were carried out with the Kharkov 50-cm telescope at the 
Maidanak Observatory (Middle Asia) using a Canon-350D camera and polarizing filter. A 
thorough calibration of the camera array (flat field and so on) allows for the reliable 
detection of significant variations of |Pmin| over the lunar surface, from 0.2 to 1.6 %. 
Smallest |Pmin| are characteristic of young bright craters; the parameter |Pmin| is the highest 
for the lunar highland and bright mare areas.  
 
 

1    Introduction 
The lunar surface is illuminated by solar radiation that is not polarized. Upon scattering the radiation 
becomes polarized and the polarization degree P varies with the phase angle α. In particular at small 
phase angles the wide negative polarization branch with |Pmin| ≈ 1 %, αmin ≈ 11°, and inversion angle equal 

22° is observed [1-3] (
||

||

II
II

P
+
−

=
⊥

⊥ , where ||I  and ⊥I  are intensities measured, respectively, at parallel 

and perpendicular orientations of the analyzer axis with respect to the scattering plane). The negative 
polarization is observed for different particulate surfaces, an example of which is the lunar regolith.  
    Telescope polarimetric observations of the Moon are still rare. One of the reasons for this is the lack of 
motivation due to poor interpretation of previous lunar polarimetry. There are only three large surveys 
[1,2,4,5] of discrete polarimetric measurements. Results in imaging lunar polarimetry also are meager, 
though recently it was shown that this method suggests at large phase angles an effective diagnostic tool 
for determination of compositional heterogeneity of particles of the lunar surface [6]. There has been only 
one attempt to carry out imaging polarimetry of the Moon at small phase angles where the polarization 
degree is negative [7]. That investigation [7] has shown noticeable variations of |Pmin| over the lunar 
surface, approximately from 0.2 to 1.8 %. Although the diagnostic meaning still remains unclear, we 
further develop the approach of [7] using more accurate maps of |Pmin| whose initial images have higher 
spatial resolution.  
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2    Observations  
The observations in the red and blue spectral bands were carried out with the Kharkov 50-cm telescope at 
the Maidanak Observatory (Middle Asia) using a Canon-350D camera and polarizing filter. The 
Observatory is characterized with very good astro-climate conditions, many nights of clear sky and very 
small atmosphere turbulence. The polarimetric measurements were made at a phase angle near 11° that is 
close to αmin for the Moon. The flat fields of the system “camera array + filters + telescope” at two 
spectral channels (red: λeff = 0.63 µm and blue: λeff = 0.48 µm) were measured and then taken into 
account. A thorough calibration allows the reliable detection of significant variations of |Pmin| over the 
lunar surface, which are in quantitative agreement with our previous discrete and mapping measurements 
[2,4,7]. We present results of our polarimetric measurements of the Moon in Pmin for several areas of the 
lunar nearside. Figures 1-4 present images of albedo, |Pmin| in blue light, and the ratio |Pmin|red / |Pmin|blue for 
4 areas of the lunar nearside. The higher the parameter |Pmin|, the brighter the details of the |Pmin| map. All 
variations of the parameter |Pmin| correspond to specific morphological features of the lunar surface, which 
is a strong argument that we are studying a real physical effect and not an artifact. The |Pmin|red / |Pmin|blue 
ratio is higher for mare surface. Bright highland craters do not show up on the |Pmin|red / |Pmin|blue images. 
This probably is related to the fact that the lunar highland is more spectrally neutral, than mare regions.  

 
Figure 1: Images of a) albedo, b) |Pmin| in blue light, and c) ratio |Pmin|red / |Pmin|blue for the northwestern portion of the 

lunar disk. The bright spot on right side of the albedo image is the crater Aristarchus.  

 
Figure 2: Images of a) albedo, b) |Pmin| in blue light, and c) the ratio |Pmin|red / |Pmin|blue for the southwestern portion of 

the lunar disk including Mare Humorum.  

3    Results and discussion  
Comparing the albedo and |Pmin| images in Fig. 1-4, one can see that for the low albedo domain there is a 
direct correlation between |Pmin| and albedo (the brighter the lunar detail, the higher its |Pmin|), while for 
bright lunar areas (young craters) the correlation is inverted. Unfortunately, the interpretation basis for the 
|Pmin| variations is not sufficiently developed to explain these observations. From laboratory experiments 

a)  b) c) 

a)  b) c) 
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we know that the wide negative polarization branch values of |Pmin| is a function of particulate surface 
albedo and particle size [3,8,9]. The brighter the particulate surface, the higher, the incoherent multiple 
scattering, hence, the lower |Pmin| should be. On the other hand, the smaller the particle size, the deeper 
the negative polarization branch, i.e. higher |Pmin|. Thus the inverse correlation between albedo and |Pmin| 
can be attributed to the multiple scattering reducing |Pmin| as well as the fact that young (bright) craters are 
composed of particles coarser than those of the mature regoliths. It is more difficult to interpret the direct 
correlation at the low albedo domain. This correlation exists regardless of the effect of multiple scattering. 
An explanation of the direct correlation can be related to the scattering properties of single particles. 
Using the DDA method we calculated the polarization phase curves (Fig. 4, left panel) for aggregated 
particles (Fig. 4, right panel) averaged over orientation at different values of the imaginary part (Im(m)) of 
the refractive index m. As can be seen |Pmin| increases with decreasing absorption Im(m). Many different 
series of such calculations show the same. We suppose that this effect could be responsible for the direct 
correlation between albedo and |Pmin| in the low-albedo domain, when multiple scattering is small.  

 
Figure 3: Images of a) albedo, b) |Pmin| in blue light, and c) the ratio |Pmin|red / |Pmin|blue for the eastern portion of the 

lunar disk. The bright spot on the right side of the albedo image is the crater Proclus.  

 
Figure 4: Images of a) albedo, b) |Pmin| in blue light, and c) the ratio |Pmin|red / |Pmin|blue for the southern portion of the 

lunar disk. In the center of the albedo image one can see the crater Tycho.  

    The northwestern portion of the lunar nearside that includes the craters Aristarchus and Kepler is 
shown in Fig. 1. The crater Aristarchus reveals a low polarization degree, as small as 0.6 % in blue light. 
Unexpectedly the Reiner gamma formation (left lower corner) shows up as a unit with relatively high 
|Pmin|. Figure 2 presents albedo and polarimetric images for the southwestern portion of the lunar disk 
including Mare Humorum (left lower portion of the frame). Two low |Pmin| areas can be seen in the frame, 
near the upper edge and again a bit to right and below the center. These areas are not peculiar in albedo. 
For the image in Fig. 2 the border between highlands and maria is clearly seen in the |Pmin| image. The 
eastern portion of the lunar disk is presented in Fig. 3. The crater Proclus and its ray system 
conspicuously show up on this scene, |Pmin|blue ≈ 0.4. No trace of the crater and rays may be found on the 

   a)                                b)                               c) 

    a)                               b)                               c) 
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image |Pmin|red / |Pmin|blue. The same is observed for the crater Tycho (Fig. 4). We note that in many cases 
nearby young craters with the same albedo reveal very different values of |Pmin|.  

4    Conclusion  
We have presented the first results of our polarimetric measurements of the Moon at a phase angle near 
11°. The observations in the red and blue spectral bands were carried out with the Kharkov 50-cm 
telescope at the Maidanak Observatory using a Canon-350D camera and polarizing filter that provides 
reliable detection of significant variations of |Pmin| over the lunar surface, from 0.2 to 1.6 %. The smallest 
|Pmin| are characteristic of young bright craters; the parameter |Pmin| is highest for highland and bright mare 
areas. In many cases bright young craters with the similar albedo reveal very different values of |Pmin|.  

 

 

 

 

 

 
Figure 5: Polarization phase curves (left panel) calculated for aggregate particles (right panel) at Re(m) = 1.5,  

X = 2πr/λ = 10, where r is the radius of circumscribed sphere and λ is the wavelength. Curves 1-4 correspond to 
Im(m) = 0, 0.02, 0.05, and 0.1, respectively.  
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Abstract 

The variant of the pattern equation method, based on representation of a wave field by 
Atkinson-Wilcox expansion, is proposed for the solution of wave diffraction problem on 
compact scatterers. The basic integral-operator equation of the method is deduced and it’s 
algebraization is obtained. Limitations on scatterer geometry, at which algebraic system 
can be resolved by a reduction method, are established. The analytical solution of plane 
wave diffraction problem on a sphere is obtained and it is shown, that it merges into the 
known classical solution at some special value of one of the method parameters. The 
suggested approach is illustrated by numerical example. 

1 Introduction 
The pattern equation method (PEM), for the first time suggested by the author in 1992 [1,2], subsequently 
has been successfully applied to the solution of the wide range of the waves scattering and propagation 
problems. At present moment about 30 papers dedicated to PEM application to the solution of various 
diffraction theory problems have been published in the leading journals. Some aspects of the method were 
also applied by other authors (see, for example, [3-5]).  

Original variant of PEM is based on the plane wave representation of diffracted field by Sommerfeld-
Weil integral [1, 2, 6]. The method is universal enough, and the algorithms based on it converge very fast. 

However, the original method is poorly suitable for the solution of diffraction problems when the 
characteristic sizes of a scatterer are much greater than wavelength. The approach allowing to overcome 
this difficulty is developed below. The new approach is based on the wave field representation by a 
Atkinson-Wilcox series [7]. It is shown [8], that this series, converge in the area 2r kσ> , where r is 
radial spherical coordinate, σ is a growth parameter of the scattering pattern [8,9] and k is a wavenumber. 
However, when the scatterer sizes are much greater than wavelength, Atkinson-Wilcox series, which are 
reduced to the first few summands, can be treated as asymptotic expansion [10]. 

2 The statement of the problem and its solution 
So, lets consider a scalar diffraction problem on a compact scatterer, bounded by a surface . We assume 
for definiteness, that Dirichlet boundary condition is satisfied on S. Thus, we seek a wave field function 

, as the solution of the following problem: 

S

1( )u r
 1 2 1 3 0 10, \ , ( ) 0,

S
u k u r D u u∆ + = ∈ + =R  (1) 

where D  is an area inside ,  is an incident (primary) wave. Function  should also satisfy a 
Sommerfeld condition of radiation on infinity [11 . 

S 0u 1u
]

In spherical coordinates ( , , )r θ ϕ  function 1( )u r  has the following representation [7]: 
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where 0 ( , ) ( , )g gθ ϕ θ≡ ϕ  is the pattern of wave field (the scattering pattern), and functions ( , )jg θ ϕ  for 
 are determined by recurrent relations 0j >
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∂  is the Beltrami operator [11,12]. 

We can combine the relations Eq. (2) and Eq. (3) using operator W  (we call it Wilcox operator) so, 
that 1( , , ) ( , )u r W gθ ϕ θ⎡ ⎤⎣ ⎦= ϕ . 

In case of Dirichlet boundary condition the following representation is valid 
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here  is a full field, 0u u u= +
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- differentiation in the direction of external normal to , S
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r ρ θ ϕ=  is the equation of a surface  in spherical 
coordinates. 
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Let's introduce the following notations: 
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Using these notations, representation (4) can be rewritten as follows 
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Combining Eq. (6) and Wilcox operator introduced above, finally we have 
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Here 0 ( , )g θ ϕ  is the integral similar to Eq. (6), where the function 0 ( , )v θ ϕ  is used instead of ( , )v θ ϕ . 
Thus, the relation Eq. (7) is the sought integral-operator equation of PEM. 
Let's algebraize the problem. For this purpose we shall expand function ( , )g θ ϕ  on some basis. For 

example, using the spherical harmonics, we shall have 
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expansion Eq. (2) can be rewritten as follows 
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The index "J" means, that in relation Eq. (9) only first (J+1) summands of the sum Eq. (8) are kept, 
therefore it is now approximate. From Eq. (9) and Eq. (5) we have 
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3 Bodies of revolution 
Let's consider, for example, a case of a body of revolution, i.e. a situation, when ( , ) ( )ρ θ ϕ ρ θ= . Let also 

 be the field of a plane wave, i.e. 0u
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 are incident angles. In this case the equation 
Eq. (7) is reduced to the following algebraic system 
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For sphere ( ( ) aρ θ = ) at 0 0 0θ ϕ= =  from Eq. (12) and Eq. (13) we obtain  
 , 2 2

, ( ) ( )J n J kanm m n n nG i k a j ka hνµ µ νδ δ ′= − 0 2 2
0(2 1) ( ) ( )nm n n ma k a n j ka j ka δ′= − + . (14) 

Solving system Eq. (11) using Eq. (14), we obtain 
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The obtained solution (taking into account the remark after the formula Eq. (9)) is approximate. The 
solution Eq. (15), as well as initial relations Eqs. (9) - (14), become exact, if in (8) J is replaced by . 
Thus expression  turns into spherical Hankel function , and an expression Eq. (15) 
becomes 
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which coincides with classical result [14]. 
Figure 1 shows the scattering patterns of sphere with radius ka=21, calculated using the exact solution 

Eq. (16) (a continuous curve at N=40, a dotted curve at N=20) and approximate solution Eq. (15) (a 
dashed curve). N is the maximal number of value n in series for the scattering pattern. Parameter J in 
Eq. (15) has been set to 20. Good agreement between exact and approximate (at J=20) results is observed. 
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Figure 1: The scattering patterns of sphere with radius ka=21. 

