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The scattering and absorption of light and other electromagnetic radiation by  
particles and particle groups are central to many science and engineering fields. 
Unfortunately, the discipline of studying these phenomena has gained the reputa-
tion of being very technically complex and incomprehensible. Now, this self-
contained and accessible book provides a thorough introduction to the basic 
physical and mathematical principles of the subject. 

For the first time the theories of electromagnetic scattering, radiative transfer, 
and weak localization are combined into a unified, consistent branch of physical 
optics based directly on the Maxwell equations. A particular focus is given to key 
aspects such as time and ensemble averaging at different scales, ergodicity, and 
the physical nature of measurements afforded by actual photopolarimeters.  

Featuring over 120 end-of-chapter exercises, with hints and solutions pro-
vided, this clear, one-stop resource is ideal for self-study or classroom use, and 
will be invaluable to both graduate students and researchers in remote sensing, 
physical and biomedical optics, optical communications, optical particle charact-
erization, atmospheric physics, and astrophysics.      
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Preface 

The phenomena of scattering and absorption of light and other electromagnetic 
radiation by small particles and particle groups are central to a great variety of 
science and engineering fields. Owing to a large body of research, the discipline 
of studying these phenomena has recently undergone profound and paradigm-
shifting developments. Among the most important advances are the following: 

● Dramatic improvements in numerical solvers of the Maxwell equations cou-
pled with the ever-growing computer capability have enabled direct, numer-
ically exact modeling of electromagnetic scattering by particles and particle 
groups of unprecedented morphological complexity. 

● The rigorous physical basis of monochromatic and polychromatic scattering 
by random particles and random particle groups has been established. 

● Owing to the development of a rigorous microphysical approach, the centu-
ries-old disciplines of directional photometry and radiative transfer have be-
come legitimate branches of physical optics. 

● Direct computer solutions of the Maxwell equations have confirmed the 
mesoscopic origin of radiative transfer and weak localization of electromag-
netic waves (also known as coherent backscattering) in sparse particulate 
media. 

The main purpose of this textbook is to provide a self-contained and access- 
ible summary of these developments in the framework of a thorough introduction 
to the fundamental physical and mathematical principles of the subject. Particular 
attention is paid to key (and often overlooked) aspects, such as time and ensemble 
averaging at different scales, ergodicity of stochastic scattering objects, and the 
physical nature of measurements afforded by actual directional photometers and 
photopolarimeters. Given its subject matter and specific content, it is hoped that 
this textbook will be useful to graduate students and researchers in terrestrial and 
planetary remote sensing, physical and biomedical optics, optical communica-
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tions, optical particle characterization, atmospheric physics, oceanography, and 
astrophysics.   

Consistent with its overall objective, this textbook features more than 120 
end-of-chapter exercises of varying complexity. The simplest ones require the 
student to complete derivations that are sketched but not detailed in the main text 
or serve to illustrate certain key concepts and results. Most of these exercises are 
relatively straightforward, but can sometimes be tedious. Some exercises invite 
the student to think on issues not specifically covered by the textbook, but none-
theless useful for understanding the main text. A few exercises border on re-
search projects and may have been the subject of recent publications. The more 
challenging exercises are supplemented by hints or full solutions collected in 
Appendix H.  

Several appendices provide the requisite mathematical background beyond 
the standard calculus and vector calculus material and help make this textbook a 
one-stop resource suitable for self-study or classroom use. The reference list is 
intended to be representative, but not necessarily comprehensive. Preference is 
given to classical papers, monographs, and state-of-the-art reviews. Most chap-
ters are concluded by notes briefly outlining the history of the subject and help-
ing the reader navigate through more advanced literature.  

In many respects this textbook is an outgrowth of the previous monographs 
by Mishchenko et al. (2002, 2006) in which the reader can find further technical 
details, as well as a plethora of specific examples and applications. Both mono-
graphs are available on-line and will hereinafter be referred to as MTL1 and 
MTL2, respectively.  

For consistency, I closely follow the notation adopted in MTL1 and MTL2 
and denote vectors using the Times bold font and matrices using the Arial bold 
font. Unit vectors are denoted by a caret, whereas dyads and dyadics are denoted 
by the symbol ↔. The Times italic font is reserved for scalar quantities, import-
ant exceptions being the square root of negative one, the differential sign, and the 
base of natural logarithms, which are denoted by upright Times characters i, d, 
and e, respectively. Another exception is the relative refractive index, which is 
denoted by a sloping sans serif m. Simple angular brackets 〉〈  are used to de-
note an average over a time interval much longer than the period of time-
harmonic oscillations of a monochromatic electromagnetic field. Double brackets 

〉〉〈〈  denote an average over a “sufficiently long” time interval T, the actual 
value of T being defined by the specific context. Averaging over a parameter X 
other than time is denoted by .X〉〈  All color plates are grouped together into 
the “Color plates” section and are numbered decimally per chapter as Plate M.N, 
where N is the plate number in Chapter M. 
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11  
Introduction 

Electromagnetic scattering by an isolated particle or a multi-particle group is a 
ubiquitous phenomenon central to a wide variety of science and engineering dis-
ciplines. Field−matter interactions described by macroscopic electromagnetics 
typically occur in a natural way. They can affect accompanying physical and 
chemical processes as well as the very state of the scattering object and often 
yield an electromagnetic signal that can be measured and analyzed with the pur-
pose of retrieving useful information about the object. Electromagnetic scattering 
can also be induced artificially and used as an active means of in situ or remote 
diagnostics of certain physical properties of the particle(s). In order to interpret 
laboratory, field, and remote-sensing measurements of electromagnetic scattering 
by various single- and multi-particle objects, one needs a deep understanding of 
this phenomenon, as well as the ability to predict quantitatively its various man-
ifestations as functions of the physical parameters of the objects.  
 The diversity of sizes, morphologies, and refractive indices of particles en-
countered in natural and artificial environments is virtually limitless, as illus-
trated by Fig. 1.1. This factor complicates accurate quantitative modeling of  
electromagnetic scattering and absorption, even by solitary particles such as 
those suspended individually in the trap volume of an electrostatic (as shown in 
Plate 1.1a) or optical levitator. The task of optical modeling of a large group of 
sparsely distributed particles such as a cloud (see, e.g., Plates 1.1b and 1.1c) is 
significantly more involved. However, the problem of utmost complexity is to 
model the scattering and absorption properties of densely packed disperse media 
such as various biological and technical suspensions (e.g., Plate 1.1d), as well as 
natural and artificial particulate surfaces (e.g., Plates 1.1e and 1.1f ).  
 The main purpose of this textbook is to coherently present the theory of  
electromagnetic scattering by solitary particles and particle groups as a self-
consistent and self-contained branch of Maxwell’s electromagnetics. We will 
accept the macroscopic Maxwell equations (MMEs) as axioms valid in a well-
defined range of applications and will not use any ad hoc phenomenological con-
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cepts and principles not following directly from these equations. This approach is 
inherently limited in that it ignores specific physical effects described by quan-
tum mechanics and quantum electrodynamics (QED). However, even the inten-

(a) (b)

(d) (f)

m 0.5

mm1

50 nm

(g)

10 mm

(h) (i)

10 μm

(c)

2.7 μm

(e)

1 μm

500 nm

100 μm

100 nm

 
Fig. 1.1. Examples of manmade and natural small particles.  (a) 40-nm-diameter 
gold particles (after Khlebtsov et al. 1996).  (b) Sahara-desert soil particles (af-
ter Weinzierl et al. 2009).  (c) Dry sea-salt particles (after Chamaillard et al. 
2003).  (d) Interplanetary dust particle U2012C11 collected by a NASA U2 
aircraft.  (e) A soot aggregate (after Burr et al. 2012).  (f ) A 6-mm-diameter fal-
ling raindrop. (g) Cirrus cloud crystals (after Arnott et al. 1994).  (h) Sub-
micrometer-sized quasi-spherical ammonium sulphate and dust aerosols (after 
Weinzierl et al. 2009).  (i) Red blood cells. 



 Introduction 3 

tionally restricted scope of this book will serve to provide accurate quantitative 
description of many natural and artificially induced electromagnetic scattering 
effects caused by individual particles and particle groups. Our approach can be 
called microphysical in that it starts with the MMEs as basic physical laws gov-
erning the interaction of electromagnetic radiation with matter and ensures direct 
traceability of all derivative results from fundamental physics not afforded by 
phenomenological approaches.1  
 There is no doubt that if a specific scattering problem can be addressed by 
obtaining a direct analytical or numerically exact computer solution2 of the 
MMEs, then this would be the preferred course of action. Unfortunately, the 
range of problems that can be handled analytically is limited. There are several 
numerically exact techniques for the computer calculation of the electromagnetic 
field elastically scattered by a finite fixed object composed of one or several part-
icles. These techniques will be reviewed in Chapter 16. However, all of these 
methodologies have certain practical limitations in terms of the object’s mor-
phology and size relative to the wavelength of radiation and cannot be used yet to 
describe electromagnetic scattering by large multi-particle objects such as atmos-
pheric clouds, particulate surfaces, and particle suspensions. This makes impera-
tive the use of well-characterized approximate solutions that do not require un-
realistic computer resources, while being sufficiently accurate for specific applica-
tions. One of the objectives of this textbook is to demonstrate that the widely 
used radiative transfer theory (RTT) as well as the theory of weak localization 
(WL) of electromagnetic waves in discrete random media are direct asymptotic 
solutions of the MMEs. Both correspond to the limiting case of a very large 
number of randomly positioned particles and a very low particle packing density. 

1.1  General framework 

In contrast to various phenomenological approaches discussed briefly in the fol-
lowing chapters, the microphysical theory of electromagnetic scattering by part- 
icles and particle groups pursued in this textbook rests on well-defined assump-

–––––––––– 
1 A theory is called phenomenological if it expresses mathematically the results of 

observed phenomena without paying detailed attention to their fundamental origin and 
significance. The development of a phenomenological theory is usually based on 
experience-based heuristic shortcuts lacking rigorous justification. Phenomenological 
theories are often short-lived and are replaced by fundamental first-principle theories, 
but some can survive for centuries despite their inherently limited scientific value. 

2  By definition, a numerically exact solution is the outcome of running a direct computer 
solver of the MMEs that generates numerical results with a guaranteed number of cor-
rect decimals. The number of correct decimals may vary depending on the available 
computer resources and practical accuracy requirements. However, all reported dec-
imals can, in principle, be validated by modifying computer program settings in order 
to accommodate a more stringent accuracy requirement.  
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tions intended to formulate the overall problem in strict physical terms. These as-
sumptions are as follows:  
 1. At each moment in time, the entire scattering object (e.g., a cloud of water 
droplets or a powder surface) can be represented by a specific spatial configur-   
ation of a number 1≥N  of discrete finite particles, as illustrated in Fig. 1.2. The 
unbounded host medium surrounding the scattering object is homogeneous, iso-
tropic, and nonabsorbing (the general case of an absorbing host medium is dis-
cussed by Mishchenko (2007)). Each particle is sufficiently large so that its 
atomic structure can be ignored and the particle can be characterized by optical 
constants appropriate to bulk matter. In electromagnetic terms, the presence of a 
particle means that the optical constants inside the particle volume are different 
from those of the surrounding host medium. The particles consist of isotropic 
materials, while their shape and morphology can be arbitrary.  
 2. Only linear interactions of the electromagnetic field and matter are ac-
counted for. In other words, we will consider only elastic electromagnetic scat-
tering. This implies that nonlinear optics effects are excluded by assuming that 
the optical constants of both the scattering object and the surrounding medium 
are independent of the electric and magnetic fields. Also excluded are inelastic 
scattering phenomena, such as Raman and Brillouin scattering and fluorescence, 
as well as the specific consideration of the small Doppler shift of frequency of the 
scattered light relative to that of the incident light due to the movement of the 
particles with respect to the source of illumination. Furthermore, we exclude the 
phenomenon of thermal emission caused by electron transitions from one energy 
level to a lower level in macroscopic bodies with absolute temperature different 
from zero. From the quantum-mechanical standpoint, a macroscopic object is a 
complex system of molecules with a large number of degrees of freedom. Many 
different electron transitions produce spectral emission lines so closely spaced 
that the resulting radiation spectrum becomes effectively continuous and includes 

O
y

z

x

1

2

3
4

5

N – 1
N

r

Observation point

6

 
Fig. 1.2.  Scattering object in the form of a group of N discrete particles. 
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emitted energy at all wavelengths. By ignoring thermal emission, we will assume 
implicitly that the electromagnetic energy at the wavelength in question is much 
greater than that predicted by the Planck blackbody radiation law. For example, 
this assumption is usually valid for a short-wave infrared or shorter wavelength 
in the case of a scattering object at room or lower temperature.  
 3. Consistent with the restriction of elastic scattering, we will assume that 
over time intervals much longer than ,2o ωπ=T  the time dependence of the 
electric and magnetic fields everywhere in space is harmonic and described, in 
the complex-field representation, by the simple complex exponential ),i(exp tω−  
where ω  is the angular frequency, t is time, and .)1(i 21−=  In other words, we 
will assume that the complex electric and magnetic fields can be factorized as 

)()i(exp) ,(~ rEr tt ω−=E  and ),()i(exp) ,(~ rHr tt ω−=H  respectively, where r is 
the position (radius) vector, while the actual real-valued fields are obtained by 
taking the real part of the respective complex fields: ) ,(~Re) ,( tt rr EE =  and 
H(r, t) ). ,(~Re trH=  The amplitudes E(r) and H(r) may vary with time implic-
itly by fluctuating around their respective mean values, but do so much more 
slowly than the factor ).i(exp tω−  Time-independent amplitudes E(r) and H(r) 
correspond to perfectly monochromatic radiation (e.g., a continuous laser beam), 
whereas the more general case of slowly varying E(r) and H(r) represents so-
called quasi-monochromatic radiation.  
 4.  In addition, we will assume that if the scattering object varies with time 
then any significant (i.e., modifying the solution of the MMEs) changes in parti-
cle positions, morphologies, and/or orientations with respect to the laboratory 
reference frame occur over time intervals Tv much longer than the period of time-
harmonic oscillations of the electromagnetic field To.  
 These assumptions imply that over time intervals long compared to To, but 
short compared to Tv and/or to typical periods Tf of fluctuations of the amplitudes 
E(r) and H(r), all fields can be considered to be perfectly time-harmonic and the 
object can be considered to be fixed. As a consequence, the instantaneous elec-
tromagnetic field everywhere in space can be found by solving the so-called fre-
quency-domain differential MMEs (Stratton 1941; Van Bladel 2007; Rothwell 
and Cloud 2009) subject to certain boundary conditions. The specific dependence 
of the optical constants on spatial coordinates and the corresponding boundary 
conditions at any moment are fully defined by the instantaneous geometrical 
configuration of the N particles (Fig. 1.2).  

Specifically, we will show in Section 4.1 that the frequency-domain mono-
chromatic Maxwell curl equations describing the scattering problem in terms of 
the time-independent electric and magnetic field amplitudes E(r) and H(r) can be 
written as follows: 

                                ,    
)(i  )(

)(i  )(
EXT

1

0 V∈
⎭
⎬
⎫

−=×∇
=×∇

r
rErH

rHrE
,ω

ωμ
 (1.1) 
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   .    
)() ,(εi  )(

)(i  )(
INT

2

0 V∈
⎭
⎬
⎫

−=×∇
=×∇

r
rErrH

rHrE
ωω

ωμ
 (1.2) 

In these equations, INTV  is the cumulative “interior” volume occupied by the 
scattering object; EXTV  is the infinite exterior region such that EXTINT VV ∪ ,3ℜ=  
where 3ℜ  denotes the entire three-dimensional space; the host medium and the 
scattering object are assumed to be nonmagnetic; 0μ  is the permeability of a 
vacuum; 1,  is the real-valued electric permittivity of the host medium; and 

) ,(ε2 ωr  is the (potentially coordinate-dependent) complex permittivity of the 
scattering object.   
 Equations (1.1) and (1.2) supplemented by the so-called radiation condition 
at infinity, as well as by the standard boundary conditions for the electric and 
magnetic fields defined by the specific spatial distribution of the refractive index 
have a solution, this solution being unique (Müller 1969). This fundamental fact 
makes the MMEs a self-sufficient basis of the electromagnetic scattering theory. 
In other words, the rest of this book will be an outline of analytical and numerical 
solutions of Eqs. (1.1) and (1.2) (or their integral-equation counterparts) as ap-
plied to scattering objects of varying complexity. 

1.2  Electromagnetic scattering 

In the absence of the scattering object, .) ,(ε 12 ,≡ωr  This means that instead of 
Eqs. (1.1) and (1.2), we have: 

   .    
)(i  )(

)(i  )( 3

1

0 ℜ∈
⎭
⎬
⎫

−=×∇
=×∇

r
rErH

rHrE
,ω

ωμ
 (1.3) 

Obviously, the solution of Eq. (1.3) must differ from that of the system of equa-
tions (1.1) and (1.2). It is this modification of the electromagnetic field resulting 
from the presence of the object that is called electromagnetic scattering. 
 We thus see that the specific way to define electromagnetic scattering is to 
solve the MMEs twice. The first solution, in terms of the respective pair of the 
electric and magnetic fields )},(),({ 11 rHrE  corresponds to the situation with no 
scattering object (Eq. (1.3)), whereas the second solution, )},(),({ 22 rHrE  corre-
sponds to the situation with a scattering object present (Eqs. (1.1) and (1.2)).  
 The second solution is usually sought in the form 

                                             ),()()( 312 rErErE +=  (1.4)  
  ),()()( 312 rHrHrH +=  (1.5) 

where the vector fields )(3 rE  and )(3 rΗ  are required to satisfy the radiation 
condition at infinity by decaying as the inverse distance from the object. The 
electromagnetic field in the absence of the object is traditionally called the “inci-
dent field” (superscript “inc”), whereas the difference between the electromag-
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netic field in the presence of the object and the field that would exist in the ab-
sence of the object is traditionally called the “scattered field” (superscript “sca”): 

                     ),()()()()()( inc
2123

sca rErErErErErE −=−=≡  (1.6)  
  ).()()()()()( inc

2123
sca rHrHrHrHrHrH −=−=≡   (1.7) 

 The above discussion makes it clear that although electromagnetic scattering 
can be said to be a physical phenomenon (amounting to the fact that the electro-
magnetic fields computed in the presence and in the absence of an object are dif-
ferent), it is not a solitary physical process. Importantly, Eqs. (1.6) and (1.7) 
demonstrate again that the electromagnetic field in the presence of the object is 
intentionally expressed as the sum of the incident and scattered fields: 

                                    ),(  )( )( )( scainc
2 rErErErE +=≡  (1.8) 

  ),(  )( )( )( scainc
2 rHrHrHrH +=≡  (1.9) 

where )(inc rE  and )(inc rH  are obtained by solving the MMEs in the absence of 
the object. This makes both the incident and the scattered field, as they appear in 
the solution of Eqs. (1.1) and (1.2) in the form of Eqs. (1.8) and (1.9), purely 
mathematical entities rather than actual physical fields. The only actual field is 
the total electromagnetic field, either in the presence or in the absence of the ob-
ject. 
 This basic point is illustrated in Fig. 1.3. Indeed, a fundamental solution of 
the MMEs in an infinite nonabsorbing homogeneous space is a time-harmonic 
plane electromagnetic wave given, in the complex-field representation, by 

   3
incinc

0
inc

incinc
0

inc

    
)ii(exp  ),(~

)ii(exp  ),(~
ℜ∈

⎭
⎬
⎫

−=
−=

r
rkHr

rkEr
tt

tt
ω

ω

⋅
⋅

H

E
 (1.10) 

with constant complex amplitudes inc
0E  and ,inc

0H  where inck  is a real-valued so-
called wave vector. In fact, this solution embodies the concept of a perfectly 
monochromatic parallel beam of light of infinite lateral extent propagating in the 
direction of the wave vector. The time-independent part of this solution is visual-
ized in Fig. 1.3a. Placing a spherical particle at the origin of the coordinate sys-
tem, as shown in Fig. 1.3c, yields a new time-harmonic solution of the MMEs. 
The time-independent part of this second solution, both inside and outside the 
particle volume, is visualized in Fig. 1.3b. Subtracting the field visualized in Fig. 
1.3a from that depicted in Fig. 1.3b yields the scattered field shown in Fig. 1.3c. 
It is clear that the fields in Figs. 1.3a and 1.3b are actual physical fields found by 
solving the MMEs, whereas the field in Fig. 1.3c is a purely mathematical con-
struction.   
 A fundamental corollary of the above discussion is that, irrespective of the 
morphological complexity of the scattering object, the latter always remains a 
single, unified scatterer. Although the human eye may classify a scattering object 
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(a)

(c)

(b)

k
inc

 
Fig. 1.3.  (a) The real part of the vertical (i.e., perpendicular to the paper) com-
ponent of the electric field vector of a plane electromagnetic wave propagating 
in the direction of the wave vector kinc. The infinite host medium is homogen-
eous, isotropic, and nonabsorbing. The wave is fully polarized in the vertical 
direction so that the horizontal component of the electric field vector is equal 
to zero.  (b) The real part of the vertical component of the total electric field in 
the presence of a small homogeneous spherical particle located in the center of 
the diagram as to be shown in panel (c). The relative refractive index of the 
particle is m = (ε2/,1)1/2 = 2.8, while its radius a is such that the dimensionless 
size parameter k1a = ω(,1μ0)1/2a is equal to 2π.  (c) The real part of the vertical 
component of the difference between the fields visualized in panels (b) and (a), 
respectively. The gray scale is individually adjusted to maximally reveal the 
specific details in each diagram. (After Mishchenko and Travis (2008); images 
courtesy of J.-C. Auger.) 
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(e.g., a cloud of water droplets or ice crystals) as a “collection of discrete part-
icles,” the incident field perceives the entire object at any moment in time as one 
scatterer in the form of a specific instantaneous spatial distribution of the com-
plex permittivity ). ,(ε2 ωr  This means that any of the “multi-particle groups” 
shown in Plates 1.1b–1.1f is as much a single-scattering object as the solitary 
particle shown in Plate 1.1a.  