4 Conclusion 
Thus, we obtained an already known variant of PEM, if in relations Eqs. (9) - (12) we replace J by . 
However, fixing J on any finite value we achieve an alternative approach, allowing, as we just 
demonstrated, to solve (although approximately) problems of waves scattering by bodies with sizes 
considerably larger than incident field wavelength. The proposed approach can be easily extended to 
other kinds of boundary conditions, and also on vector scattering problems. 

n
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Abstract

The optical properties of urban aerosol particles are calculated using exact methods at 910 nm
wavelength under different assumptions about particle composition and shape. Results show that
spherical particles backscatter light on the average about 40 percent more than the corresponding
nonspherical particles, the difference generally being larger for larger particles. In contrast, changing
the particle composition from water to silicate increases backscattering by about a factor of three.
Typical values for absorptivity seem to have negligible impact on backscattering.

1 Introduction
Accurate modeling of light scattering properties of aerosol particles is essential to conduct
reliable remote sensing observations. Although it is well known that the scattering properties
of nonspherical particles can be significantly different from those of spherical particles,
assumption of spherical particles is still widely used in remote sensing applications. This can
lead to large errors when retrieving aerosol optical properties with lidar inversions, especially
if dust particles are present (e.g [1]).

The aim of this work was to study the effect of particle size, shape, and composition on lidar
backscattering in an urban environment. On one hand, sensitivity studies based on optical
modelling were conducted to estimate the relative importance of different physical factors
affecting backscattering of light by aerosol particles. On the other hand, modeled
backscattering values were compared with lidar measurements. To facilitate the comparison,
the lidar measurements were conducted in a vicinity of aerosol in situ measurement site.

2 Methods

A lidar measures backscattering that is the sum of all scatterers - air molecules, aerosol
particles and hydrometeors - within the measurement volume. To solve the lidar equation
(e.g. [2]), the relation between volume backscattering coefficient , and volume extinction
coefficient  has to be known. Physically describes how much light is scattered in the
backward direction from a measurement volume and is defined ultimately by particles’ phase
function and scattering cross section. Similarly,  describes the total amount of energy
removed from the incident field and is defined by particles’ extinction cross section. Most
common solution to the lidar equation is to assume a linear relation between and , which is
usually called the lidar ratio R (e.g. [2]).

To study how physical properties of aerosol particles affect the lidar signal (or , , and R),
we need to know how the optical properties of the particles (e.g. phase function, scattering
and extinction cross sections) depend on their physical properties, i.e. particles’ composition
and shape. For simplicity, the effect of particle composition was only studied for spheres. Mie
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simulations were carried out varying both the real and the imaginary part of the refractive
index. For the real part, values of 1.5 and 1.3 were used. The former value is representative of
many  dust  aerosol  types  as  well  as  sea  salt  and  ammonium  sulphate,  whereas  the  latter  is
close to that for liquid water. For the imaginary part, values of 0.0 and 0.001 were used. The
former is used for nonabsorbing aerosol, whereas the latter is considered a representative
effective value for the expected mixture of the aerosol in Urban Helsinki.

Likewise, when the effect of particle shape was studied, particle composition was assumed to
be fixed. Since no shape information was available, a modeling approach for solid urban
aerosol particles could not be developed. Thus, we assumed that their optical properties can
be computed using the modeling approach for dust aerosol as in [3]. The optical properties of
irregularly shaped urban aerosol particles were described by a distribution of randomly
oriented spheroids. As suggested in [3] for dust particles, we used the shape distribution that
weights most heavily the most elongated spheroids in the distribution.

The measurements were conducted at the Kumpula campus of the University of Helsinki,
which is located in a heterogeneous urban area about 5 km away from the center of Helsinki.
The lidar measurements were carried out using a vertically pointing Vaisala CL31 ceilometer,
which is an elastic backscatter lidar that operates at 910 nm wavelength. Particle In Situ
measurements at ground level were conducted 250 m from the lidar site. Aerosol size
distributions were obtained by combining results from two different instruments (Differential
Mobility Particle Sizer DMPS and Aerosol Particle Sizer APS) that together covered particle
diameters ranging from 3 nm to 20 m.

3 Results

Three rainless days from summer 2005 were selected to these sensitivity studies. For each day
the effective radius reff and variance eff from the measured size distribution was calculated, as
well  as  the  values  of , , and R. In addition the value of measured with lidar was
determined.

Both the composition (excepting absorption) and shape had a substantial effect on
backscattering. The values of ,  , and R for water droplets were on average 0.33, 0.53, and
0.62 times the values for spherical silicates, respectively. Similarly, for nonspherical particles
the values of optical parameters were on average 0.60, 0.79, and 0.76 times the values for
spherical particles. In Fig. 1 the difference in these quantities due to composition and shape
are  expressed  as  a  water/silicate  and  nonspherical/spherical  ratios.  In  both  cases  the  results
also depended on the particle size but in different way. The effect of composition on
increased with decreasing values of reff, whereas the effect of particle shape on increased
with increasing values of reff.

In addition theoretically calculated values for  were compared with backscattering measured
with lidar, denoted as meas. To define only the aerosol contribution to meas , backscattering
from hydrometeors and molecules had to be excluded. The molecular contribution to meas
was assumed to be constant, at sea level and at 910 nm wavelength 1.855·10-7 m-1srad-1 [4].
Hydrometeors were excluded simply by choosing to study days when no rain, drizzle or mist
was observed. The comparisons revealed that theoretically calculated values for were on
average 3.6 and 2.1 times higher than meas, if aerosol particles were assumed to be spherical
or nonspherical silicates, respectively.
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Figure 1. The effect of particle composition (right panel) and shape (left panel) on
theoretically calculated , , and R during one example day, represented as a water/silicate
and nonspherical/spherical ratios. For water droplets the value of refractive index was
m=1.3+i0.0 and for silicates m=1.5+i0.0.

4 Conclusion
Results showed that particle composition (with the exception of absorption) and shape had
substantial effect on backscattering. A connection of these effects to the variation in size
distribution was also observed.

The agreement between theoretically calculated and lidar measured backscattering was found
to be better for nonspherical than for spherical silicates. It should be noted, however, that such
a comparison is meaningful only if the in situ-measured particle size distribution can be
considered representative for the particle size distribution in the lidar’s measurement volume.
In our case, this depends not only on possible local aerosol sources, but also on ambient
meteorological conditions. Further, differences could be caused by calibration-related issues
related to lidar, or an uncertain sampling efficiency for the DMPS and APS instruments.
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Abstract 

The theory of light scattering by systems of nonspherical particles is applied to derive 
equations corresponding to incoherent (diffuse) and interference parts of radiation 
reflected from the medium. A solution of the system of linear equations describing the 
light scattering by a system of particles is represented by iteration. The symmetry 
properties of the T-matrices and of the translation coefficients for the vector Helmholtz 
harmonics lead to the reciprocity relation for an arbitrary iteration. This relation is 
applied to consider the backscattering enhancement phenomenon. In the exact 
backscattering direction the relation between incoherent and interference parts is identical 
to that for sparse media. 

 

The problem of light scattering by densely packed discrete random media is important for many areas of 
science and technology. In particular this problem is of interest to astrophysics. The surfaces of the 
majority of atmosphereless solar system bodies are covered with regolith and the interpretation of optical 
observations of them must be based on an adequate theory of light scattering by a densely packed 
medium. Some of these bodies exhibit the opposition effect (or the effect of coherent backscattering 
[1,2]). The effect of coherent backscattering has been observed in numerous laboratory experiments as 
well [2]. It is caused by the constructive interference of multiple scattered waves traveling in a discrete 
medium in a certain direct and reversal trajectories [1,2]. The well known Saxon's reciprocity relation [3] 
is applied to investigate of the effect of coherent backscattering. Although the Saxon's reciprocity relation 
is valid for arbitrary finite scatterers including systems of particles, it is valid only in the far-field zone of 
the scatterers. In theoretical analysis of multiple scattering of waves by media this relation can be applied 
only for sparse media whose particles are located in the far-field zones of the each other. Because of this, 
the effect of coherent backscattering is comparatively well studied for such media. In particular, for 
sparse media a relation between the incoherent and coherent parts of scattered light in the exact 
backscattering direction has been obtained [4,5]. This relation allows one to calculate the amplitude of the 
interference peak of the coherent backscattering effect using the vector radiative transfer equation only 
[4]. Equations for describing the angular dependence of the interference part of multiply scattered waves 
by a layer of sparse medium of randomly oriented arbitrary particles have been obtained in [6,7].  

In this work the theory of light scattering by densely packed systems (aggregates) of nonspherical 
particles is applied to study the light scattering by densely packed media. It is assumed that the T -
matrices of all aggregate particles are known in their local coordinate systems and that the smallest 
circumscribing spheres of all particles do not overlap with each other. A solution of the system of 
equations describing scattering of waves by particles is represented by a method of iteration. It is shown 
that the symmetry properties of the T -matrices and of the translation coefficients of the vector Helmholtz 
harmonics lead to the reciprocity relation for an arbitrary iteration. For the amplitude matrix of an 
iteration this relation is identical to the Saxon's reciprocity relation. For example, let ( , , )

0( , )j s
pn scS σ k k  be 

the amplitude scattering matrix for the wave propagating in the direction 0k  with initial polarization n , 
scattered first by particle s , then by particle σ  and finally by particle j  in the direction sck  with final 
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polarization p . (Here the so-called CP-representation is used in which the polarization indexes 
, 1n p = ± ). In this case the reciprocity relation can be written as 

( , , ) ( , , )
0 0( , ) ( , )j s s j

pn sc np scS Sσ σ= − −k k k k .     (1) 

The symmetry relation for the amplitude scattering matrix (1) is applied to consider the 
backscattering enhancement phenomenon for macroscopically homogeneous, isotropic and mirror-
symmetric medium. Let the medium be in form of plane-parallel layer and the upper boundary of the 
medium coincides with the plane ( 0 0x y ) of the coordinate system 0n̂  (Fig.1). In the paper bold letters 
with carets ˆ in  denote right-handed coordinate systems ( , ,i i ix y z ) with the iz -axes along the vectors in . 
The scattering matrix, which transforms the Stokes parameters of the incident light into those of the 
scattered light is supposed to be in the form: 

( ) ( )L C
pn pn pnS S Sµν µν µν= + .      (2) 

Here matrix ( )L
pnS µν  describes the diffuse (incoherent) part of scattered light and matrix ( )C

pnS µν  describes the 
coherent (interference) part. , , , 1p n µ ν = ± .  

 

Figure 1. Geometry of scattering of light by a layer. 

Equations for matrixes ( )L
pnS µν  and ( )C

pnS µν  are obtained using the quasi-crystalline approximation and an 
approach described in [6,7]. Radii of the circumscribing spheres of all particles are assumed to be 
identical. 

0 0
( ) * ( )( )( )

0 0

(2 1)(2 1) ( , ,0) ( , ,0) exp
4 cos

k Z
L L l z pn

pn Mp m LMlm
LMlm

L l zS D D B dz
k

µν
µν µ

η τϕ ϑ ϕ ϑ
ϑ

+ +  =  
 

∑ ∫ ,  (3) 

where η  is the concentration of particles, 0 2 /k π λ= , 2 Im( )effmτ = , Re( ) Im( )eff eff effm m i m= +  is the 

effective refractive index of the medium, 0Z  is the thickness of the medium. Matrix ( )L
pnS µν  is defined per 

unit area of the upper boundary of the medium. ( , , )L
MnD ϕ ϑ γ  is the Wigner function, , ,ϕ ϑ γ  are the Euler 

angles determining the rotation from the coordinate system 0n̂  into coordinate system ˆ
sck  (Fig.1). 
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Coefficients ( )( )( )z pn
LMlmB µν  are determined from the system of equations 

1

1 1 1 1 1 1 1

1 1

1 1 1

1 1 1 1 2 2 3 3 2 2 1 1 3 3

2 2 3 3

*( )( )( ) ( ) *( )
0 0 0 0

0

*( ) ( )( )( ) *( )( ) ( )
0 0

exp ( , ,0) ( , ,0)
cos

ˆ ˆ ˆ ˆ( ) ( , ) ( , )

lz pn pn l
LML M LMlm L M l m mn m

lml m

q y qn q qpq q
LMlm L M l m l m l m lml m l m l m

q l m l m

zB t t D D

t t g r B H H d

µν µν
ν

µ ν

τ ϕ ϑ ϕ ϑ
ϑ

η

 
= − + 

 

+

∑

∑ ∫ n r n r r
1 1 1

,
q lml m
∑

  (4) 

where 0 cosy z k r ω= + , the angle ω  (0 )ω π≤ ≤  is measured from the direction 0n  (see Fig.1), 

1, 1q q = ± , ( )g r  is the pair distribution function, 
2 2

( )
0ˆ ˆ( , )q

lml mH n r  are the translation coefficients for the 
vector Helmholtz harmonics (see, for example, [6]). Integration in Eq.4 is over the whole volume of the 
medium. 