This corollary implies that the widely used term “multiple scattering” does 
not refer to an actual physical phenomenon. We will see in later chapters that it 
has only a purely mathematical meaning. 

1.3  Further remarks 

Throughout most of this book, we will consider the incident field in the form of a 
perfectly monochromatic plane wave given by Eq. (1.10). More generally, the 
incident field can be a superposition of monochromatic or quasi-monochromatic 
plane waves. A quasi-monochromatic plane wave is given by 

   ,    
)ii(exp)(  ),(~

)ii(exp)(  ),(~
3

incinc
0

inc

incinc
0

inc

ℜ∈
⎭
⎬
⎫

−=
−=

r
rkHr

rkEr
ttt

ttt
ω

ω

⋅
⋅

H

E
 (1.11) 

where fluctuations in time of the complex amplitudes of the electric and magnetic 
fields, )(inc

0 tE  and ),(inc
0 tH  around their respective mean values are assumed to 

occur much more slowly than the time-harmonic oscillations of the factor 
).iexp( tω−  We will not consider in detail other types of incident field such as a 

focused laser beam of finite lateral extent (e.g., Gouesbet and Gréhan 2011) or an 
ultra-short pulse. However, as will be discussed in the following chapters, this 
restriction narrows the scope of the book not nearly as much as it may appear at 
first glance. 
 It is worth emphasizing again that macroscopic Maxwell’s electromagnetics 
ignores the discreteness of matter forming the scattering object, operates with 
continuous sources of fields, and captures only linear field–matter interactions. 
Therefore, its predictions can fall short in cases where quantum effects are essen-
tial. Even so, the quantum theory can often be used to determine the macroscopic 
electromagnetic properties of bodies consisting of very large numbers of atoms 
(Akhiezer and Peletminskii 1981; Lukš and Peřinová 2009). It turns out that this 
approach works well when the external electromagnetic field is sufficiently weak 
and the particle size exceeds ~ 50 Å (Huffman 1988). This result is very import-
ant since it: (i) implies a rather wide range of applicability of the MMEs and (ii) 
allows one to clarify the definition of a “macroscopic particle” as the subject of 
study in this book in terms of the smallest allowable particle size.  
 We can thus conclude that the use of macroscopic Maxwell’s electromagnet-
ics as the point of departure is founded on the well-established fact that this the-
ory follows directly from more fundamental physical theories as a consequence 
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of well-characterized and verifiable approximations. This fact allows us to adopt 
the equations of classical macroscopic electromagnetics essentially as basic ax-
ioms valid in a wide and well-defined range of practical situations. The reader 
will see that this approach can be used to develop a mostly self-contained and 
self-consistent theory in which the need to invoke alternative physical concepts 
and laws is largely obviated. 

1.4  Energy-budget and optical-characterization problems 

A clear understanding of the type of field–matter interactions captured by the 
MMEs helps identify the extent of their applicability to solving specific practical 
problems. Let us consider, for example, an imaginary liquid-water cloud illum-
inated by a parallel quasi-monochromatic beam of light with infinite lateral extent, 
as shown schematically in Fig. 1.4. Suppose that we need to evaluate the energy 
budget of a macroscopic volume element ΔV bounded by the closed surface ΔS. 
According to the Poynting theorem discussed specifically in Section 2.4, the net 

ΔV

ΔS

Parallel quasi-monochromatic beam

 
Fig. 1.4.  Time-averaged energy budget of a volume element ΔV of a cloud 
bounded by the closed surface ΔS. The arrows represent the distribution of 

〉〉〈〈 ) ,( trS  over the boundary ΔS. 
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average rate at which electromagnetic energy enters this volume element is given 
by the surface integral 

 ,0)(ˆ) ,(d2

Δ
Δ ≥〉〉〈〈−=〉〉〈〈 rnrr ⋅tW

S
S S)  (1.12) 

where ) ,() ,() ,( ttt rrr HES ×=  is the Poynting vector of the total electromag-
netic field at the point r at the moment t, 〉〉〈〈  denotes averaging over a suffi-
ciently long period of time, and the unit vector )(ˆ rn  is directed along the local 
outward normal to the boundary.  

The interpretation of the Poynting theorem is straightforward if 〉〉〈〈 SWΔ = 0; 
then the incoming energy is balanced by the outgoing energy, which implies that 
the particulate matter inside ΔV is not affected by the radiation. If, however, 

0Δ >〉〉〈〈 SW  and ΔV contains no free charges, then the Poynting theorem implies 
that there is a continuous accumulation of electromagnetic energy inside ΔV, 
which is, of course, physically unrealistic. This example reveals an inherent 
weakness of classical macroscopic electromagnetics rooted in its inability to de-
scribe nonlinear interactions of the electromagnetic field with matter. The tradi-
tional way to circumvent this issue is to postulate that if 0Δ >〉〉〈〈 SW  then the 
excess electromagnetic energy is transformed into other forms of energy (e.g., 
heat) via physical mechanisms not specifically described by the MMEs. 

Despite this intrinsic limitation of classical macroscopic electromagnetics, 
the measurement or theoretical computation of the integral on the right-hand side 
of Eq. (1.12) allows one to determine whether the volume element ΔV of the 
cloud is in a state of energetic balance or imbalance. On a much greater scale, as 
Plate 1.2 illustrates, the entire Earth’s climate and its long-term trend are affected 
by how accurately the incoming solar energy is balanced by the outgoing elect-
romagnetic radiation. Even a small excess of the incoming over the outgoing en-
ergy can cause significant global warming of the climate (Hansen et al. 2011).  
 Other types of relevant practical problems have to do with the fact that there 
are instruments specifically designed to measure various manifestations of elect-
romagnetic energy flow. The signal measured by these instruments can contain 
implicit information on the physical properties of the scattering medium. Among 
typical examples are: remote-sensing instruments flown on satellites around the 
Earth and measuring various characteristics of the scattered sunlight (Fig. 1.5); 
ground-based and orbital telescopes combined with appropriate analyzers and 
detectors of electromagnetic radiation scattered by astronomical objects (Figs. 
1.6a and 1.6b); multi-angular and multi-spectral laboratory instruments designed 
for optical characterization of natural and manmade microscopic particulates 
having complex morphologies (Fig. 1.6c); and laboratory facilities intended for 
measurements of electromagnetic scattering by artificial targets at microwave 
frequencies (Fig. 1.6d).  

To deduce useful macro- and microphysical information from such meas-
urements, one needs a clear understanding of the physical nature of the meas- 
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urements. In addition, one needs to address the so-called inverse problem of iden-
tifying the physical model of a particulate medium that provides the best fit of 
theoretical computations of electromagnetic scattering to the measurement data. 
Needless to say, an integral part of solving the inverse problem is solving the di-
rect problem, i.e., finding an accurate solution of the MMEs for a given particu-
late model and a specfic type of illumination.      
 In the final analysis, it is the great practical importance of such energy-
budget and optical-characterization problems encountered in many areas of sci-
ence and technology that provides a major motivation for this book. 

(a)

(b)

(c)

2 
m

(d)

2 
m

(d)
 

Fig. 1.6.  (a) 2.6-m reflecting telescope of the Crimean Astrophysical Observa-
tory (Nauchny, Ukraine) used for photopolarimetric observations of Solar Sys-
tem objects (after Mishchenko et al. 2011a).  (b) NASA’s Hubble Space Tele-
scope.  (c) Light scattering setup built at the University of Amsterdam (after 
Muñoz and Hovenier 2011).  (d) Microwave scattering facility of the Institut 
Fresnel, Marseille (after Vaillon et al. 2011). 
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1.5  Electromagnetic spectrum 

It is the existence of the solution of the MMEs in the form of Eq. (1.10) that had 
led Maxwell to conclude that light consists of electromagnetic waves propagating 
with a velocity .)( 21

01
−μ,  The fact that the speed of light in various homogen-  

eous media agreed well with the corresponding values of 21
01 )( −μ,  determined 

from electrostatic and magnetostatic measurements was viewed by Maxwell as a 
decisive argument in favor of his bold assertion that light was a form of electro-
magnetic radiation. Although visible light was the only part of the electro-
magnetic spectrum known to Maxwell, subsequent research has led to the dis-
covery of other parts of the spectrum, which now extends from gamma rays to 
radio waves (Plate 1.3).  

For historical reasons, the term “light scattering by particles” has been ubi-
quitous in the scientific literature, even though it may often be viewed as being 
unnecessarily restrictive by implicitly referring to a rather narrow part of the 
spectrum. In this book the terms “light scattering” and “electromagnetic scatter-
ing” are used as synonyms, both referring to all manifestations of elastic scatter-
ing of electromagnetic waves in any part of the spectrum, as long as these man-
ifestations can be described accurately by the MMEs.          
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22  
The macroscopic Maxwell equations                   

and monochromatic fields 

In accordance with the preceding discussion, the theoretical foundation for de-
scribing electromagnetic scattering by particles and particle groups in this book is 
provided by classical macroscopic electromagnetics. This chapter is intended to 
summarize basic concepts and equations of electromagnetic theory that will be 
used extensively in the remainder of the book and introduce the necessary not-
ation.      

We start by formulating the primordial set of time-domain MMEs, con-
stitutive relations, and boundary conditions. This is followed by a general anal-
ysis of time-harmonic fields and the frequency-domain MMEs. Finally, we dis-
cuss energy conservation in the framework of the frequency-domain macroscopic 
electromagnetics.  

2.1  The macroscopic Maxwell equations  
and constitutive relations 

As already mentioned, the basic laws of macroscopic electromagnetics are 
adopted in this textbook essentially as axioms describing the spatial distribution 
and temporal behavior of the electromagnetic field and its interaction with matter. 
A thorough justification of this approach can be found in the textbook by Roth-
well and Cloud (2009). The microphysical derivation of the MMEs from more 
fundamental physical principles and the range of their validity are discussed by 
de Groot (1969), Robinson (1973), Akhiezer and Peletminskii (1981), Suttorp 
(1989), and Jackson (1998).  