1 1 1 1 1 1 1 1

( ) *( ) ( )( ) *( )( )pn j pn j
LMlm L M l m LMlm L M l mt t t tµν µν=  where the angular brackets denote averaging over particle 

orientation and particle properties, 

( )( ) 11( ) 12( ) 21( ) 22( )2 1
2 1

j pn l L j j j j
LMlm MLml MLml MLml MLml

lt i T nT pT pnT
L

− +  = − + + + +
,   (5) 

and ( )kw j
MLmlT  ( , 1,2)k w = are the elements of the T -matrix of j -th particle. For sparse media Eqs.(3),(4) can 

be transformed into the classical vector radiative transfer equation [4,6,7], and in the case of normal 
illumination of semi-infinite medium of densely packed identical spherical particles they can be 
transformed into the equations obtained in Ref.8.  

( )
0 0

( ) (1) * ( )( )( )
0 0

0 0

(2 1)(2 1) ( , ,0) ( , ,0) exp ,
4

k Z
C L l z pn

pn pn Mp m LMlm
LMlm

L lS S D D F i z dz
k

µν
νµ νµ µ

η ϕ ϑ π ϕ π ϑ ε+ +
+ = + − −∑ ∫  (6) 

where 
*

0

1 1
cos cos

eff effm m
ε

ϑ ϑ
− −

= + ,      (7) 

and coefficients ( )( )( )z pn
LMlmF µν  are determined from the system of equations 

( ) 1

1 1 1 1 1 1 1

1 1

1 1 1

1 1 1 1 2 2 3 3 2 2 1 1 3 3

1 1 1

*( )( )( ) * ( ) *( )
0 0

*( ) ( )( )( ) *( )( ) ( )
0 0 0

exp ( , ,0) ( , ,0)

ˆ ˆ ˆ ˆ( ) ( , ) ( , )exp (

lz pn pn l
LML M LMlm L M l m mn m

lml m

q y qn q qpq q
LMlm L M l m l m l m lml m l m l m s

qq lml m

F i z t t D D

t t g r F H H i

µν µν
ν

µ ν

ε ϕ ϑ π ϕ π ϑ

η

= + − +

+ +

∑

∑ n r n r r k k( )
2 2 3 3

) .c
l m l m

d∑ ∫ r
 (8) 

Matrix (1)
pnS νµ  in Eq.(6) corresponds to the single scattering (the first term on the r.h.s. of Eq. (8)). For 

sparse media Eqs.(6),(8) can be transformed into the equations obtained in Refs.6,7. 
In the case of 0sc = −k k  the system (8) is identical to the system (4). Therefore the following equation 

is valid  
( ) ( ) (1)L C
pn pn pnS S Sµν νµ νµ= + .      (9) 

This equation exactly reproduces Eq.(19) in Ref.9 for sparse media. In the case of 0sc ≠ −k k  the 
multiplier ( )0exp ( )js sci +r k k  in Eq.(8) rapidly oscillate and the contribution of the second term of this 

equation tends to zero. As result the matrix ( )C
pnS νµ  in Eq. (6) differs from zero only in the narrow area of 

scattering angles near the direction 0sc = −k k . In intensity of scattered light this matrix describes a 
narrow interference peak centered in the exact backscattering direction.  
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Eqs.(3)-(8) describe the incoherent (diffuse) and coherent parts of reflected radiation from a plane 
parallel layer of densely packed particles. For sparse media these parts determine the reflection matrix of 
light. For such media the incoherent part corresponds to the sum of the ladder diagrams and is described 
by the vector radiative transfer equation [4]. The interference part of scattered radiation corresponds to the 
sum of the cyclical diagrams and is described by equations obtained in [6,7]. In the intensity of scattered 
light, this part appears as a narrow peak centered at the exact backscattering direction. In the exact 
backscattering direction the interference part is related with incoherent part by a simple equation [4,5,9]. 
The same equation (Eq.(9)) is valid for densely packed media as well. However, for densely packed 
media, the equations describing the incoherent and coherent parts are much more complex. Complexity of 
the equations is caused by the correlation between particles and by the inhomogeneity of waves near the 
particles. The inhomogeneity of waves near the particles is described by the coefficients of the addition 
theorem for the vector Helmholtz harmonics. For sparse media these coefficients have a simple form and 
describe the propagation of spherical waves between particles [6,7]. For densely packed media of 
particles comparable in sizes to the wavelength, the equations for incoherent and coherent parts describe 
only a part of scattered radiation. Additional part of scattered radiation for such media can come, for 
example, from the interference of waves scattered by neighboring particles and interference of waves of 
different orders of scattering [8]. Unfortunately, consideration of such interferences is a very complicated 
problem and is far from being satisfactory resolved even for qualitative analysis.  
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Abstract

We study the effect of internal electric field on the scattered field by modifying the elec-
tric field components of the discretized internal field of the particle. The internal fields for
incidentX-polarized andY-polarized wave have been computed for a Gaussian-random-
sphere particle using Discrete Dipole Approximation. The incident field propagates in the
direction of the Z-axis. We show that both the Z- and X-component of the internal field
cause negative polarization, the Z-component directly and the X-component through con-
structive interference between the contributions from different parts of the particle interior.
The former component has a more pronounced influence on the overall polarization, while
the latter component dominates the negative linear polarization close to the backscattering
direction and is additionally seen to be responsible for the backscattering enhancement in
intensity.

1 Introduction

Two ubiquitous light-scattering phenomena observed in atmosphereless solar-system bodies near opposi-
tion are the backward enhancement in scattered intensity and the negative linear polarization extending to
some 20 degrees from the exact backscattering direction. The negative polarization seems to be largely due
to single-particle scattering (e.g., [1]) but, close to backscattering, the coherent-backscattering mechanism
plays an important role (e.g., [2]). Mechanisms responsible for the negative polarization of single particles
have been suggested by, e.g., Muinonen et al. [3]. In the case of spherical particles, they hypothesize that, for
a linearly X-polarized incident field propagating in the direction of the Z-axis, negative polarization arises
from both the X- and Z-component of the internal field. The negative polarization of the Z-component arises
due to non-destructive interference in the scattering plane defined by the wave and polarization vectors of
the incident field (Y= 0; Fig. 1b). In the perpendicular plane X= 0 (Fig. 1a), the contribution is canceled.
The negative polarization of the X-component arises due to constructive interference in the plane Y= 0 (Fig.
2b) between the cells divided by the planes X= 0 and Y= 0. In the perpendicular plane X= 0 (Fig. 2a), the
linear polarization is positive, but the interference typically varies.

2 Computation of the scattered field

The effect of interference in the particle interior on the scattering characteristics is here studied by dividing
the interior into equi-spaced cells parallel to the planes X= 0 and Y= 0, first into quadrants and then fur-
ther into sixteen cells. The contributions from the radiating cells are calculated incoherently. The method
described above was applied previously to spherical particles [4] and it was noted that the interference
between different parts of the interior were responsible for the negative polarization and the backward en-
hancement. For the study, we have chosen a Gaussian-random-sphere particle with size parameter for the
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Figure 1: We illustrate the negative-polarization mechanism based on theZ-component of the internal elec-
tric field with odd parity: a) in theX = 0 plane, the scattered waves from the dipoles interfere destructively
(phase difference∆φ = π);b) in theY = 0 plane, the interference between the waves varies depending on the
distanced and phase difference∆φ = π + kdsin(π − θ), giving rise to negative linear polarization (see [3]).

Figure 2: We illustrate the backward enhancement and the negative-polarization mechanism based on the
X-component of the internal electric field with even parity: a) in theX = 0 plane, the scattered waves from
the dipoles interfere destructively with phase difference∆φ = π + kdsin(π − θ); b) in theY = 0 plane, the
waves interfere constructively for all scattering angles (see [3]).
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circumscribing spherex = 12, the refractive indexm = 1.5+ 0.1i, the relative standard deviation of radius
ρ = 0.245 and the power-law index of the covariance functionν = 4.

For the Gaussian-random-sphere particle, the internal fields forX- andY -polarized incident field are
obtained from a DDA simulation using the code by Zubko et al. [5]. The scattered field is calculated inXZ-
andYZ-planes and an azimuthal averaging is carried out by rotating the particle with respect to the Z-axis
for one hundred evenly distributed orientations. The size parameter grid for the internal field is∆x = 0.375.

3 Results and discussion

We investigate the effect of the different components of the internal field on the total intensityI‖ + I⊥ and
the linear polarizationP = (I⊥ − I‖)/(I⊥ + I‖) of the scattered field.

Figures 3a and 3c depict the total intensity normalized to one atθ = 0◦ and Figures 3b and 3d depict
the linear polarization for the Gaussian-random-sphere particle. For the upper plots, the case of unmodified
internal field is shown with thin solid line and the case of omitting theZ-component of the internal field is
shown in thick solid line. For the lower plots, the case of unmodified internal field is shown with thin solid
lines, the case of both omitting theZ-component of the internal field and dividing the interior into quadrants
is shown in dashed line and the case of both omitting theZ-component of the internal field and dividing the
interior into sixteen cells is shown in thick solid line.

As can be seen, the effect of omitting theZ-component of the internal field increases the linear polar-
ization dramatically, but does not eliminate the negative polarization near backscattering region. When the
interior is divided into quadrants, the polarization becomes positive for all scattering angles. Division further
into sixteen cells does not have as profound an effect on polarization in this case, but for the total intensity,
the effect is evident. As the interior is divided into four incoherently radiating parts, the relative backward
enhancement in intensity diappears. The results reinforce the idea that the mechanisms described above are
responsible for the negative polarization also for non-spherical particles. The computations will be extended
to larger numbers of Gaussian particles.
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Figure 3: We plot the total intensityI‖ + I⊥ (a) andP = (I⊥ − I‖)/(I⊥ + I‖) (b) in the case of the unmodified
internal field (thin solid line) and whenEZ = 0 (thick solid line). Also, we plot the total intensity (c) andP
(d), whenEZ = 0 and the particle interior is divided into quadrants (thick dashed line), sixteen cells (thick
solid line), and the unmodified internal field (thin solid line). An image of the sample Gaussian-random-
sphere particle is shown in plot a. The parameters for the particle arex = 12,m= 1.5+ 0.1i, ρ = 0.245 and
ν = 4.
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Abstract 

Azimuthal scattering patterns obtained from ice crystals using the Small Ice Detector 2 
are examined. They are converted to frequency spectra using Fast Fourier Transform. To 
classify the shape of the crystals, the spectra are compared to theoretical ones computed 
for a range of hexagonal crystal shapes, including hollow ones, of various aspect ratios.  

1 Introduction 
Cloud particle shape is important from the point of view of both atmospheric dynamics and radiative 
properties. For this reason, many in situ probes for shape characterization have been developed. Most of 
them rely on direct imaging of particles onto a variety of 1D or 2D sensors, so their resolution is limited 
by the usual optical constraints. Consequently, large gaps in knowledge exist for smaller ice crystals, 
where the resolution of imaging probes is insufficient. Yet these particles are highly important, especially 
in the context of radiative properties of clouds and cloud feedbacks [1]. Moreover, many imaging probes 
do not reveal fine detail, such as the roughness of crystals or whether they are hollow or not – both highly 
significant properties [2,3]. The Small Ice Detector 2 (SID-2) probe was developed at University of 
Hertfordshire to provide information on the size and shape of single particles approximately 1 to 50 µm in 
size by measuring the spatial distribution of scattering. Discriminating between droplets and non-
spherical ice crystals is straightforward, since the former produce highly symmetric scattering patterns 
and the latter generally do not [4]. It is also possible to derive more detailed information about particle 
shape [5]. The present work attempts to extend the shape analysis to various classes of ice crystals, with 
special emphasis on solid and hollow hexagonal prisms of various aspect ratio. 

2 Small Ice Detector Mk. 2 
SID-2 collects scattering patterns from single particles passing through a 532 nm wavelength laser beam 
with elliptical cross-section. The detector is a hybrid photodiode (HPD) custom-manufactured by B.V. 
DEP, Netherlands. The HPD is a segmented silicon photodiode mounted in a vacuum tube with a 
photocathode, and has photoelectron gain of up to several thousands, depending on the acceleration 
voltage. It contains 27 independently sensed photodiode elements – Fig. 1. In the present study only the 
outer detector ring was used, comprising the elements 9 to 32 and subtending scattering angles 10 to 20°. 

 
Figure 1: SID-2 detector. The centre corresponds to forward scattering. The elements 3 to 8 are paired. 
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3  Theoretical scattering patterns 
Two dimensional (2D) scattering patterns have been computed using the Ray Tracing with Diffraction 

on Facets (RTDF) model [6,7]. The fundamental shape was a hexagonal prism with basal faces replaced 
by inverted (hollow) hexagonal pyramids of varying depth: 0, 10, 25 and 49% of the prism length. The 
aspect ratio (length to diameter) of the prisms was 3, 1 and 0.2, to represent columns, compact prisms and 
thin plates, respectively – giving 12 classes in total. For each shape, 2D scattering patterns for 40 different 
orientations were computed - Fig. 2. The central dark area in the 2D plot in Fig. 2 is due to the exclusion 
of the scattering on the projected outline of the particle, which in the current versions of the RTDF model 
is computed as Fraunhofer diffraction on a circular aperture, which would not represent 2D scattering 
correctly. However, this region is not seen by the outer ring of the SID-2 detector, so the present analysis 
is not affected. The 2D patterns were converted to the SID-2 detector outer-ring responses by integrating 
over corresponding angles, to give 24-element azimuthal scattering patterns. The patterns were then 
converted to angular frequency spectra using fast Fourier transform (FFT) and taking the magnitude of 
the Fourier coefficients of order 1 to 12 normalized to the coefficient of order 0 – Fig. 2. 

Figure 2: (left) Scattering computed for a prism with 25% basal indentations: 2D pattern extending up to 
45°.  (centre) Corresponding polar plot of square root of the outer ring response, and FFT coefficients 
(order 1-12) for the pattern. (right) FFT spectra for the 12 prism shapes averaged over 40 orientations - 

the aspect ratio decreases from left to right and the cavity depth from bottom to top. 

 

Figure 3: Fitted solution matrix for the 12 computed classes of hexagonal prisms, with 40 orientations in 
each class, and corrupted by random noise with signal to noise ratio of 2.4 (left) and 1.8 (right). 
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As a test, each shape class (40 orientations) of the theoretical FFT spectra was corrupted by adding 
varying amounts of random noise and fitted using a least squares method to uncorrupted spectra. This 
procedure produced 12x12 “solution matrices” giving proportions of spectra assigned to each class. It was 
found that the spectra were classified correctly even for large noise levels, but with increasing “leakage” 
into wrong classes for increasing noise – Fig. 3. The solution matrices were algebraically inverted to 
produce “deconvolution” matrices for each noise level, to allow the correction of solution sets. 

4 Measurements 

4.1 Ice analogue measurements 

SID-2 scattering patterns were recorded from ice analogue crystals [2,8] by ejecting single crystals from a 
needle electrode [9]. Examples are shown in Fig. 4, together with the corresponding FFT spectra. 

Figure 4: Azimuthal scattering patterns (left) and FFT spectra (right) from 5 ice analogue prisms and a 4-
arm rosette (lower right corner). 

4.2 AIDA cloud chamber measurements 

Ice crystal measurements were done at the AIDA cloud chamber of Forschungszentrum Karlsruhe during 
the HALO-01 ice nucleation campaign in March 2007. AIDA can be operated as an expansion cloud 
chamber to study the formation of ice clouds down to temperatures of about -90°C [10]. During 
experiment 17 hexagonal plates were grown at temperature of –28°C and low supersaturation by injecting 
seed ice crystals into the chamber. FFT spectra from SID-2 data at time=910s were fitted to theoretical 
spectra from the 12 shape classes  using a least squares method, and then deconvolved. The solutions 
were consistent with the presence of thick plates with 10% cavities – Fig. 5. 

Figure 5: Crystal shape classification for HALO-01 exp. 17 obtained by fitting FFT spectra. 
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4 Conclusion 
A theoretical database of 2D light scattering patterns for 12 classes of hexagonal prisms with different 
aspect ratios and cavity depth was computed using the RTDF method. The 2D patterns were converted 
into azimuthal ones and then into angular frequency spectra using FFT. The spectra were found to be 
characteristic of particle shape and they can be used as a basis for shape classification, even for data 
strongly contaminated by noise. Experimental spectra from ice crystals were obtained using the SID-2 
probe in the AIDA cloud chamber and fitted using a least squares method to the database to derive ice 
crystal shape. The shape classification can be improved by a deconvolution of solutions using inverted 
theoretical solution matrices obtained for levels of noise characteristic of the given experimental 
conditions. 
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Abstract

The light scattering methods expanding the fields in terms of wave functions are
widely applied due to their high efficiency. We compare some of these methods,
namely the extended boundary condition, separation of variables, and point match-
ing ones, considering their theoretical and practical applicability. Though the meth-
ods look alike because of their use of the same expansions of the fields, it is found
that these approaches differ in important aspects.

1 Introduction

The approaches using single expansions of the fields in terms of wave functions to solve the light
scattering problem are the extended boundary condition (EBCM), separation of variables (SVM),
and point matching (PMM) methods [1, 2]. They give solutions widely used because of their high
speed and accuracy.

These approaches seem to be very similar as they search for the problem solution in the form of
the same field expansions with the expansion coefficients being derived from solution of the systems
of linear algebraic equations. The main difference of the methods is their use of different problem
formulation which leads as a result to different systems. In the EBCM the fields and Green function
expansions are substituted into the boundary condition presented in the surface integral form; in
the SVM the field expansions are substituted into the boundary condition written in the usual
(differential) form; in the PMM any of the above forms can be used, but the system is derived from
minimization of a residual of the boundary condition considered in selected points at the scatterer
surface (see [2] for more details).

In this work we compare the methods using the spherical function basis by considering their
theoretical and practical applicability ranges. In the latter case the questions of accuracy and
computational time are concerned. Note that though the EBCM, SVM, and PMM represent the
fields in the same way, a different number of terms in the expansions may be required by the
methods to reach the same accuracy.

2 Theoretical aspects

From the theoretical point of view, applicability of the approaches is determined by convergence of
the field expansions and solvability of the systems used to derive the expansion coefficients.

The convergence of the expansions of the scattered and internal fields at a distance d from the
coordinate origin does not depend on the methods used and occurs if and only if

max {dsca
} < d and d < min{dint

}, (1)
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Figure 1: The dependence of the code accuracy measure δ on the number of terms kept in the
field expansions N for spheroids with the aspect ratio a/b = 2 (left panel) and Chebyshev particles
with n = 5 and ε = 0.14 (right panel). For both scatterer types, refractive index is m = 1.5, the
diffraction parameter xv = 1, and the radiation incidence angle α = 10◦.

where dsca and dint are the distances to singularities of analytic continuations of the fields (see [3]
for more details).

The solvability of the system arising in the EBCM takes place provided (see the discussion in
[2])

max {dsca
} < min{dint

}. (2)

For the SVM, a similar analysis has not yet been performed, though at least the EBCM system
can be obtained within the SVM [3]. The system arising in the PMM is always solvable, as it is
positively determined (see, e.g., [2]).

It should be added that the convergence is important for calculations of the fields in the near
field zone (note that the condition (2) is always weaker than the condition (1)). The solvability
plays the main role in the far field zone where the field expansions should converge. For instance,
any EBCM calculations of the field characteristics in this zone converge only if the condition (2) is
satisfied [2]. Note also that the conditions (1), (2) do not depend on such scatterer characteristics
as refractive index and diffraction parameter as only the geometrical parameters are involved.

3 Practical aspects

We have developed a homogeneous set of codes based on the methods under consideration. Their
accuracy in the far field zone was studied by using the relative difference of the extinction and
scattering cross sections δ = |Cext − Csca| /(Cext + Csca) calculated for nonabsorbing particles.

The typical behaviour of accuracy of the codes with a changing number of terms kept in the
expansions N is shown in Fig. 1. For spheroids, the EBCM solution well converges with growing N

and gives as high accuracy as ∼ 10−12 for N ≈ 16. For N >
∼

16, the system is ill-conditioned and the
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Figure 2: Dependence of δ on prolate spheroid parameters a/b and xv (α = 10◦, m = 1.5).

accuracy quickly drops with increasing N . The same behaviour is observed for the SVM solution,
though it reaches maximum accuracy when N ∼ 30. For the PMM solution, the convergence is
even slower and numerical problems appearing at N >

∼
40 limit its practical applicability.

Note that for any spheroids all 3 methods are mathematically correct [2]. The situation is a bit
different for axisymmetric Chebyshev particles having the surface equation r(θ) = r0(1 + ε cos nθ),
where θ is an angle of the spherical coordinates, r0 the radius of a unperturbed sphere, ε its
deformation amplitude, n the number of surface maxima.

The EBCM solvability condition (2) is satisfied in a certain region of the geometrical parameters
of the particles, and in particular for ε < 0.14, when n = 5 [2]. Our calculations well confirm this,
e.g. Fig. 1 shows that accuracy of the EBCM on average does not grow with increasing N < 40.
Meantime the SVM and PMM solutions converge for N < 35 and N < 65, respectively. Thus,
despite the large similarity of the EBCM and SVM (see the discussions in [2,3]), their theoretical
applicability conditions differ in principle as definitely the solvability of the SVM is not determined
by the EBCM condition (2).

A systematic numerical comparison of the methods is still absent in the literature. As a first
step of such comparison in Fig. 2 and 3 we consider the regions of the parameters of spheroids and
Chebyshev particles where the methods can provide a given accuracy. The figures allow one to see
the practical applicability of the methods. For spheroids, the EBCM is generally preferable to other
2 methods. In contrast, for Chebyshev particles, the SVM and PMM look better (the former needs
less terms and hence is faster, however the latter can give higher accuracy). Therefore, in a general
case it is worth to combine these 3 methods keeping in mind that their codes differ by a few dozen
operators.
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Figure 3: Dependence of δ on Chebyshev particle parameters ε and xv (n = 5, α = 10◦, m = 1.5).

4 Conclusions

We have compared 3 methods utilizing single field expansions in terms of spherical wave functions.
It is found that despite a very large similarity of the EBCM and SVM their theoretical applicability
ranges are different in principle.

Extensive calculations have shown that the methods well supplement each other, and as the
codes differ by a few operators it is worth to combine them.

Our preliminary results of similar comparison of the methods, when the spheroidal functions
were used for the field expansions, led to the same conclusions.
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Abstract

We consider the wavelength dependence of the ratio of the linear polarization degree to
extinction (polarizing efficiency) for aligned spheroidal particles. Size/shape/orientation
effects are analyzed. The comparison of the theory with the polarizing efficiency of the
interstellar medium observed in several directions permits to restrict the range of the model
parameters.

1 Interstellar extinction and polarization

The reddening and linear polarization of stellar radiation occurs when it passes through interstellar clouds.
Interstellar extinction grows with the radiation wavelength decrease while interstellar linear polarization
reaches a maximum in the visual part of spectrum and declines at shorter and longer wavelengths (see
[1], [2] and Fig. 1, left panel). Interstellar linear polarization indicate that non-spherical grains aligned in
large-scale magnetic fields are present in the Galaxy. These data contain information about the interstellar
magnetic fields and properties of dust grains. A correlation between observed interstellar extinction and
polarization shows that the same particles are responsible for both phenomena.

Figure 1: Interstellar extinction and polarization curves for star HD 24263 (left panel) and the polarizing
efficiency of the interstellar medium in the direction of this star (right panel; solid curve shows the power-
law approximation P/A ∝ λ1.47.). Observational data were taken from [3] (extinction) and [4] (polarization).

The modelling of these phenomena usually includes the consideration of normalized extinction E(λ −
V)/E(B − V) and normalized polarization given by Serkowski’s curve P(λ)/Pmax = exp[−K ln2(λmax/λ)]
(see, e.g., [5] and discussion in [1], [2]). In such case, it is difficult to apply the dust-phase abundances and
alignment theory for restriction of grain properties. It seems better to compare with observations the absolute
extinction and theoretical polarizing efficiencies.

The polarizing efficiency of the diffuse interstellar medium is defined as the ratio of the percentage
polarization (P) to the extinction (A) observed at the same wavelength P(λ)/A(λ). There exists an empirically
found upper limit on this ratio

Pmax/A(V) <∼ 3%/mag , (1)
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Figure 2: Polarizing efficiency of the interstellar
medium in the direction of five stars. Observa-
tional data were taken from [3] (extinction) and [4]
(polarization).

where Pmax is the maximum degree of linear polarization which is reached near the wavelength λmax ≈
0.55 µm (see [1], [2] for more discussion).