In SI units, the set of four Maxwell equations for the instantaneous macro-
scopic electromagnetic field at an arbitrary observation point r is as follows: 

                                         ), ,(  ) ,( tt rr ρ=∇ D⋅  (2.1) 
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                                     ,) ,(   ) ,(
t

tt
∂

∂−=×∇ rr B
E  (2.2) 

                                     ,0  ) ,( =∇ trB⋅   (2.3) 

 ,) ,() ,(  ) ,(
t

ttt
∂

∂+=×∇ rrr D
JH  (2.4) 

where E  is the electric and H  the magnetic field, B  the magnetic induction, D 
the electric displacement, and ρ  and J  the macroscopic (free) charge density 
and current density, respectively. All quantities entering Eqs. (2.1)–(2.4) are 
real-valued functions of time, t, and spatial coordinates, r. Implicit in the MMEs 
is the continuity equation 

 ,0  ) ,() ,( =∇+
∂

∂ t
t

t rr
J⋅ρ  (2.5) 

which is obtained by combining the time derivative of Eq. (2.1) with the diverg-
ence of Eq. (2.4) and taking into account the vector identity .0  )( =×∇∇ a⋅  The 
vector fields entering Eqs. (2.1)–(2.4) are related by 

                                       ), ,() ,(  ) ,( 0 ttt rrr PED += ,  (2.6) 

 ), ,() ,( 1  ) ,(
0

ttt rrr MBH −=
μ

 (2.7) 

where P  is the electric polarization (average electric dipole moment per unit 
volume), M  is the magnetization (average magnetic dipole moment per unit 
volume), and 0,  and 0μ  are the electric permittivity and the magnetic permeabil-
ity of a vacuum, respectively.  

In many cases Eqs. (2.1)–(2.4), (2.6), and (2.7) are insufficient for a unique 
determination of the electric and magnetic fields and must be supplemented with 
a set of additional axioms called constitutive relations: 

 ), ,()(  ) ,( 0 tt rrr EP χ,=  (2.8) 
                                             ), ,()(  ) ,( tt rrr HB μ=  (2.9) 
                                             ), ,()( ) ,( tt rrr EJ σ=  (2.10) 

where χ  is the electric susceptibility, μ  the magnetic permeability, and σ  the 
conductivity. Equations (2.6) and (2.8) yield 

 ), ,()(  ) ,( tt rrr ED ,=  (2.11) 
where 
 )](1[  )( 0 rr χ+= ,,  (2.12) 

is the electric permittivity. For linear and isotropic media considered in this book, 
,χ  ,μ  ,σ  and ,  are scalars independent of the fields.   
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The constitutive relations (2.9)–(2.11) connect the field vectors at the same 
moment of time t and are valid for electromagnetic fields in a vacuum, as well as 
for electromagnetic fields in macroscopic material media provided that the fields 
are constant or vary in time rather slowly. For a rapidly varying electromagnetic 
field in a material medium, the state of the medium depends not only on the cur-
rent value of the field, but also on the values of the field at all previous times. 
Therefore, for a linear, time-invariant medium, the constitutive relations (2.9)–
(2.11) must be replaced by the following general causal relations that take into 
account the effect of the prior history on the electromagnetic properties of the 
medium: 

                                    ), ,() ,(d  ) ,( ttttt
t

′′−′=
−

rrr ED ,@
∞

 (2.13) 

 ), ,() ,(d  ) ,( ttttt
t

′′−′=
−

rrr HB μ@
∞

 (2.14) 

 ). ,() ,(d  ) ,( ttttt
t

′′−′=
−

rrr EJ σ@
∞

 (2.15) 

The medium characterized by the constitutive relations (2.13)–(2.15) is called 
time-dispersive. Again, in the framework of classical macroscopic electromag-
netics Eqs. (2.13)–(2.15) are accepted as axioms. 

2.2  Boundary conditions 

The differential MMEs are strictly valid only for points in whose neighborhood 
the physical properties of the medium, as characterized by the constitutive par-
ameters ,χ  ,μ  and ,σ  vary continuously. If we restrict ourselves to regions of 
space without spatial discontinuities then we can find a meaningful solution of 
the differential MMEs. However, across interfaces separating one medium from 
another, the constitutive parameters may change abruptly, and one may expect 
similar discontinuous behavior of the field vectors ,E ,D ,H  and .B  Solving the 
MMEs in different adjacent regions with continuous physical properties and then 
linking the partial solutions to determine the fields throughout all space requires 
the specification of appropriate boundary conditions at discontinuous interfaces.  

Usually such boundary conditions are derived from the integral form of the 
MMEs. However, this approach relies implicitly on the questionable assumption 
that while the integral Maxwell equations are derived from the differential Max-
well equations, the former are valid across discontinuous interfaces, even though 
the latter are not. Therefore, instead of “deriving” the boundary conditions for the 
field vectors ,E ,D ,H  and ,B  it is more appropriate to adopt them as axioms 
explicitly supplementing the set of the differential MMEs and constitutive rel-   
ations (Schelkunoff 1972; Tai 1994; Rothwell and Cloud 2009).     
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Consider two different continuous media separated by an interface S, as 
shown in Fig. 2.1. Let n̂  be a unit vector along the local normal to the interface, 
pointing from medium 1 toward medium 2. Then the first boundary condition is 
as follows: 

 ,0  ˆ)( 12 =− n⋅BB  (2.16) 

which implies that the normal component of the magnetic induction is continuous 
across the interface. The second boundary condition reads 

 ,  ˆ)( 12 Sρ=− n⋅DD  (2.17) 

where Sρ  is the surface charge density (the charge per unit area) measured in 
coulombs per square meter. Thus, there is a discontinuity in the normal comp-   
onent of D  if the interface carries an infinitesimally thin layer of surface charge. 
The third boundary condition, 

 ,  )(ˆ 12 0n =−× EE  (2.18) 

where 0 is a zero vector, implies that the tangential component of the electric 
field vector is continuous across the interface. Finally, the boundary condition for 
the magnetic field is as follows: 

 , )(ˆ 12 SJHH =−×n  (2.19) 

where SJ  is the surface current density measured in amperes per meter. This 
condition means that there can be a discontinuity in the tangential component of 
H if the interface is capable of carrying a surface current. Media with finite con-
ductivity cannot support surface currents, and so  

 0n  )(ˆ 12 =−× HH     (finite conductivity). (2.20) 

S

n̂

Medium 1

Medium 2

 
Fig. 2.1.  Interface S separates two adjacent media with different constitutive pa-
rameters. 
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2.3  Monochromatic fields 

Let us now make the standard assumption that all fields, charges, and currents are 
time harmonic (or monochromatic), which means that their time dependence can 
be fully described by expressing them as sums of terms proportional to either 

tωcos  or ,sin tω  where ω  is the angular frequency. It is customary to represent 
real monochromatic fields as real parts of the respective complex time-harmonic 
fields (denoted hereinafter by a tilde), e.g.,   

                           )]i(exp)([Re  ) ,(~Re  ) ,( ttt ω−== rErr EE  

                                       )],i(exp)()i(exp)([ 
2
1 tt ωω rErE ∗+−=  (2.21) 

and analogously for ,D ,H ,B ,J ,ρ ,P  and ,M  where )(rE  is complex, and 
the asterisk denotes a complex-conjugate value.1 Equations (2.1)–(2.5) then im-
ply the following frequency-domain MMEs and continuity equation for the time-
independent components of the complex fields (Problem 2.3): 

                                          ),(ρ  )( rrD =∇ ⋅  (2.22) 
                                          ),(i  )( rBrE ω=×∇  (2.23) 
                                          ,0  )( =∇ rB⋅   (2.24) 
 ),(i)(  )( rDrJrH ω−=×∇  (2.25) 
                                          ,0  )(ρi)( =−∇ rrJ ω⋅  (2.26) 

where we exploit the typographical distinction between the symbols for the real-
valued quantities ,E ,D ,H ,B ,J  and ρ  and for their complex-valued counter-
parts E, D, H, B, J, and ρ.   

The constitutive relations remain unchanged in the frequency domain if the 
medium is nondispersive: 

                                                  ),()(  )( rErrD ,=  (2.27) 
 ),()(  )( rHrrB μ=  (2.28) 
                                                  ).()(  )( rErrJ σ=  (2.29) 

For a time-dispersive medium, we can substitute the monochromatic fields of the 
form (2.21) into Eqs. (2.13)–(2.15) and derive 

 ),() ,(  )( rErrD ω,=  (2.30) 

–––––––––– 
1  A complex vector is defined as a = b + ic, where b and c are regular real vectors. All 

operations with complex vectors are defined in a way analogous to the definition of op-
erations with complex numbers and real vectors. For example, the complex conjugate 
a∗ is defined as b – ic, the scalar product of two complex vectors a = b + ic and d = e + 
if with real b, c, e, and f is defined as a · d = b · e – c · f + i (b · f + c · e), etc. 
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 ),() ,(  )( rHrrB ωμ=  (2.31) 
                                                ),() ,(  )( rErrJ ωσ=  (2.32) 

where  

                                       ),i(exp) ,(d ) ,(
0

ttt ωω rr ,@
∞

=,  (2.33) 

 ),i(exp) ,(d  ) ,(
0

ttt ωμω rr @
∞

=μ  (2.34) 

                                       )i(exp) ,(d  ) ,(
0

ttt ωσω rr @
∞

=σ  (2.35) 

are complex functions of the angular frequency. Please note that we use sloping 
Greek letters in Eqs. (2.27)–(2.29) and upright Greek letters in Eqs. (2.30)–
(2.32) to differentiate between the frequency-independent and the frequency-   
dependent constitutive parameters, respectively. Equations (2.22) and (2.25) can 
be rewritten in the form 

                                          ,0  )]() ,(ε[ =∇ rEr ω⋅  (2.36) 
 ),() ,(εi  )( rErrH ωω−=×∇  (2.37) 
where 

 
ω
ω

ωω
) ,(i) ,( ) ,(ε rrr σ+= ,  (2.38) 

is the so-called complex permittivity. Again note the typographical distinction 
between the frequency-dependent electric permittivity , (which can, in principle, 
be complex-valued for a dispersive medium) and the complex permittivity .ε  We 
will discuss later that a direct consequence of a complex-valued ε  and/or μ  is a 
nonzero imaginary part of the refractive index (see Eq. (3.15)) as well as absorp-
tion of electromagnetic energy via conversion into other forms of energy such as 
heat.  

Neither the scalar nor the vector product of two real vector fields is equal to 
the real part of the respective product of the corresponding complex vector fields. 
Instead,  

C(r, t) = ),(),( tt rr GA ⋅  

          )]i(exp)()i(exp)([)]i(exp)()i(exp)([ 
4
1 tttt ωωωω rGrGrArA ∗∗ +−+−= ⋅  

          )],i2(exp)()()()([Re 
2
1 tω−+= ∗ rGrArGrA ⋅⋅  (2.39) 

and similarly for a vector product. Often, however, ω  is so large that traditional 
optical measuring devices are not capable of following the rapid oscillations of 
the instantaneous product values, but rather respond to a time average 
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 ), ,(d 1  ) ,(
2

2
tt

T
t

Tt

Tt
′′=〉〈

+

−
rr CC @  (2.40) 

where T is a time interval long compared with the period of the time-harmonic 
oscillations: .2o ωπ=TT  Therefore, Eqs. (2.39) and (2.40) imply that the 
time average of a product of two real fields is equal to one half of the real part of 
the respective product of one complex field with the complex conjugate of the 
other, e.g., 

 )].()([Re  ) ,(
2
1 rBrAr ∗=〉〈 ⋅tC  (2.41) 

While this is a welcome result, it also means that the frequency-domain formal-
ism becomes less convenient if one needs to trace the detailed temporal evolution 
of various quadratic combinations of the electric and magnetic field vectors.  

Strictly speaking, the frequency-domain formalism introduced in this section 
describes steady-state electromagnetic fields which, apart from the time-harm-
onic factor ),i(exp tω−  do not change over the entire time interval ∈t (–∞, 
+∞). However, the use of time-harmonic fields is not as restrictive as it may ap-
pear at first sight. Indeed, many time-varying fields can be expressed in terms of 
time-harmonic components using the Fourier analysis, e.g., 

 ),i(exp) ,(d  ) ,( tt ωωω −=
−

rEr @
∞

∞

E  (2.42) 

where the frequency spectrum ) ,( ωrE  is given by the Fourier transform 

 ).i(exp) ,(d
2
1  ) ,( ttt ω
π

ω rrE E@
∞

∞−
=  (2.43) 

Therefore, if the frequency-domain field ) ,( ωrE  is known for any ,ω  then its 
time-domain counterpart ) ,( trE  can be found by evaluating the integral (2.42). 
Of course, this procedure can be quite involved, and so a direct numerical sol-   
ution of the original time-domain MMEs may often be a more efficient approach 
(Taflove and Hagness 2005; Van Bladel 2007).  

More importantly, one can expect the frequency-domain formalism to be ap-
plicable to any electromagnetic field that is steady-state over a time interval much 
longer than the period of time-harmonic oscillations To. This practical re-
quirement is met quite often, which explains why the majority of books on elect-
romagnetics and optics are largely based on the frequency-domain MMEs (e.g., 
Statton 1941; van de Hulst 1957; Born and Wolf 1999; Van Bladel 2007). 

2.4  Energy budget 

The MMEs and constitutive relations by themselves do not allow one to solve 
energy-budget and optical-characterization problems, discussed in Section 1.4. In 
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addition to the abstract concepts of charge and field, the system of axioms of 
classical electromagnetics must provide a link to other physical quantities, in-
cluding those directly measurable with suitable instrumentation. This is accom-
plished in part by using the Lorentz force equation, which postulates that if a dif-
ferential volume element dV contains a total charge Vt d),(rρ  moving at a velo-
city ),( trv  then the force exerted by the electromagnetic field on that charge is 

 .d) ,() ,(),(d) ,(),(  d VtttVtt rrvrrrF BE ×+= ρρ  (2.44) 

Let us now consider the conservation of energy in a finite volume V by tak-
ing into account that, according to Eq. (2.44), the magnetic field does no work, 
while for the local charge Vt d),(rρ  the rate of doing work by the electric field 
is .d) ,() ,(),( Vttt rrvr E⋅ρ  Thus the total rate of work done by the electromag-
netic field is given by 

 ) ,() ,(d 3 tt
V

rrr EJ ⋅@  (2.45) 

and represents the rate of conversion of electromagnetic energy into mechanical 
energy. This power must be balanced by the corresponding rate of decrease of the 
electromagnetic field energy within the volume V. Using Eqs. (2.2) and (2.4) and 
the vector identity 

 ),()(    )( baabba ×∇−×∇=×∇ ⋅⋅⋅  (2.46) 

we derive the so-called Poynting theorem: 

            ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂−×∇=

tVV

D
HEEJ ⋅⋅ rr 33 d   d @@  

                    .)(d  3
⎥⎦
⎤

⎢⎣
⎡

∂
∂+

∂
∂+×∇−=

ttV

B
H

D
EHE ⋅⋅⋅r@  (2.47) 

Let us now discuss consequences of Eq. (2.47) and consider first a medium 
without dispersion. Using the Gauss theorem, 

  ,ˆd  d 23 nArAr ⋅⋅ )@
SV

=∇  (2.48) 

we obtain  

 ,0d ˆdd 323 =
∂
∂++

tVSV

Urnrr @)@ ⋅⋅ SEJ  (2.49) 

where the closed surface S bounds the volume V, n̂  is a unit vector in the direc-
tion of the local outward normal to the surface,  

 ) ,() ,(  ) ,( ttt rrr HES ×=  (2.50) 
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is the Poynting vector having the dimension of energy/(area × time), and the sca-
lar quantity 

 )], ,() ,() ,() ,([  ) ,(
2
1 ttttt rrrrr BHDE ⋅⋅ +=U  (2.51) 

traditionally called the electromagnetic energy density, has the dimension of en-
ergy/volume. Equation (2.49) manifests the conservation of energy by establish-
ing that the rate of total work done by the fields on the charges within the vol-
ume, Eq. (2.45), the rate of change of electromagnetic energy within the volume,  

 ,d 3

tV ∂
∂Ur@  (2.52) 

and the electromagnetic energy flowing out through the volume boundary per 
unit time, 

 ,ˆd2 nr ⋅S)
S

 (2.53) 

add up to zero. Since the volume V is arbitrary, Eq. (2.49) can also be written in 
the form of a differential continuity equation: 

 .  EJS ⋅⋅ −=∇+
∂
∂

t
U  (2.54) 

One should recognize that, strictly speaking, the Poynting vector does not 
characterize the direction and rate of the local electromagnetic energy flow. In-
deed, adding the curl of any vector field to ) ,( trS  yields a vector field ) ,( trS′  
that also satisfies the Poynting theorem in either integral or differential form. 
Certain problems are also caused by associating ) ,( trU  with the local electro-
magnetic energy density (Stratton 1941; Rothwell and Cloud 2009). It is import-
ant, however, that one does not need to attribute any specific physical meaning  
to either ) ,( trS  or ), ,( trU  since in the final analysis only the integrals (2.52) 
and (2.53) have actual practical significance. Therefore, it is only one’s ability to 
calculate or measure ) ,( trS  and ) ,( trU  that matters.  

Let us now allow the medium to be dispersive. Instead of Eq. (2.45), we con-
sider the integral  

 )()(d  
2
1 3 rErJr ⋅∗@

V
 (2.55) 

whose real part gives the time-averaged rate of work done by the electromagnetic 
field (cf. Eq. (2.41)). Using Eqs. (2.23), (2.25), and (2.46), we derive 

     )](i)([)(d 
2
1  )()(d 

2
1 33 rDrHrErrErJr ∗∗∗ −×∇= ω⋅⋅ @@

VV
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                                      )]()([d 
2
1  {3 rHrEr ∗×∇−= ⋅@

V
 

                                                             .)]()(  )()([ i }rHrBrDrE ∗∗ −+ ⋅⋅ω  (2.56) 

If we now define the complex Poynting vector by 

 ),()(  )(
2
1 rHrErS ∗×=  (2.57) 

denote 

                                             ),()(  )(
4
1

e rDrEr ∗= ⋅w  (2.58) 

 ),()(  )(
4
1

m rHrBr ∗= ⋅w  (2.59) 

and apply the Gauss theorem, then we obtain: 

 .0  )]()([d i2)(ˆ)(d)()(d 
2
1

me
323 =−++∗ rrrrnrSrrErJr ww

VSV
@)@ ω⋅⋅  

  (2.60) 

Obviously, the real part of Eq. (2.60) manifests the conservation of energy for the 
corresponding time-averaged quantities. In particular, the time-averaged Poynt-
ing vector 〉〈 ) ,( trS  is equal to the real part of the complex Poynting vector:  

 ).(Re  ) ,( rSr =〉〈 tS  (2.61) 

The net time-averaged rate 〈W 〉 at which the electromagnetic energy crosses the 
closed surface S is given by   

 .)(ˆ) ,(d  2 rnrr ⋅〉〈−=〉〈 tW
S

S)  (2.62) 

The rate is defined such that it is positive if there is a net transfer of electromag-
netic energy into the volume V and is negative otherwise. 

It is worth emphasizing that, unlike Eq. (2.49), Eq. (2.60) cannot provide the 
instantaneous solution of an energy-budget problem, but rather describes the en-
ergy balance of the volume V averaged over a time interval capturing a suffi-
ciently large number of time-harmonic oscillations of the electromagnetic field. 
Since typical optical instruments cannot trace these high-frequency oscillations 
anyway, appropriate use of Eq. (2.60) can be justified in the majority of practical 
applications.   

2.5  Lossless, lossy, and active media 

Let us now apply Eq. (2.62) to a small homogeneous volume element ΔV 
bounded by a closed surface ΔS. The material that fills up the volume element is 
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classified as lossless (or nonabsorbing) if the net time-averaged flow of electro-
magnetic power entering ΔV, i.e.,  

 ,)(ˆ) ,(d  2

Δ
Δ rnrr ⋅〉〈−=〉〈 tW

S
S S)  (2.63) 

is zero when there are sources of electromagnetic power external to ΔV, but no 
sources internal to ΔV. This means that the physical mechanisms within ΔV      
either do not dissipate the incoming electromagnetic power or that there is a 
mechanism that creates power2 to exactly balance the dissipation. If the time-
averaged electromagnetic power entering ΔV is positive, then the material dissi-
pates power and is called lossy (or absorbing). Finally, if the time-averaged 
power entering ΔV is negative then power must be created inside ΔV, and the 
material is active.  

In summary, the material is classified as follows (Stratton 1941; Rothwell 
and Cloud 2009): 
 〈WΔS〉 = 0, lossless, 
 〈WΔS〉 > 0, lossy, 
 〈WΔS〉 ≥ 0, passive, 
 〈WΔS〉 < 0, active. 