As a preliminary we chose five stars located not far than 500 pc1 with measured UV polarization [4],
then found the extinction (data published in [3] were mainly used) and calculated the ratio P(λ)/A(λ). The
obtained polarizing efficiencies are shown in Fig. 2. Note that, apparently, first presentation of the observa-
tional data in the similar form was made by Whittet [6, Fig. 9] who gave the average normalized dependence
P(λ)/A(λ) · AV/Pmax.

Here, we compare the observed polarizing efficiencies with the theoretical ones produced by rotating
spheroidal grains of different composition, size, shape and porosity for various degrees and directions of
grain alignment.

2 Modelling

Let us consider non-polarized light passing through a dusty cloud of rotating spheroidal grains. Rotating
interstellar grains are usually partially aligned (see, e.g., [7]). Imperfect alignment is also supported by the
fact that values of the polarizing efficiencies calculated for non-rotating or perfectly aligned particles are
generally higher than the empirically estimated upper limit given by Eq. (1) [2, 8].

The extinction in stellar magnitudes and polarization in percentage can be found as [2]

A(λ) = 1.086Nd〈Cext〉λ , P(λ) = Nd〈Cpol〉λ100% , (2)

where Nd is the dust grain column density and 〈Cext〉λ and 〈Cpol〉λ are the extinction and linear polarization
cross sections, respectively, averaged over the grain orientations

〈Cext〉λ =

(
2
π

)2∫ π/2

0

∫ π/2

0

∫ π/2

0
πr2

V Qext f (ξ, β) dϕdωdβ , (3)

〈Cpol〉λ =
2
π2

∫ π/2

0

∫ π

0

∫ π/2

0
πr2

V Qpol f (ξ, β) cos 2ψ dϕdωdβ . (4)

Here, rV is the radius of a sphere with the same volume as spheroidal grain, β is the precession-cone angle
for the angular momentum J which spins around the magnetic field direction B, ϕ the spin angle, ω the
precession angle (see Fig. 1 in [8]). Quantities Qext = (QTM

ext + QTE
ext)/2 and Qpol = (QTM

pol − QTE
ext)/2 are the

efficiency factors for the non-polarized incident radiation, f (β, rV ) is the cone-angle distribution.
We consider so-called imperfect Davies–Greenstein (IDG) orientation described by the function f (ξ, β)

which depends on the alignment parameter ξ and the angle β

f (ξ, β) =
ξ sin β

(ξ2 cos2 β + sin2 β)3/2
. (5)

1We suggest that these stars are seen through one interstellar cloud.
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The parameter ξ is a function of the particle size rV , the imaginary part of the grain magnetic susceptibility
χ′′ (= κωd/Td, where ωd is the angular velocity of grain), gas density ng, the strength of magnetic field B
and dust (Td) and gas (Tg) temperatures

ξ2 =
rV + δ0(Td/Tg)

rV + δ0
, where δIDG

0 = 8.23 1023 κB2

ngT 1/2
g Td

µm. (6)

The angle ψ in Eq. (4) is expressed via the angles ϕ, ω, β and Ω (angle between the line of sight and the
magnetic field, 0◦ ≤ Ω ≤ 90◦). Note that for the case of the perfect DG orientation (PDG, perfect rota-
tional or 2D orientation) the major axis of a non-spherical particle always lies in the same plane. For PDG,
integration in Eqs. (3), (4) is performed over the spin angle ϕ only.

3 Results and discussion

The calculations have been made for prolate and oblate rotating spheroids of several sizes and aspect ratios
consisting of astronomical silicate (astrosil) and amorphous carbon (AC1). Some results for prolate particles
are plotted in Figs. 3 and 4. They show the polarizing efficiency in the wavelength range from the infrared to
far ultraviolet. The observational dependence P(λ)/A(λ) for two stars is given for comparison. The value of
δ0 for IDG orientation is typical of diffuse interstellar medium [8]. Calculations for porous grains are made
using the Bruggeman mixing rule for refractive index and particles of same mass as compact ones. Note
that calculated efficiencies can be considered as upper limits because some populations of grains (spherical,
non-oriented) may give the contribution into extinction but not to polarization.

Figure 3: Wavelength dependence of polarizing efficiency for homogeneous rotating spheroidal particles of
astronomical silicate and amorphous carbon. The effect of variations of particle composition and direction
of alignment is illustrated. The open circles and squares show the observational data for stars HD 24263 and
HD 99264, respectively.

From Figs. 3, 4 one can conclude that the wavelength dependence of polarizing efficiency is mainly
determined by the particle composition and size. Variations of other parameters influence on the value of
efficiency (the dependence of P/A is scaled). The growth of the efficiencies P(λ)/A(λ) takes the place if we
increase angle Ω (direction of alignment), parameter δ0 (degree of alignment) or aspect ratio a/b (consider
more elongated or flattened particles) and decrease particle porosity P or particle size rV .

The resulting relationships will be applied for detailed comparison of the theory with observations.
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Figure 4: Wavelength dependence of polarizing efficiency for homogeneous rotating spheroidal particles of
astronomical silicate. The effect of variations of particle size, shape, porosity and degree of alignment is
illustrated. The open circles and squares show the observational data for stars HD 24263 and HD 99264,
respectively.
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Abstract 

We present a brief overview of the current state of the remote sensing of Martian 
aerosols, including an even briefer historical context as provided by the pre-1990 
missions (i.e., Mariner 9, Viking, Phobos).  We also outline the new directions that 
aerosol studies can (and should) take as a result of data sets now being acquired.   

1 Introduction 
The recent (and continuing) confluence of data from Mars-based spacecraft offers significant 
opportunities to improve our understanding of Martian aerosols.  Such advancements are (and will 
continue to be) motivated by more than the simple acquisition of additional data.  More specifically, the 
flotilla of Mars-based spacecraft provide the powerful combination of multi-wavelength coverage 
(ultraviolet through the thermal infrared) and systematic spatial/temporal sampling (e.g., seasonal 
coverage including nadir, “emission phase function”, limb views).  When such data are combined with 
robust, sophisticated radiative transfer and electromagnetic scattering algorithms, one is able to 
explore/constrain aspects of Martian aerosols that would not have been possible even only a few years 
ago.  Given the list of current (and recently) operating platforms -- Mars Global Surveyor (MGS, 
deceased Nov. 2006), Mars Odyssey, Mars Express (MEx), Mars Exploration Rovers (MER, Spirit and 
Opportunity), and the recently arrived Mars Reconnaissance Orbiter (MRO) -- and the availability of 
computing resources, the primary inhibitor in Martian aerosol studies is the small number of people 
engaged in it.  It is the beginning of a very exciting time and we hope that this presentation will stimulate 
you to consider working on the many aspects of Martian aerosols.  We encourage everyone to contact us 
(wolff@spacescience.org) with any questions that you might have regarding the Mars data available for 
the synthesis of state-of-the-art electromagnetic scattering and radiative transfer analyses. 

 

2 What We Will Say  
In order to properly frame the current epoch of remote sensing within previous efforts, we begin with a 
review of aerosol remote sensing from Mariner 9,  Viking 1 and 2 (both landers and orbiters), Phobos 
missions.  To some degree, this represents a “classic” phase of Martian aerosol work. We follow up with 
the “neoclassical” period, which we define as ending before the arrival of Mars Express and the landing 
of the Mars Exploration Rovers.  For these two distinct epochs remote sensing, we highlight both the 
results and the limitations of the datasets, including the algorithms previously employed.  Finally, for the 
remainder of the time (hopefully, at least 50% of the total allocation),  we concentrate on the current 
period of observations. In keeping with the silliness of our nomenclature, we refer to it as the “modern” 
era.   One defines this period by both the capabilities of the spacecraft as well as the focus/capability of 
the algorithms available for remote sensing studies.  As a result, we group the individual components of 
the remaining presentation in the following manner. 
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2.1 “Ground-Truth,” Simultaneous, and Novel Observations 

Remote sensing observations of the Martian atmosphere do not easily lend themselves to the notion of 
ground truth.  While one might consider a high fidelity measurement from a surface platform (such as 
optical depth from direct solar imaging) to represent some degree of ground truth, connecting a series of 
orbital spacecraft observations to those of a surface station requires a temporal, as well as a 
spatial, overlap to account for the dynamical nature of the atmosphere.  While concept of an ``overflight'' 
was first exploited during the Viking era, these observations were fundamentally limited by two aspects: 
the absence of multi-instrument coordinated (i.e., simultaneous, or nearly so) observations, and the lack of 
similar instrument capabilities on both the surface and the orbital platforms (See [1] for a brief historical 
review).   Fortunately, one is able to remedy such issues in the current epoch through the use of MEx or 
MGS (in orbit) in conjunction with MER (on the surface). In addition to “ground-truth,” the combination 
of MGS-MEX and MER instruments provides for leveraged atmospheric studies.  That is to say, by 
combining the data from both platforms, one obtains a more complete picture than would be possible 
from analysis of each dataset independently.  As an example, Figure 1 shows the differing sensitivity of 
an orbital thermal IR spectrometer (Thermal Emission Spectrometer – TES – onboard MGS) versus an 
upward viewing surface instrument (Minature TES  -- Mini-TES – onboard MER).  It is only with the 
Mini-TES that one becomes sensitive to the “scattering” aspect of the aerosols (ignoring limb geometry 
for now).  We will present additional detail of how this can be exploited, with one set of results being an 
improved set of effective indices of refraction for Martian dust aerosols (shown in Figure 2).  A final 
aspect of these type of observations is the physical scales captured by the solid angles of each orbital 
geometry, e.g., the view of ice clouds.  Athough the “cirrus-like” aspect of Martian ice clouds, as seen in 
Figure 3,  has been inferred from microphysical retrievals and orbital imaging, it is only with high 
resolution surface observations that the morphological similarity is seen. 

2.2 Multi-spectra, “high” spectral resolution Emission Phase function 

The emission phase function (EPF) observation sequence traces its origin to the Viking era, with 
significant application found during the neoclassical MGS operations.  However, both of these datasets 
suffer from spatial registration and spectral issues that prevent the full exploitation of their capability for 
aerosol studies.  Fortunately, with the advent of MRO and its Compact Reconnaissance Imaging 
Spectrometer for Mars, both of these two problems can be overcome.  We outline the available datasets 
and the progress-to-date with respect to both dust and water ice aerosols. 

2.3 Limb Observations (including Occultations) 

From an electromagnetic scattering point of view, limb observations hold extreme promise in that this 
geometry accentuates both the important of particle size and shape.  From a remote sensing retrieval point 
of view, one’s enthusiasm may be damped by the same factors as combined with the spectre of vertically 
variation in such particle properties as well as the aerosol number density.  As such, this type of 
observation was taken extensively by MGS, limb observations represent one of the “untapped” reservoirs 
of Martian aerosol work.   Thus, these data represent one of the exciting “new” areas for Martian aerosols.  
We again outline the available datsets and provide the progress-to-date review.  We also include a 
synopsis of the stellar occultation observations that  are part of the MEx dataset. 
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Figure 1 – The effect of scattering: MGS/TES versus MER/Mini-TES observing geometries. Synthetic 
spectra are calculated using the temperature profile from the Sol 46 of the Spirit mission (late southern 
summer), but using a 9.3 micron dust optical depth 0.3 (See [1] for more details).   For convenience, we 
give only the emergence angles as defined for TES viewing geometry; for Mini-TES atmospheric 
viewing, the emergence angles are the supplement to those of TES (i.e., eMini-TES = 180-eTES).  The ratio 
plotted is that of the ``absorbing atmosphere'' radiance relative to the full multiple scattering radiance.  
The solid lines represent the Mini-TES view (downwelling) while the dashed lines show the TES view 
(upwelling).  The relative importance of scattering between the two view points is quite distinctive. 
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Figure 2  Complex indices of refraction from the combined TES-Mini-TES overflight analyses.  Left 
Panel: Imaginary indices of refraction (dashed line, k = Im(m))  compared with the starting values (solid 
line) from Wolff and Clancy (2003). The filled circles indicate the position of each Mini-TES channel, 
with the error bars representing the averaged formal retrieval precision and the standard deviation among 
the $k$ values from all seven datasets, added in quadrature assuming no correlation.  Right Panel:  As for 
Left Panel, but for the real indices of refraction. 

 

 
 

Figure 3 – Opportunity Navcam images of clouds obtained on sols 290 (Top) and 291 (Bottom).  
Although the cirrus-like nature of the clouds was expected from previous observational and modeling 
efforts, the morphological similarities to terrestrial cirrus remains striking (well, at least to me). 
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Abstract 

Current international research needs efficient exchange of information. To constantly 
keep information for the light scattering community up to date, to start a project for a new 
Scattering Information Network has been proposed. The history and the concept of the 
project will be reported. 