It can be proven (Problem 2.7) that a passive material is lossless when the perm-
ittivity , and permeability μ are real, while the conductivity σ is zero. A passive 
material is lossy when one or more of the following holds: 

● the permittivity has a positive imaginary part; 
● the permeability has a positive imaginary part; 
● the conductivity has a positive real part. 

Finally, the material is active when one or more of the following holds: 

● the permittivity has a negative imaginary part; 
● the permeability has a negative imaginary part; 
● the conductivity has a negative real part. 

In the remainder of this book we will deal only with passive materials. 
We have already pointed out in Section 1.4 that in the case of a lossy mat-

erial with zero conductivity, the inequality WΔS > 0 appears to imply that there is 
an infinite accumulation of electromagnetic energy inside the volume element 
ΔV. This paradoxical result demonstrates that classical electromagnetics is not a 
self-contained physical discipline in terms of accounting for all types of field–

–––––––––– 
2  Note that, consistent with the general framework of this book outlined in Section 1.1, 

the created power is not described as arising from sources such as thermal emission, but 
is rather defined via appropriate values of the constitutive parameters entering Eqs. 
(2.30)–(2.32).  
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matter interactions. The traditional way to circumvent this issue without invoking 
more fundamental physical laws is to postulate that, instead of being infinitely 
accumulated, the electromagnetic energy is dissipated via conversion into other 
forms of energy, such as heat, this energy dissipation possibly being accompanied 
by re-radiation of electromagnetic energy at other frequencies.  

A rigorous and self-consistent way to solve this problem must be based on 
QED, which provides a complete modern description of the interaction of the 
electromagnetic field with atomic and molecular matter (Healy 1982; Craig and 
Thirunamachandran 1984; Cohen-Tannoudji et al. 1989, 1992). It is imperative 
to recognize that, in general, the Hamiltonian describing the field–matter interac-
tion is not controlled by the Poynting vector of the electromagnetic field, but 
rather is defined in terms of the electric and magnetic field vectors. This factor 
implies that the physical significance of the Poynting vector is limited. The main 
reason to calculate or measure this quantity is that it enters the Poynting theorem 
and thereby helps identify physical systems strongly affected by nonlinear field–
matter interactions. In fact, we will see in Chapter 11 that the limited physical 
content of the (time-averaged) Poynting vector can make the actual measurement 
of this quantity quite problematic.    

Problems 

2.1: What are ), ,( tt ′−r, ), ,( tt ′−rμ  and ) ,( tt ′−rσ  in Eqs. (2.13)–(2.15) for 
a nondispersive medium? 

2.2:   Consider two real time-harmonic vectors ) ,(1 trE  and ) ,(2 trE  represented 
by complex vectors E1(r) and )(2 rE  according to Eq. (2.21). Let E1(r) = 

yx ˆiˆ +  and ,ˆˆi)(2 yxrE +=  where x̂  and ŷ  are unit vectors in the positive 
directions of the x- and y-axes, respectively. 

(a) Are both 〉〈 ) ,() ,( 21 tt rr EE ⋅  and E1(r) )(2 rE⋅  zero?     
(b) Are both 〉×〈 ) ,() ,( 21 tt rr EE  and E1(r) )(2 rE×  zero vectors? 

2.3:   Derive Eqs. (2.22)–(2.26). 

2.4:   Express the length of time T over which one must accumulate the signal to 
make Eq. (2.41) accurate to within ±0.01% in terms of the angular fre-
quency ω. What is T in the visible part of the electromagnetic spectrum ω(  
~ π2 ×1015 s– 1)? What is T at microwave frequencies ω(  ~ π2 ×1010 s– 1)? 

2.5:   Generalize Eq. (2.41) to the vector and dyadic products of two vectors (see 
Appendix A for a summary of dyadic algebra).  

2.6:   Prove that the frequency spectrum satisfies the symmetry relation 
) ,( ω−rE .)] ,([ ∗= ωrE  

2.7:   Prove the six statements in the middle of Section 2.5. 
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Notes and further reading 

Maxwell’s electromagnetics is the first relativistic field theory and one of the su-
preme intellectual achievements in the history of humankind. Ludwig Boltzmann 
was so enchanted by the beauty and might of the Maxwell equations that he 
quoted from Johann Goethe’s Faust: “War es ein Gott, der diese Zeichen schrieb 
(?)” (“Was it a God who wrote these signs (?)”) (Boltzmann 1893, p. iii). In his 
magnificent history of mathematical thought from ancient to modern times, Mor-
ris Kline wrote: “The most spectacular triumph of the nineteenth century, with an 
enormous impact on science and technology, was Maxwell’s derivation in 1864 
of the laws of electromagnetism” (Kline 1972, p. 698). It is therefore profoundly 
symbolic that Maxwell’s equations of electromagnetism have been voted by sci-
entists to be the greatest equations ever (Crease 2004).  

For a long time, James Clerk Maxwell (1831–79) had been among the most 
underappreciated personalities in the history of science. Only recently has it be-

James Clerk Maxwell

John Henry Poynting Jules Henri Poincaré

Oliver Heaviside Hendrik Lorentz
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come widely recognized that Maxwell’s influence on science and technology can 
be compared only to that of Sir Isaac Newton (1642–1727). The title of a recent 
biography of Maxwell is thus quite revealing: The Man Who Changed Everything 
(Mahon 2003). More on Maxwell’s life and personality can be found in the thor-
oughly documented earlier biography by Campbell and Garnett (1884) (see also 
Tolstoy 1981).     

By far the best account of the history of classical electromagnetics from the 
time of Gilbert and Descartes to the relativity theory of Poincaré and Lorentz is 
that by Whittaker (1987). Although this book may not be easy to find, those who 
persevere will be rewarded by reading a masterful and meticulously documented 
recreation of the actual sequence of events and publications that shaped the 
physical science. The book by Hunt (1991) describes how Maxwell’s ideas, 
summarized in his famous Treatise (Maxwell 1873), were picked up, organized, 
and reworked mathematically by his immediate followers, most notably by 
Oliver Heaviside (1850–1925) (see also Nahin 2002 and Mahon 2009). A “by-
product” of Heaviside’s work on electromagnetics (Heaviside 1950) was the 
creation (independently of J. Willard Gibbs) of vector algebra and vector anal-
ysis. Jules Henri Poincaré (1854–1912) introduced the overarching principle of 
relativity (Poincaré 1904) and derived the relativity theory as a direct corollary of 
the Maxwell equations (Poincaré 1905, 1906). 

The famous Poynting theorem quantifying the energy budget of a finite    
volume element was derived by John Henry Poynting (1852–1914) in 1884 
(Poynting 1884) and independently by Heaviside (1885). In 1916, Hendrik An-
toon Lorentz (1853–1928) wrote that “Poynting’s theorem throws a clear light on 
many questions. Indeed, its importance can hardly be overstated, and it is now 
difficult to recall the state of electromagnetic theory of some thirty years ago, 
when we had to do without this beautiful theorem.” Yet Lorentz also warned 
against too literal an interpretation of the Poynting vector as describing a current 
or flow of electromagnetic energy by noting that “in general it will not be poss-
ible to trace the paths of parts or elements of energy in the same sense in which 
we can follow in their course the ultimate particles of which matter is made up. 
…It might even be questioned whether, in electromagnetic phenomena, the trans-
fer of energy really takes place in the way indicated by Poynting’s law” (Lorentz 
1916, pp. 25–26).   

Lorentz gave the first derivation of the MMEs from classical microscopic 
electromagnetics (see Lorentz 1916). His work was refined and generalized by de 
Groot and Suttorp (1972) and Robinson (1973). The complete derivation of the 
MMEs from QED has turned out to be a much more nontrivial endeavor. It is 
especially involved if a dielectric medium is lossy, in which case one needs to 
link the dielectric to a thermal field reservoir. Although recent progress in this 
direction has been substantial (see, e.g., Huttner and Barnett 1992; Ho and 
Kumar 1993; Suttorp and Wubs 2004), further research is still required (Lukš and 
Peřinová 2009).           
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While there are many good books on Maxwell’s macroscopic electromagnet-
ics, those by Stratton (1941), Jackson (1998), Van Bladel (2007), and Rothwell 
and Cloud (2009) stand out. The recently reissued monograph by Julius Adams 
Stratton (1901–94) is a classical text which had set the tone for virtually all sub-
sequent textbooks on electromagnetic theory. The comprehensive books by Jack-
son and Van Bladel are widely accepted benchmarks that have served to educate 
generations of scientists and engineers. The textbook by Rothwell and Cloud 
contains a remarkably thorough and systematic outline, which is highly recom-
mended to any thoughtful student of physics.  
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33  
Fundamental homogeneous-medium solutions 

of the macroscopic Maxwell equations 

In this chapter we will discuss two simple, yet fundamental, solutions of the fre-
quency-domain MMEs in an infinite homogeneous medium. The first is a time-
harmonic plane-wave solution that underlies the basic optical idea of a perfectly 
monochromatic parallel beam of light. The second is an asymptotic solution in 
the form of an outgoing or incoming time-harmonic spherical wave. Both sol-
utions play a key role in the theory of monochromatic and polychromatic elect-
romagnetic scattering by finite objects and in particular by multi-particle groups 
with widely separated components. As such, they will be frequently used in the 
following chapters. 

3.1  Plane-wave solution 

Consider an infinite homogeneous isotropic medium without sources (i.e., as-
suming that 0)(ρ ≡r  and ).)( 0rJ ≡  Recalling Eqs. (2.23), (2.24), (2.36), and 
(2.37), it is rather straightforward to demonstrate (see Problem 3.1) that the pair 
of complex electric and magnetic field vectors given by 

                                        ),i  i(exp  ) ,(~
0 tt ω−= rkEr ⋅E  (3.1) 

 ),i  i(exp  ) ,(~
0 tt ω−= rkHr ⋅H  (3.2) 

where ,0E ,0H  and k are constant complex vectors, represents a solution of the 
frequency-domain MMEs, provided that the following conditions are met: 

                                                  ,0  0 =Ek ⋅  (3.3) 
                                                  ,0  0 =Hk ⋅  (3.4) 
                                                  ,  00 HEk μ=× ω  (3.5) 
 .ε  00 EHk ω−=×  (3.6) 
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The wave vector k is usually expressed as 

 ,i  IR kkk +=  (3.7) 

where Rk  and Ik  are real vectors, and it is assumed that .R 0k ≠  Thus   

                             ),ii(exp)(exp  ) ,(~
RI0 tt ω−−= rkrkEr ⋅⋅E  (3.8) 

 ),ii(exp)(exp  ) ,(~
RI0 tt ω−−= rkrkHr ⋅⋅H  (3.9) 

where )exp( I0 rkE ⋅−  and )exp( I0 rkH ⋅−  are the complex amplitudes of the 
electric and magnetic fields, respectively, while tωφ     R −= rk ⋅  is their phase. It 
is rather straightforward to show (see Problem 3.2) that  

 .ε  2 μ= ωkk ⋅  (3.10) 

A plane surface normal to a real vector K is described by =  Kr ⋅ constant, 
where r is the radius vector drawn from the origin of the reference frame to any 
point in the plane (see Fig. 3.1). Therefore, the vector Rk  is normal to the sur-
faces of constant phase, whereas Ik  is normal to the surfaces of constant ampli-
tude. Also, the planes corresponding to the instant times t and tt Δ+  are sepa-
rated by the distance ||Δ  Δ Rkts ω=  (see Fig. 3.2), which implies that the sur-
faces of constant phase propagate in the direction of Rk  with the phase velocity  

 .
||

    
Rk

ω=v  (3.11) 

Thus Eqs. (3.1) and (3.2) do describe a plane electromagnetic wave. Equations 
(3.1), (3.2), and (3.5) imply that  

KrKrKr ⋅=⋅=⋅ 321

Plane surface normal to

O

K

1r

2r

3r

K:

 
Fig. 3.1.  Plane surface normal to a real vector K. 
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 ).,(~ 1  ),(~ tt rkr EH ×
μ

=
ω

 (3.12) 

Therefore, a plane electromagnetic wave can always be considered in terms of 
only the electric (or only the magnetic) field.  

The electromagnetic wave is called homogeneous if Rk  and Ik  are parallel 
(including the case Ik = 0); otherwise it is called inhomogeneous. If IR  kk  then 
the complex wave vector can be expressed as ,ˆ)i(  IR nk kk +=  where n̂  is a real 
unit vector in the direction of propagation and both Rk  and Ik  are real and non-
negative. 

According to Eqs. (3.3) and (3.4), the plane electromagnetic wave is trans-
verse: both 0E  and 0H  are perpendicular to k. Furthermore, either Eq. (3.5) or 
(3.6) implies that 0E  and 0H  are mutually perpendicular: .0  00 =HE ⋅  Since E0, 
H0, and k are, in general, complex vectors, the physical interpretation of these 
facts may not be straightforward. It becomes most obvious when both ε, ,μ  and, 
owing to Eq. (3.10),  k are real-valued. The reader can easily verify that in this 
case the real field vectors E  and H  are mutually perpendicular and lie in a 
plane normal to the direction of wave propagation n̂  (see Fig. 3.3). 

In the practically important case of a homogeneous plane wave, Eq. (3.10) 
implies that 

 ,  ε  i  IR c
kkk mω

ω =μ=+=  (3.13) 

where k is the wave number,  

O

Rk
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tt +
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ttsφ )( R −= k

)()( R tttts +−+=φ k

)( tts +

)(ts
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∇

ω

ω

∇

 
Fig. 3.2.  The plane of constant phase φ = constant travels a distance Δs over the 
time interval Δ t. The s axis is drawn from the origin of the coordinate system 
O along the vector kR. 
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00

1  
μ,

=c  (3.14) 

is the speed of light in a vacuum, and 

 μ=μ=+== ε  ε  i     
00

IR cck
μω ,

mmm  (3.15) 

is the complex refractive index with a nonnegative real part Rm  and a nonnega-
tive imaginary part .Im  Thus, the complex electric field vector of the homogene-
ous plane wave has the form 

 .iˆ  iexp ˆ exp  ) ,(~
RI0 ⎟

⎠
⎞⎜

⎝
⎛ −⎟

⎠
⎞⎜

⎝
⎛−= t

cc
t ω

ωω rnrnEr ⋅⋅ mmE  (3.16) 

If the imaginary part of the refractive index is nonzero then it determines the ex-
ponential decay of the amplitude of the wave as it propagates through the me-
dium, which is thus absorbing. On the other hand, a medium is nonabsorbing if 
, = ,, ,  μ=μ  and ,0  =σ  which causes the refractive index == R mm 21)( μ,c  to 
be real-valued. The real part of the refractive index determines the phase velocity 
of the wave:  

 .  
Rm

c=v  (3.17) 

In a vacuum, 1   R == mm  and .c=v  

Plane of constant phase
and constant amplitude

n̂

r

y

x

O

z

E

H

 
Fig. 3.3.  Plane wave propagating in a homogeneous lossless medium. 
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It follows from Eqs. (2.57), (2.61), (3.1), (3.2), (3.12), and the vector identity 

 )()(  )( baccabcba ⋅⋅ −=××  (3.18) 

that the time-averaged Poynting vector of a plane wave is given by 

 .
2

)]()[()]()([Re  ) ,( ⎟
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μ
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∗∗∗∗

ω
rEkrErErEkr ⋅⋅tS  (3.19) 

If the wave is homogeneous then 0  )( =rEk ⋅  and so .0  )( =∗ rEk ⋅  Therefore,  

 .ˆˆ  2 exp|| εRe
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1  ) ,( I
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0 nrnEr ⎟
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⎞
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μ
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t ω
S  (3.20) 

Thus, 〉〈 ) ,( trS  is in the direction of propagation and its absolute value, called 
the intensity, is attenuated exponentially, provided that the medium is lossy: 

 ),ˆ(exp  ) ,(  )( 0|| rnrr ⋅α−=〉〈= ItI S  (3.21) 

where 0I  is the intensity at r = 0. The absorption coefficient is given by 

 ,
4

  2  
0

I
I λ

πω
α

m
m ==

c
 (3.22) 

where 

 
ω
π

λ
c2  0 =  (3.23) 

is the free-space wavelength. The intensity has the dimension of monochromatic 
energy flux, i.e., energy/(area × time), and is sometimes interpreted as the amount 
of electromagnetic energy crossing a unit surface element normal to n̂  per unit 
time. As we have discussed in Section 2.4, such an interpretation is, strictly 
speaking, unnecessary. 

Figure 3.4 gives an example of a plane electromagnetic wave propagating 
along the y axis in a nonabsorbing homogeneous medium and described by the 
following real electric and magnetic field vectors:  

                                      ,ˆ)2    (cos  ),( zr πω −−= tkyt EE  (3.24) 
 ,ˆ)2    (cos  ),( xr πω −−= tkyt HH  (3.25) 

where ,E ,H  and k are real and x̂  and ẑ  are the unit vectors along the x- and z-
axis, respectively. Figure 3.4a shows the electric and magnetic fields as functions 
of y at the moment t = 0, while Fig. 3.4b depicts the fields as functions of time at 
any point in the plane y = 0. The period of the sinusoids in Fig. 3.4a is  

 kπλ 2  =  (3.26) 

and defines the wavelength of light in the nonabsorbing material medium. The 
period of the sinusoids in Fig. 3.4b is equal to .2 ωπ   
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It is straightforward to verify (see Problem 3.3) that a choice of the time de-
pendence )i(exp tω  rather than )i(exp tω−  in the complex representation of 
time-harmonic fields in Eq. (2.21) would have led to IR i  mmm −=  with a non-
negative .Im  The )i(exp tω−  time-factor convention adopted here has been used 
in the majority of books on optics and light scattering (e.g., Born and Wolf 1999; 
Bohren and Huffman 1983; Barber and Hill 1990; MTL-1, MTL-2), electromag-
netics (e.g., Stratton 1941; Jackson 1998; Tsang et al. 2000; Zangwill 2013), and 
solid-state physics (e.g., Kittel 1963). However, van de Hulst (1957), Kerker 
(1969), and Hovenier et al. (2004) used the time factor ),i(exp tω  which implies 
a nonpositive imaginary part of the complex refractive index. It does not matter 
in the final analysis which convention is chosen, because all measurable quant-
ities of practical interest are always real. However, once a choice of the time   
factor has been made, its consistent use throughout all derivations is imperative. 

3.2  Spherical-wave solution 

Another fundamental solution of the frequency-domain MMEs representing the 
outward propagation from a point-like source is a transverse outgoing spherical 

x

y

z

x

z (a)

(b)

t

H

H

E

E

λ

2 ωπ

 
Fig. 3.4.  Plane electromagnetic wave described by Eqs. (3.24) and (3.25). 
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wave. To derive this solution, we need to recall Eqs. (2.23), (2.24), (2.31), (2.36), 
(2.37), (H.1), (H.2), and the following well-known formulas: 
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where ,||ˆ rrr = θ is the polar (zenith) angle, ϕ is the azimuth angle, and θ̂  and 
φ̂  are the corresponding unit vectors in the right-handed spherical coordinate 
system, as shown in Fig. 3.5 (Arfken and Weber 2005). It is then straightforward 
to verify that the complex field vectors 

                                   ),i (exp)ˆ( )i(exp  ) ,(~
1 t

r
rkt ω−= rErE  (3.30) 

  )i (exp)ˆ( )i(exp  ) ,(~
1 t

r
rkt ω−= rHrH  (3.31) 

form a solution of the MMEs in the limit →rk ∞, provided that the medium is 
homogeneous and that 

ϕ

θ

x

yO

z

ϕ̂

r̂ ×= ϕ̂θ̂
θ̂

 
Fig. 3.5.  Right-handed spherical coordinate system. 
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                                             ,0  )ˆ(ˆ 1 =rEr ⋅  (3.32) 
                                             ,0  )ˆ(ˆ 1 =rHr ⋅  (3.33) 
                                             ),ˆ(  )ˆ(ˆ 11 rHrEr μ=× ωk  (3.34) 
  ),ˆ(ε  )ˆ(ˆ 11 rErHr ω−=×k  (3.35) 

where the wave number ckkk mωω   )ε(  i  21
IR =μ=+=  may be complex and 

the )ˆ(1 rE  and )ˆ(1 rH  are independent of the distance r from the origin.  
Equations (3.30)–(3.35) describe an outgoing transverse time-harmonic 

spherical wave propagating radially with the phase velocity R    kω=v  and hav-
ing mutually perpendicular complex electric and magnetic field vectors. The 
wave is homogeneous in that the real and imaginary parts of the local complex 
wave vector r̂k  are parallel. The surfaces of constant phase coincide with the 
surfaces of constant amplitude and are spherical. It is obvious that 

  ),,(~ˆ   ),(~ tkt rrr EH ×
μ

=
ω

 (3.36) 

which allows one to consider the spherical-wave solution in terms of the electric 
(or the magnetic) field only. The time-averaged Poynting vector of the wave is 
given by  

  ,ˆ  2 exp |)ˆ(| εRe
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where, as before, . II ωck=m  Thus, the local direction of 〉〈 ) ,( trS  is away 
from the origin. The intensity of the spherical wave is defined as the absolute 
value of the time-averaged Poynting vector, 

  ,  2 exp |)ˆ(| εRe
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and has the dimension of monochromatic energy flux. It is attenuated exponen-
tially by absorption and in addition decreases as the inverse square of the dist-
ance from the origin.  