1 Introduction 
With current international research efficient and fast exchange of information is needed.  The internet can 
help in many respects but Google and other search engines only may not provide all the information that 
is needed. Therefore information web sites have been set up by members of the community over the 
years.  
All this web sites provide relevant information to the community, but relevant information is quite 
disperse, quite diverse, and it is difficult to keep all information up to date. 
One reason for this is of cause that most of these enthusiasts can care for these web sites only in their 
spare time. Because of this we felt that we should care for a new Scattering Information Network web site 
full time.  We applied for funding of this new web site by the German Research Foundation (DFG).  In 
the next section we will give a short overview of existing web information, following that we will report 
on the history of the project and we shortly outline the concept of the new web site we currently have in 
mind.  
 

2 Existing information web sites  
In this section we give a short overview over existing information web sites which are intended for the 
light scattering community or which may of interest for all researchers working in this field. For the light 
scattering community there is the Directory of Members of the Electromagnetic Scattering Community by 
M. Mishchenko [1] listing members of the community with their addresses and email data. The 
Electromagnetic and Light Scattering by Particles Newsletter is published regularly by L. Kolokolova. 
Both the list of Electromagnetic Scattering Programs by T. Wriedt [3] and SCATTERLIB Light Scattering 
Codes Library by P. Flatau [4] have been founded at about the same time and mainly focus on providing 
information on computer programs. But additional information such as information on new book and 
conferences is also included.  
Additionally there is the Minsk bibliography on light scattering V. Babenko [5], the Database of Optical 
Constants [6] and the Amsterdam Light Scattering Database H. Volten [7]. B. Gustafson provides a 
Database of microwave-analog-to-light-scattering data [8].  
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3 History of Electromagnetic scattering programs 
The new project dates back to the internet side Electromagnetic Scattering Programs [3] which exists 
nearly for 14 years. It was started following the first „seminar Mie theory“, which was organized in 
Clausthal-Zellerfeld, Germany in 1993. This seminar was intended to clarify some problems, which at 
that time seemed to exist with some computer programs based on Mie theory. The seminar was arranged 
to compare results from different programs. It soon became clear that problems could easily be solved be 
using the latest program published by Wiscombe on an ftp server [9]. A first overview of available 
scattering programs was presented at the seminar and published later [10]. Following the seminar a first 
List of available electromagnetic scattering programs [11] was published on the web server of the 
Faculty of Production Engineering of the University of Bremen. At that time this web page had the 
highest number of hits on all web pages of this web server. With the help of the Internet archive 
www.archive.org the development of this web page can be traced back to 03.12.1998 [12].  

4 Concept of new Information Network  
In this section we like to shortly explain the concept of the new Scattering Information Network web site 
we plan to erect within the next year. The basic features of the information network will include the 
following topics, which we think are of utmost importance for the community.  
 

• Up to date information related to the subject of light scattering e.g. conference announcements, 
free jobs.  

• General information, answers to frequently asked questions. 
• List of scientists and research groups working in the field of light scattering including subjects of 

research. 
• Database of available computer programs.  
• A user forum for researchers and students in the field.  
• Database of computed T-matrices. 
• Database of validated computational results.  

 
One of our favorite topics is the list of available computer programs. We will start with this by updating 
information from our previous web site Electromagnetic Scattering Programs [3]. We will try to retrieve 
dead or broken links. Another way to recover lost programs is to look at our stored local information or to 
ask other researchers whether they have a local copy of a web site no longer available. Some older 
programs are only available in printed form. We will scan and may be “ocr” this printed reports or PhD 
theses such that we can include these programs in electronic form in the data base.  
 
Another of our favorite topics the data base of computed T-matrices. As a T-matrix includes all 
information on the scattering process we assume that a data base of T-matrices may be of interest to the 
light scattering community. Especially with inversion problems to retrieve the shape of a scattering 
particle where many scattering problems need to be solved a database of T-matrices may help to reduce 
total computer time. We intend to implement an interface to this database in our T-matrix programs such 
that a user is asked whether he likes to provide his computed T-matrix to this database.  We will also get 
in touch to other scientists working on the T-matrix method also to include such an interface into their 
programs. This would of cause need conversion between different types of nomenclature.  
 
This is only a rough outline of the project. We hope that erection of the information network will lead to 
discussion with interested scientists which will help to improve on the concept.  
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5 How to contribute 
Such a Scattering Information Network web site can not be erected without assistance from the scientific 
community.  We therefore would like to invite all scientists working in the field and interested in the 
project to contribute to the concept first of all. Please send your suggestions and ideas to the authors of 
this abstract. We welcome any comments on the first draft of the concept we are presenting.  

In the later stage of the project we would need editors who like to care for a special topic included in the 
Scattering Information Network e.g. new programs or new books published. We would also be glad if you 
could send any information which you think is relevant for inclusion in the Information Network.  

 

6 Conclusion 
During the conference we like to discus how this project can help to cope with the increasing importance 
of information exchange of a growing community and how the information network should be designed 
to help international collaboration within the light scattering community working in different scientific 
disciplines.  
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Abstract 

The null-field method with discrete sources (NFM-DS) is used for the simulation of 
the light scattering by elongated particles. These particles can be decomposed into 
several identical parts with a small aspect ratio. The T-matrix computed for a single 
part is used to compose the T-matrix for the whole particle. For verification purposes 
the light scattering distributions computed with NFM-DS are compared with results 
from DDA (discrete dipole approximation). 

1 Introduction 
Computations of light scattering by elongated particles are needed in various scientific 
branches such as astrophysics, atmospheric science and especially in optical particle 
characterization. In optical particle characterization there is interest to detect airborne fibrous 
particles like mineral, glass or asbestos fibres, which are considered to be serious health 
hazards. Here high aspect ratios are of special interest and so it is required that a light 
scattering simulation algorithm can handle them. 
The null-field method with discrete sources (NFM-DS) is suitable for the simulation of light 
scattering by particles with high aspect ratios, like finite fibres or flat discs. The method also 
can be used for computation of the T-matrix of composite objects [1]. Therefore, it is possible 
to compose complex particles from basic parts for which the T-matrix is already known. 
In this work we examine a new approach to compute scattering by fibres and we will present 
computational results. The method is described briefly in the next chapter. 

2 Null-Field Method with Discrete Sources for Composite Objects 
Using discrete sources we can compute scattering by a single fibre having a high aspect ratio. 
But to compute scattering by two long fibres which stick together in some way would be a 
multiple scattering problem and to solve this problem using a standard multiple scattering 
concept combining the T-matrices of both fibres would not be possible because the 
circumscribed spheres of both fibres would intersect. Also other computational approaches 
such as DDA, FDTD and related methods might be problematic because if the fibres are not 
aligned parallel to each other this would blow up the computational domain and increase 
computer time tremendously. 
To overcome this problem we developed a multiple scattering method based on 
decomposition into basic parts [2]. Each fibre is decomposed into basic parts having a small 
size parameter and the full scattering problem is solved by combining the T-matrices of all 
those parts. 
In this work we would like to show the feasibility of this new method. It is important to make 
a computational analysis, because the circumscribing spheres of the basic parts show 
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intersecting volumes, even if comparatively low. The NFM-DS simulations are verified with 
DDA simulations (DDSCAT) [3].     

3 Simulations results 
In the following two examples are presented fibres of circular section composed of four 
identical basic parts. Each section is a short cylinder of circular cross section. 
In Figure 1 the differential scattering cross section (DSCS) of a fibre with the size parameter 
kh = 8 is shown, where k is the wave number 2π/λ and h is the length of the fibre. The 
diameter of the fibre corresponds to kd = 2. The index of refraction values m = 1.5. The fibre 
is composed of four equal sized cylinders with kh = 2 and kd = 2. The rotational axis of the 
fibre is aligned on the z-axis. The plane wave is incident along the z-axis and the scattering 
diagram is plotted on the x-y plane both for incident p- and s-polarization. 
The comparison with a corresponding DDA simulation shows good agreement in the DSCS. 
Small deviations for the p-polarization indicate that the influence of the intersecting 
circumscribing spheres can not be neglected. 
Further simulations with smaller objects but similar configurations show even better or almost 
perfect agreement between NFM-DS and DDA. It seems obvious that there is an upper limit 
in size of the composed objects for which the effect of the intersecting circumscribing spheres 
must not be neglected. 
 

 
Figure 1: DSCS of a cylindrical particle (length kh = 8; diameter kd = 2; m = 1.5). Comparison of T-matrix and 
DDA simulations. The T-matrix is composed of 4 identical T-matrices of smaller cylinders with kh = 2. 

 
In Figure 2 the differential scattering cross section (DSCS) of a fibre with the size parameter 
kh = 16 is shown. The diameter of the fibre corresponds to kd = 4. The index of refraction 
values m = 1.5. The fibre is composed of four equal sized cylinders with kh = 4 and kd = 4. 
The rotational axis of the fibre is aligned on the z-axis. The plane wave is incident along the z-
axis and the scattering diagram is plotted on the x-y plane both for incident p- and s-
polarization. 
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The comparison with a corresponding DDA simulation shows only good agreement in the 
forward scattering angle range from 0° to 80°. Strong deviations for both the p-polarization 
and the s-polarization show the limits of the method of composing the T-matrix from basic 
parts if the circumscribing spheres of the basic parts intersect. 
 

 
Figure 2: DSCS of a cylindrical particle (length kh = 16; diameter kd = 4; m = 1.5). Comparison of T-matrix and 
DDA simulations. The T-matrix is composed of 4 identical T-matrices of smaller cylinders with kh = 4. 

4 Conclusion 
It has been shown that the NFM-DS can be used to compute light scattering by composite objects. This 
makes possible the computation of the light scattering for even more complex objects like torus- or 
helix-shaped particles. The first computations for simple fibres show the need for further 
investigations to verify the range of validity of the method. 
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Abstract 

We compare the discrete dipole approximation (DDA) and the finite difference time 
domain (FDTD) method for simulating light scattering of spheres in a range of size 
parameters x up to 80 and refractive indices m up to 2. Using parallel implementations of 
both methods, we require them to reach a certain accuracy of scattering quantities. We 
show that relative performance sharply depends on m with boundary value of 1.4. DDA is 
faster for smaller m, while FDTD – for larger. 

1 Introduction 
DDA [1] and FDTD [2] are two of the most popular methods to simulate light scattering of arbitrarily 
shaped inhomogeneous particles. These methods have a very similar region of applicability; however, 
they are rarely used together. In a few papers either one method is used to validate the other or they are 
compared for a few scatterers [3]. We perform a new comparison, which in two respects is more extended 
than the previous studies. First, we cover a large range of x and m, which includes, e.g., almost the whole 
range of biological cells (x up to 80). Second, we pre-set the accuracy to be reached by both methods, 
which makes the performance results more informative. 

2 Methods 
As a numerical implementation of DDA we have used the ADDA computer code [4] v.0.76, which is 
capable of running on a cluster of computers (parallelizing a single DDA computation), allowing 
simulating light scattering by scatterers much larger than a wavelength. In this paper we use the default 
ADDA settings for dipole polarizability and iterative method (lattice dispersion relation and quasi 
minimal residual method respectively). The convergence criterion of the iterative solver (required relative 
residual norm) was set to 10–3, which is larger than the default value but is enough for the accuracy 
required in this study (as shown by results). 

The implementation used for FDTD was developed in the Biomedical Laser Laboratory at East 
Carolina University [5], based on the methods described by Yang and Liou [2] with numerical dispersion 
correction [6]. The implementation is written in standard Fortran90 and uses the MPI standard for 
communications, allowing it to run on a variety of platforms. The incident field used was an approximate 
Gaussian pulse with an average wavelength equal to the wavelength of interest. Berringer’s perfectly 
matching layer (PML) boundary condition was used to terminate the lattice. To determine the 
convergence, multiple simulations are carried out, each simulating a time period longer than the previous. 
The time periods are in increments of the time it takes the incident pulse to travel once across the 
scattering particle. When the difference in results for two simulations is negligible, or when the 
differences start to oscillate, the result is said to have converged. 

We simulate scattering by spheres with different x and m = m′ + im″, m″ is fixed at 1.5×10–5. For each 
sphere we calculated the extinction cross section Qext, asymmetry parameter g, and Mueller matrix in one 
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scattering plane (polar angle θ changes from 0° to 180° in steps of 0.25°). From the whole Mueller matrix 
we analyze only the S11 element and the linear polarization 2112 SSP −= . The spherical symmetry of the 
problem is used to calculate the Mueller matrix using the result for only one incident polarization [4]. 
This accelerates the simulation almost twice compared to the general shapes, both for DDA and FDTD. In 
this study we fix the accuracy required by both methods. We take the crudest discretization that satisfies 
both of the following: the relative error (RE) of Qext less than 1%, and the root mean square (RMS) RE of 
S11 less than 25%. All simulations were performed on the Lemieux cluster using 16 nodes (each has 4 
Alpha EV6.8 1 GHz processors and 4 GB RAM, http://www.psc.edu/machines/tcs/). 

3 Results and discussion 
Results of the performance comparison of DDA and FDTD are shown in Table 1. The total computational 
time describes overall performance. It is determined by two factors: the number of cells in the 
computational grid and the number of iterations or time steps. The former depends on x and dpl (number 
of grid cells per wavelength) and determines the memory consumption. Values of dpl can not be directly 
compared between both methods because the typical values for DDA [1] are twice as small as for FDTD 
[2]. The same applies to the iteration count in an even greater extent. For some problems one of the 
methods failed to reach the prescribed accuracy for the given hardware. Results of these simulations are 
shown in parenthesis. 

Table 1. Performance results of DDA vs. FDTD for spheres with different x and m′.a 
Time, s dplb Used RAM, GB Iterationsc 

m′ 
x 

DDA FDTD DDA FDTD DDA FDTD DDA FDTD 
10 1.1 0.6 15 12 0.15 0.02 2 275 
20 11 4.1 20 14 1.4 0.13 4 509 
30 24 17 17 13 2.9 0.28 4 651 
40 78 384 18 22 7.1 2.3 5 1398 
60 453 7026 20 32 30 20 7 4004 

1.02 

80 691 (40580) 16 (32) 40 (47) 9 (5239) 
10 0.7 2.1 10 18 0.07 0.06 6 453 
20 1.9 25 10 19 0.22 0.30 12 1005 
30 8.7 207 10 19 0.79 0.84 18 2531 
40 19 388 10 20 1.4 2.1 25 1928 
60 31 1196 6.7 18 1.4 4.7 49 2509 

1.08 

80 129 12215 6.3 22 2.9 18.7 84 4009 
10 0.9 3.2 10 18 0.07 0.07 20 671 
20 3.2 58 7.5 20 0.15 0.44 57 1589 
30 8.7 645 6.7 24 0.22 2.09 146 3321 
40 106 740 7.5 18 0.79 2.09 384 3837 

1.2 

60 1832 35998 8.4 25 2.9 15.9 1404 13762 
10 4 2.5 15 10 0.15 0.03 78 1047 
20 896 3203 25 37 2.9 3.4 687 10333 
30 7256 3791 17 23 2.9 2.8 5671 11013 

1.4 

40 10517 (47410) 18 (32) 7.1 (15.7) 2752 (21580) 
10 185 5.5 25 8 0.61 0.03 900 2323 
20 22030 998 35 18 7.1 0.82 5814 13101 

1.7 

30 (185170) 47293 (37) 30 (25) 10 (12005) 39751 
10 1261 32 40 11 1.4 0.07 2468 7481 2 
20 (252370) 6416 (60) 20 (30) 1.7 (14067) 30693 

a Parentheses indicate that computational method failed to achieve required accuracy for this x and m′. 
b Number of dipoles or grid cells per incident wavelength. 
c Number of the iterations and time steps during time marching for DDA and FDTD respectively.
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Naturally, both methods require larger computational time for larger x just because the number of grid 
cells scale cubically with x, if dpl is kept constant. Apart from that, the behavior of the methods is quite 
different. Dpl required by DDA to reach the prescribed accuracy do not systematically depend on x, 
except for m′ = 1.7 and 2. However, dpl does depend on m′ – it increases both when m′ increases over 1.4 
and approaches the unity. The latter is partly artificial because S11(θ) for soft spheres has very sharp 
maxima, the position of which depends on the exact shape of the particle. Using the methodology 
described elsewhere [7] we determined that shape errors constitute 90% of RMSRE of S11 for m′ = 1.02, 
x = 20, and dpl = 10 (data not shown). The number of iterations for DDA is relatively small and only 
moderately increases with x for m′ = 1.02 and 1.08. However, for larger m′ it rapidly increases both with 
m′ and x. For m′ = 1.7 and 2 this combines with increasing dpl leading to the sharp increase in 
computational time.  

The behavior of dpl for FDTD is oscillating on the whole range of x and m′ studied. On the contrary, 
the number of time steps increase systematically with both x and m′, which is expected. The dependences 
of the FDTD performance on x and m′ are less interdependent than that of DDA. Comparing the overall 
performance of two methods, one can see that for small m′ and large x DDA is an order of magnitude 
faster than FDTD, and for large m′ vice versa. The boundary value of m′ is about 1.4, for which both 
methods are comparable. They are also comparable for small values of both m′ and x. Memory 
requirements of the two methods are generally similar. However, they naturally correlate with 
computational time – in most cases the faster method is also less memory consuming. 

Table 2. Same as Table 1 but for accuracy results. 
RE(Qext) RMSRE(S11) RE(g) RMSE(P) 

m′ 
x 

DDA FDTD DDA FDTD DDA FDTD DDA FDTD 
10 2.5×10-3 4.3×10-3 0.20 0.17 1.6×10-4 3.6×10-4 0.039 0.043 
20 1.4×10-4 9.3×10-4 0.17 0.22 1.6×10-5 6.9×10-5 0.088 0.095 
30 5.2×10-5 7.9×10-3 0.13 0.22 1.5×10-5 5.3×10-5 0.037 0.10 
40 8×10-6 3.3×10-3 0.19 0.21 4×10-6 1.6×10-5 0.064 0.074 
60 1.6×10-4 5.9×10-3 0.25 0.20 1×10-6 4×10-6 0.071 0.048 

1.02 

80 1.2×10-4 (4.3×10-3) 0.25 (0.33) 3×10-6 (2×10-6) 0.074 (0.12) 
10 2.5×10-4 5.5×10-3 0.15 0.064 6.4×10-5 1.2×10-4 0.074 0.024 
20 5.8×10-5 1.0×10-2 0.17 0.063 3.6×10-4 5.2×10-5 0.097 0.061 
30 3.8×10-4 9.3×10-3 0.10 0.054 1.3×10-4 6×10-6 0.062 0.033 
40 2.8×10-4 9.5×10-3 0.083 0.053 5.1×10-5 8.2×10-5 0.11 0.045 
60 2.2×10-3 8.3×10-3 0.16 0.072 2.7×10-4 4.7×10-4 0.14 0.062 

1.08 

80 3.8×10-3 8.7×10-3 0.13 0.071 9.6×10-5 1.1×10-3 0.13 0.054 
10 7.1×10-4 7.6×10-3 0.073 0.024 6.2×10-4 3.6×10-4 0.059 0.022 
20 5.4×10-3 9.3×10-3 0.13 0.037 3.3×10-4 3.4×10-3 0.11 0.029 
30 2.5×10-3 7.8×10-3 0.16 0.075 3.4×10-4 1.4×10-3 0.14 0.069 
40 3.9×10-3 9.1×10-3 0.19 0.25 1.2×10-3 1.0×10-2 0.15 0.23 

1.2 

60 2.3×10-3 6.0×10-3 0.13 0.25 1.2×10-3 1.3×10-3 0.14 0.23 
10 7.0×10-3 8.9×10-3 0.13 0.14 8.2×10-3 4.6×10-2 0.059 0.093 
20 9.7×10-3 9.8×10-3 0.23 0.17 1.3×10-2 2.7×10-2 0.095 0.15 
30 7.4×10-3 8.2×10-3 0.24 0.19 5.6×10-3 4.6×10-3 0.24 0.19 

1.4 

40 7.1×10-3 (1.5×10-2) 0.15 (0.24) 7.3×10-5 (2.7×10-3) 0.13 (0.097) 
10 5.2×10-4 8.0×10-3 0.12 0.22 3.4×10-2 9.6×10-2 0.097 0.13 
20 1.0×10-2 8.0×10-3 0.12 0.24 1.2×10-2 1.8×10-2 0.086 0.21 

1.7 

30 (2.0×10-2) 1.1×10-2 (0.14) 0.12 (1.5×10-2) 1.0×10-2 (0.12) 0.095 
10 4.7×10-3 8.3×10-3 0.16 0.16 5.1×10-3 2.3×10-2 0.11 0.17 2 
20 (2.6×10-2) 8.3×10-3 (0.086) 0.14 (5.0×10-3) 3.1×10-2 (0.098) 0.11 
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Accuracy results for several scattering quantities are shown in Table 2. For 4.1≥′m  errors of both Qext 
and S11 are close to the required values (0.01 and 0.25 respectively) for both DDA and FDTD. However, 
for smaller m′ DDA has relatively small errors of Qext while FDTD has smaller errors of S11. In other 
words, performance of DDA is limited by S11 (because of the shape errors as discussed above), while 
performance of FDTD is limited by Qext. DDA results in several times smaller errors of g, which is 
correlated with smaller errors of Qext, and FDTD – in smaller errors of P. We can, therefore, conclude that 
DDA is generally more accurate for integral scattering quantities while FDTD – for angle-resolved ones. 
However, that only means that general interrelation between DDA and FDTD as a function of m′ may 
slightly change depending on the certain scattering quantities that are calculated. 

4 Conclusion 
A systematic comparison of DDA and FDTD for a range of x up to 80 and m′ up to 2, using state-of-the-
art parallel implementations of both methods, was performed requiring a certain accuracy of the simulated 
scattering quantities. DDA is an order of magnitude faster for 2.1≤′m  and 30>x , while for 7.1≥′m  
FDTD is faster by the same extent. m′ = 1.4 is a boundary value, for which both methods perform 
comparably. Although these conclusions depend slightly on particular scattering quantity and on the 
implementations of both methods, they will not change principally unless a major improvement of one of 
the method is made. For instance, improving iterative solver and/or preconditioning of the DDA would 
improve the DDA performance for larger m. For the FDTD, a “safe” set of PML parameters were chosen; 
fine tuning these parameters could lead to a thinner PML and increase performance especially for the 
larger problem sizes. Also the FDTD code is designed to use memory conservatively; relaxing the 
memory restrictions would allow faster simulation times at the expense of additional memory use. 

The current study is far from being complete, since we do not vary the imaginary part of the refractive 
index, which is known to significantly influence the performance of the methods. This should be a topic 
of a future work. 
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Abstract

We show how “white” light resonance spectroscopy can be used to measure the evaporation
rate of a solid, non-spherical aerosol particle levitated in an electrodynamic balance. The va-
por pressure of solid ammonium nitrate (AN), an inorganic salt of relevance for atmospheric
science, is calculated and compared with the literature.

1 Introduction

In the field of atmospheric and climate science there is considerable interest in understanding the
partitioning between gas and particle phase of chemical species. In particular for semi-volatile
substances like ammonium nitrate or certain organic species, the partitioning will strongly in-
fluence particulate matter burden in the troposphere. In addition, it will influence the radiative
properties of the aerosol and the way it participates to cloud formation and heterogeneous
chemistry. In order to predict this partitioning, it is crucial to know the vapor pressure of the
compounds under ambient conditions, whereas most established methods rely on high temper-
atures to achieve a sufficiently high vapor pressure. One possible method to assess very low
vapor pressures is to measure evaporation rates of particles, by precisely sizing the particles
while evaporating. Recently, we used white light Mie resonance spectroscopy [1] for sizing and
measuring the evaporation rates of aqueous solution (hence spherical) aerosol particles. In the
present work we extend that method to the case of a solid, non-spherical particle.

2 Experimental setup

The experimental setup used in this study has been described previously in detail [1]. A
micrometer-sized aqueous solution particle is levitated in an electrodynamic balance under
sufficiently dry conditions until it effloresces whereupon its evaporation under controlled am-
bient conditions is monitored. The 2-dimensional angular scattering pattern is recorded with a
CCD camera to distinguish liquid (spherical) particles from solid (non-spherical) particles. A
ball lens type point source LED is used as a “white light” source with high spatial coherence
(50 µm source diameter, peak wavelength ≃ 589 nm, spectral bandwidth at 50% ≃ 16 nm,
radiant power ≃ 150 µW) using a bestform lens (f = 32 mm, f# = 2.0) to focus the light on
the levitated particle and a pierced mirror to collect the resonance spectra in a backscattering
geometry (collection angle 180◦±4◦). An optical fiber is employed to deliver the backscattered
light from the particle to a spectrograph with an array detector as an optical multichannel
analyzer.

3 Results and discussion

Figure 1 shows three spectra of a solid, non-spherical AN particle levitated at T=293 K taken
at the different times during an evaporation experiment. The spectra show a complex struc-
ture of weak optical resonances, but a time series of spectra does not allow easily to discern
a shift in the resonance position as it is the case with a spherical particle evaporating. The
most pronounced difference between spectra is the different mean backscattered intensity. The
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Figure 1: Spectra of a solid AN particle taken at T=293 K, exposure time was 30s. These spectra are
taken at the beginning of the experiment (t=2 minutes, black curve), at t=172 minutes (gray curve),
and at t=174 minutes (light gray curve).

2-dimensional angular scattering pattern show the same basic features, namely a complex pat-
tern, similar to what has been observed with natural aerosol particles [2], and a significant
change in intensity over time periods of seconds. To make a size change of the evaporating non-
spherical particle visible in its resonance spectra, we proceed as shown in Fig. 2. Here, panel
(a) shows a times series of raw spectra (gray scale intensity coded), with a 120 seconds time lag
between consecutive spectra. Clearly, what is most apparent is the change in total intensity from
spectrum to spectrum. Most likely, rotational Brownian motion does not lead to a complete
orientational averaging within the exposure time of 30 s, and hence the irregular morphology
causes the integrated intensity to fluctuate. To eliminate this intensity fluctuations, each single
spectrum is separately normalized to its own maximum and minimum of intensity and the re-
sult is plotted in panel (b). The most prominent features here are intensity extrema at certain
wavelength (roughly regularly spaced) which are not time dependent. Further normalization is
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Figure 2: Panel (a) shows the raw spectra of an AN solid particle versus time (wavelength on vertical
axis, b/w coded intensity). The intensity of each spectrum are normalized to the same maxima and
minima in panel (b). In panel (c) the data of panel (b) are normalized with the mean spectrum of the
complete time series.
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3

performed in panel (c) by dividing each spectrum by the mean spectrum of the complete times
series. Thus, the non time dependent features are suppressed and intensity bands shifting with
time become visible, although not nearly as distinct as in the case of an evaporating liquid, i.e.
spherical, particle [1]. Now we assign to such a band a specific size parameter x0. If we assume
the spacing of the bands in wavelength to correspond to that of a Mie-sphere of the same size,
we can estimate the initial radius, and follow the temporal evolution of the radius by measuring
the wavelength, λ(t), of the chosen band at each time which yields then r(t) = x0/2πλ(t) [1].

It is difficult to assess the validity of these assumptions from light scattering theory, because
we do not know the exact morphology of our effloresced non-spherical particles and an exact
treatment would be computationally expensive for a very complex morphology. However, there is
indication that effloresced particles are best described as perturbed spheres [2]. To test whether
the basic features of Fig. 2 can be reproduced by a simple model of a perturbed sphere, we
used the T matrix code of Mackowski and Mishchenko [3] to calculate the random-orientation
backscattering intensity of a cluster of spheres shown in Fig. 3, panel (a). Here, we assume that
a large sphere at the core does not change its size during evaporation but just a “layer” of small
spheres covering the surface of the large sphere. The total radius of the cluster is 2.14 µm for the
first simulation decreasing to 1.32 µm with a step size of 0.02 µm. The result of the simulation
is very encouraging by showing the same kind of pattern in panel (c) as was observed in the
experiments. If we apply the same analysis as for the experimental data to deduce the temporal
evolution of the radius, we obtain a radius rate of 0.0274 µm/step, which is 37% higher than
the input step size, but still very close. Also, we note that it would be computationally very
expensive to perform simulations for the size parameter range of our experimental particles
with a more realistic morphology, i.e. more smaller spheres attached to the surface of the inner
core sphere. But despite these limitations, we feel that the simulations are reproducing the
observations remarkably well, justifying our procedure to evaluate the radius rate.

In order to determine the vapor pressure from the radius change, the following considerations
must be taken into account. A solid (or aqueous) evaporating AN particle dissociates in ammonia
and nitric acid in the gas phase through the reaction: NH4NO3(s) ⇋ NH3(g) + HNO3(g),
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Figure 3: Panel (a) shows the geometry of our simplified model for a perturbed sphere. It consists of
a sphere of 1.2 µm radius in the center with 6 attached spheres of smaller radius, decreasing from 0.47
µm to 0.06 µm in radius during the simulation. Panel (b) shows a series of the corresponding simulated
spectra with the backscatter intensity gray scale coded. Panel (c) shows the spectra normalized with the
mean spectrum of all the simulations, comparable to panel (c) of Fig. 2.
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which yields the total pressure in the gas phase as:

ptot = pNH3
+ pHNO3

= −

1

2

dr2

dt
RT

ρAN

MAN

(

1

DNH3

+
1

DHNO3

)

, (1)

where R is the ideal gas constant, T the ambient temperature, ρAN and MAN the density and
molar mass of AN, and D the diffusivities of the two species in the ambient air [1]. We repeated
the same experiment as shown in Fig. 2 for different temperatures and a clear temperature
dependence of the rate of shift of the intensity bands was evident. The resulting vapor pressures
are shown in Fig. 4 together with data from literature. The literature data are extrapolated
to lower temperatures in order to compare to our data; the agreement is excellent, but shows
also that the enthalpy of evaporation is slightly temperature dependent. Acknowledgments:
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Figure 4: Vapor pressure of a solid AN particle versus inverse temperature. Solid circles: this study;
open circles: Brandner et al.[4]; dotted line: extrapolation of the Brandner data to low temperatures;
solid line: polynomial 2 nd order fit to all data points.
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Abstract 

Polarimetry of comets reveals significantly higher polarization in jets than in 
circumnucleus halos. We hypothesize that this difference arises from distinction in the 
velocity of dust: particles in jets move out of a nucleus much faster than those in a halo 
and thus we may observe jet particles in the early stage of their evolution when they are 
large agglomerates of small grains fastened by a certain amount of ice; velocity of 
particles in a circumnucleus halo is low enough to be observed in the latter stage of 
evolution when ice already sublimated totally and agglomerates have been disrupted into 
constituent grains. Using the discrete dipole approximation we study the influence of 
disruption of agglomerated dust particles due to ice sublimation on their angular 
dependence of degree of linear polarization. We found that in a wide range of phase 
angles the linear polarization of agglomerates of three grains comparable to wavelength 
covered by ice is visibly higher than polarization of independently scattering constituent 
grains. This supports our interpretation of the polarimetric observations of comets.  

1 Introduction 
An approach of a comet to the Sun initiates its coma (a gas-dust atmosphere) whose structure is always 
inhomogeneous and changes with time. Frequently observed features of the coma are jets, which are high-
speed fluxes of gas and dust particles ejected from the surface of the cometary nucleus. The projected 
velocity of jet particles on an image plane derived from observations of comets is as high as 300–500 m/s 
[1]. The relatively high speed of jet particles is a result of acceleration of those particles by gas drag. 
Polarimetry of comets shows that jets are more positively polarized compared with the circumnucleus 
halo – a bright cloud around a nucleus with a lower polarization [2, 3]. In the range of small phase angles 
(α≤20°) in particular, the degree of linear polarization of jets remains substantially positive (i.e., higher), 
while the circumnucleus halo reveals significant negative polarization i.e., lower, up to –6% near 
opposition [2, 3]. The authors of [2, 3] associate the higher degree of linear polarization in jets with 
presence of small grains and/or fluffy aggregates; the lower linear polarization of the circumnucleus 
region is attributed to more compact dust particles. This seems to be a reasonable explanation because 
small particles as well as porous aggregates consisting of them reveal essentially higher polarization than 
compact micron particles which reveal prominent negative polarization branches (NPB) near 
backscattering [see, e.g., 4].  

In this paper, we propose an alternative explanation for the difference in polarimetry of jets and a 
circumnucleus halo. As it was previously shown with Geometrical Optics Approximation [5, 6], high-
absorbing compact irregular particles of size larger than wavelength produce only positive polarization in 
the entire range of phase angles. Irregular particles comparable to wavelength, however, produce a few 
stable areas of negative polarization [4, 8]; one of them is in the range of small phase angles. Thus, the 
polarimetrical difference between a halo and jets may be attributed to a change in size and composition 
under dust evolution. We investigate the plausibility of this explanation using the discrete dipole 
approximation (DDA).  
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2 Model of cometary dust particles  
Due to high velocities in jets, we expect to observe fresh large particles preserving ice. On the contrary, 
particles in the rest of circumnucleus region move significantly slower than those in jets because they are 
not accelerated by flux of gas. Thus, we observe them in the later stage of evolution when initial large 
particles are already disrupted into small grains due to total losing of ice. Our interpretation is consistent 
with polarimetry of comet C/1995 O1 (Hale-Bopp) at a heliocentric distance of 2.9 AU and a phase angle 
of α=19.6°. Namely, the lengths of four bright jets ranging from 2700 to 5400 km correspond to the 
distances that dust particles at an average velocity of 400 m/s could cover within 2–4 hours, equivalent to 
the evaporation timescale for homogenous icy spheres with radius 1 µm.  

In the present paper, we study the applicability of dust disruption 
due to ice sublimation to interpretation of the difference in polarimetry 
between cometary jets and a circumnucleus halo. We assume that 
particles freshly ejected from a cometary surface are agglomerates of a 
number of irregular micron grains, filled with ice. Due to this infill the 
freshly ejected particles could be considered as compact particles 
significantly larger than visible wavelengths with optically soft 
inclusions. For instance, refractive indices of an ice infill m=1.313+0i 
and silicate grains m=1.66+0.0028i at visible wavelength give us the 
relative refractive index of silicate inclusions in large icy particle as 
m=1.264+0.0021i. We guess that the features found for compact 
irregular particles significantly larger than wavelength are also valid, 
at least in some part, for large particles with optically soft inclusions. 
We examine here the case when initial particles consist of three 
irregularly shaped grains. These agglomerated particles are covered 
with a certain amount of ice. Note that the model fresh particles are 
only a few times bigger than the constituent grains and, thus, they are 
still comparable to wavelength.  

We compute the scattering of light by particles comparable to 
wavelength with the DDA method [4, 7, 8]. This is a numerical 

approach intended for simulation of light scattering by particles comparable to wavelength. The DDA has 
no restrictions on the shape and internal structure of a particle and thus it is well suitable for the current 
purpose.  

The constituent grains have been generated with help of one of the algorithms described in [4]. For a 
fixed set of three constituent grains, we build 24 various sample agglomerates. We study separately two 
kinds of constituent grains: grains of pure silicate (refractive index m=1.66+0.0028i) and grains of a 
silicate core and an organic mantle (m=1.5+0.1i) with the volume ratio of silicate to organic material 
being unity. Images of pure silicate grains and one example of the constructed agglomerate are shown in 
Figure 1. The bottom row shows initial grains separately, whereas the agglomerate constructed from these 
initial grains is shown in the middle of the figure. Images of core-mantle grains and agglomerates 
constructed from them are not much different from those shown on Figure 1; the agglomerates are only a 
little bit bigger and grains have more smoothed shape. Finally, we cover sample agglomerates by icy shell 
(m=1.313+0i) like it is shown in the top of Figure 1. In the case of pure silicate agglomerates the volume 
ratio of grains to icy shell is set 1:2 and in the case of agglomerates of core-mantle grains – 1:1. Thus both 
kinds of particles are covered with equal amount of ice.  

3 Results of calculations  
We first compute light scattering by agglomerates covered with ice shell and then we consider 

independent scattering by constituent grains. Comparison of two these cases allows us to estimate clearly 

Figure 1: Example image of 
model particles. 
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the influence of disruption of sample particles due to ice sublimation on their scattering of light. We have 
examined different sizes of grains but here we present only results for 1.9 µm grains (this is the size of 
circumscribing sphere of the largest of three grains at a wavelength of λ=0.5 µm). All cases have been 
averaged over orientations so that the standard deviation of degree of linear polarization does not exceed 
1.5%.  

Figure 2 presents the phase dependences of the degree of linear polarization P for agglomerates of 
pure silicate grains (left panel) and for agglomerates of silicate-core organic-mantle grains (right panel). 
As we expected, all considered cases reveal prominent negative polarization at small phase angles. 
Qualitatively the same result has been previously received for other kinds of compact particles 
comparable to wavelength [4, 8]. At the same time, we can see that in comparison with single grains, 

NPB of agglomerates covered by ice shell is shrunk to zero phase angle. The NPB of agglomerates of 
pure silicate grains is almost two times shallower than NPB of independently scattering grains. Thus, in a 
wide range of phase angles agglomerates covered by ice shell produce visibly a higher degree of linear 
polarization than single grains. For pure silicate grains this is the case at phase angles α=15–60° (except 
for a narrow region near α=45°) and for core-mantle grains α=18–60°.  

4 Discussion  
At phase angles α≥15°, our simulation qualitatively reproduces the observed difference in polarimetry 

of jets and a circumnucleus halo. In the range of smaller phase angles α<15°, our simulation does not 
agree with observations, but we have two reasons to suppose that a larger number of constituent grains 
will make the NPB of agglomerates shallower. First, as it was shown in experimental measurements of 
light scattering by single irregular particles and media composed of these particles, the multiple scattering 
between the particles strongly decreases the NPB [9]. The same dependence has been also found with a 
DDA simulation of light scattering by agglomerated particles [10]. Another factor is the filling of porous 
agglomerate by ice, which decreases single scattering by constituent grains and thus their NPB. In future 
we plan to involve a larger number of constituent grains in order to check our guess.  

Figure 2: Phase curves of degree of linear polarization of agglomerates covered by ice and single 
constituent grains. Left panel: pure silicate grains. Right panel: grains with a silicate-core plus 
organic-mantle structure.  
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