In the case of a nonabsorbing medium, the real electric and magnetic field 
vectors are mutually orthogonal and are normal to the direction of propagation r̂  
(Fig. 3.6). The energy conservation law takes the form 

  2
1

2
2

22 |)ˆ(|d1 
2
1 )(d ˆ) ,(d rErrrrrr )))
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4

== rEr@
πμ

,  (3.39) 

where S is a sphere of radius r and 
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  ϕθθ ddsin  d  ˆd 2 ==
r
Sr  (3.40) 

is a differential solid angle element around the direction r̂  (see Fig. 3.7). 
 The reader is invited to verify by analogy (see Problem 3.7) that the complex 
electric and magnetic field vectors 
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r
rkt ω−−= rErE  (3.41) 
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Fig. 3.6.  Spherical electromagnetic wave propagating in a homogeneous loss-
less medium. 
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Fig. 3.7.  Differential solid angle element in spherical coordinates. 
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represent yet another solution of the frequency-domain MMEs in the limit 
,∞→rk  provided that the medium is homogeneous and that 

                                            ,0  )ˆ(ˆ 1 =rEr ⋅  (3.43) 
                                            ,0  )ˆ(ˆ 1 =rHr ⋅  (3.44) 
  ),ˆ(  )ˆ(ˆ 11 rHrEr μ−=× ωk  (3.45) 
                                            ).ˆ(ε  )ˆ(ˆ 11 rErHr ω=×k  (3.46) 

These formulas describe an incoming transverse spherical wave with mutually 
perpendicular complex electric and magnetic field vectors. The spherical surfaces 
of constant phase and constant amplitude propagate radially in the direction of 
the local unit vector .r̂−  The latter also gives the direction of the local Poynting 
vector.  

Problems 

3.1:   Verify that Eqs. (3.1) and (3.2) satisfy the frequency-domain MMEs for an 
isotropic homogeneous medium without sources. 

3.2: Derive Eq. (3.10).  

3.3: Show that the choice of the time dependence )i(exp tω  rather than 
)iexp( tω−  in the complex representation of time-harmonic fields in Eq. 

(2.21) results in a relative refractive index IR i  mmm −=  with a nonneg-  
ative .Im   

3.4:  Derive the following expression for the time-averaged energy density of a 
time-harmonic electromagnetic field existing in a medium without disper-
sion:  

 )].()()()([  ) ,(
4
1 rHrHrErEr ∗∗ +=〉〈 ⋅⋅ μ,tU  (3.47) 

3.5: Assume that the host medium is lossless and show that for a plane electro-
magnetic wave, 

 .||  ) ,( 2
02

1 Er ,=〉〈 tU  (3.48) 

3.6: Show that for a plane wave propagating in a lossless medium, 

 ,) ,(  )( 〉〈= tI rr Uv  (3.49) 

where μ,1 =v  is the speed of light in the nonabsorbing material med-
ium.  

3.7: Demonstrate that Eqs. (3.41)–(3.46) represent a time-harmonic solution of 
the MMEs in an infinite homogeneous medium in the limit .∞→rk   
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3.8: Show that in the case of a lossless medium, the time-averaged energy den-
sity of a spherical wave is given by  

  2

2
1 |)ˆ(|   ) ,(

2
1

r
t rEr ,=〉〈U  (3.50) 

 and its intensity is given by 

  .) ,(  )( 〉〈= tI rr Uv  (3.51) 
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44  
Basic theory of frequency-domain electromagnetic 

scattering by a fixed finite object 

As we have discussed in Chapter 1, the presence of an object with a refractive 
index different from that of the surrounding host medium changes the electro-
magnetic field that would otherwise exist in an unbounded homogeneous space. 
The difference between the total field in the presence of the object and the total 
field that would exist in the absence of the object can be thought of as the field 
scattered by the object. In other words, the total electromagnetic field in the pres-
ence of the object is mathematically represented as the vector sum of the incident 
and scattered fields.   

The spatial distribution of the scattered field depends on specific character-
istics of the incident field as well as on such properties of the scatterer as its size 
relative to the wavelength and its morphology, composition, and orientation. 
Therefore, in practice one usually must solve the scattering problem anew every 
time some or all of these input parameters change. It is appropriate, however, to 
consider first the general mathematical description of electromagnetic scattering 
without making any detailed assumptions about the scattering object, except that 
it is composed of linear, isotropic, and nonmagnetic materials. Hence the goal of 
this chapter is to establish a basic theoretical framework underlying specific 
problems discussed in the following chapters. Consistent with this objective and 
with the discussion in Section 1.1, we will assume that the scattering object is 
stationary and will consider only monochromatic fields whose dependence on 
time is completely described by the time-harmonic factor ).i(exp tω−  

4.1  Statement of problem 

Consider a fixed finite scattering object embedded in an infinite medium that is 
assumed to be homogeneous, linear, isotropic, nonmagnetic, and nonabsorbing. 
The scatterer can be either a single body or a cluster consisting of a finite number 
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N of separated or touching components; it occupies a finite interior region INTV  
given by 

 ,   
1

INT i

N

i
VV

=
= ∪  (4.1) 

where iV  is the volume occupied by the ith component (see Fig. 4.1). The object 
is surrounded by the infinite exterior region EXTV  such that ,  3

EXTINT ℜ=∪VV  
where, as before, 3ℜ  denotes the entire three-dimensional space. The interior 
region is filled with isotropic, linear, nonmagnetic, and possibly inhomogeneous 
material. Point O serves as the common origin of all position vectors and as the 
origin of the laboratory coordinate system. 

As a consequence of the assumption of harmonic time dependence, the four 
MMEs (2.22)–(2.25) are no longer independent. Indeed, Eqs. (2.22) and (2.24) 
now follow from Eqs. (2.23) and (2.25) (see Problem 4.1). This simplification 
allows one to consider only the Maxwell curl equations (2.23) and (2.25), which 
can conveniently be re-written as follows: 
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where, as before, 0μ  is the permeability of a vacuum; 1,  is the real-valued elect-
ric permittivity of the infinite host medium; and ) ,(ε2 ωr  is the (potentially co-

O

r

Observation
point

inc
n̂

r̂

Incident plane wave  
Fig. 4.1.  Schematic representation of the standard electromagnetic scattering 
problem. The unshaded exterior region VEXT is unbounded in all directions, 
whereas the shaded areas collectively represent the interior region VINT.  
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ordinate-dependent) complex permittivity of the scattering object. The corr-
esponding boundary conditions now read (cf. Eqs. (2.18) and (2.20)):   

  ,    
 )]()([ˆ
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r
0rHrHn

0rErEn
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where the subscripts 1 and 2 correspond to the exterior and interior sides of the 
boundary SINT of the object, respectively, and n̂  is the local outward normal to 
SINT. In agreement with Eq. (4.1), SINT is the union of the closed surfaces of the N 
components of the object: 
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Let us assume that the total field )}(),({ rHrE  everywhere in space can be 
represented by a vector superposition of a plane-wave “incident field” (super-
script “inc”) propagating in the direction of the unit vector incn̂  and a “scattered 
field” (superscript “sca”): 
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where 21
011 )(  μω ,=k  is the wave number of the exterior region. Furthermore, 

we postulate that the scattered field satisfies the following condition at infinity:  

 ,)()(lim }{ sca
1

sca
0 0rErHr =+×

→
,r

r
μ

∞
 (4.7) 

where ||r=r  is the distance from the origin to the observation point (Fig. 4.1). 
The limit (4.7) holds uniformly over all directions ||ˆ rrr =  and is traditionally 
called the Silver–Müller radiation condition at infinity (Silver 1949; Müller 
1969).  

The curl equations (4.2) and (4.3) supplemented by the boundary conditions 
(4.4) and the asymptotic condition (4.7) constitute the standard electromagnetic 
scattering problem for plane-wave illumination, according to Eq. (4.6).  

4.2  Existence and uniqueness of solution 

The above formulation of the standard electromagnetic scattering problem would 
serve little practical purpose if this problem had no solution and/or if the solution 
was not unique. To the best of the author’s knowledge, the existence and the 
uniqueness of the solution of the standard scattering problem have been proven 
only in some particular cases (e.g., for a scattering object in the form of a single 
homogeneous body). However, the thorough analysis by Müller (1969) demon-



Chapter 4 44 

strates the fundamental importance of imposing both the boundary conditions and 
the radiation condition at infinity. We will, therefore, assume that the standard 
scattering problem, as formulated in the preceding section, does have a solution, 
this solution being unique. While this general assumption remains to be proven 
mathematically, it both appears to be quite plausible and is essential for the re-
mainder of this book. 

Although the standard scattering problem is formulated for the incident field 
represented by a plane electromagnetic wave, its actual range of relevance is 
much wider. Indeed, the MMEs, the boundary conditions, and the radiation cond-
ition at infinity are all linear in the electric and magnetic fields. This fundamental 
property implies that the if },{ HE ′′  and },{ HE ′′′′  are the solutions of the stan-
dard problem corresponding to the incident plane waves })(,)({ incinc ′′ HE  and 

},)(,)({ incinc ′′′′ HE  respectively, then },{ HHEE ′′+′′′+′  is the unique solution of 
the boundary-value scattering problem for the incident field given by )({ inc ′E + 

}.)()(,)( incincinc ′′+′′′ HHE  Therefore, solutions of the standard scattering prob-
lem can be used to obtain the solution of a more general scattering problem, as 
long as the corresponding incident field can be represented as a superposition of 
plane electromagnetic waves.     

4.3  Volume integral equation 

Although the standard scattering problem is formulated as a boundary-value 
problem for the differential frequency-domain MMEs, we will see later that in 
many cases it is more convenient to deal with an equivalent integral-equation 
formulation. Hence the objective of this section is to derive the so-called volume 
integral equation (VIE), which expresses the total electromagnetic field every-
where in space in terms of the incident field and the total field inside the scatter-
ing object. 

Equations (4.2) and (4.3) imply that if E(r) is known everywhere in space, 
then H(r) can also be found everywhere in space, and vice versa. From these 
equations, we easily derive the following vector wave equations for E(r): 

                           ,    ,  )()( EXT
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1 Vk ∈=−×∇×∇ r0rErE  (4.8) 

 ,    ,  )()],([)( INT
2

2 Vk ∈=−×∇×∇ r0rErrE ω  (4.9) 

where 21
022 ]) ,([ε   ) ,( μωωω rr =k  is the wave number of the interior region. 

Equations (4.8) and (4.9) can be rewritten as a single inhomogeneous differential 
equation 

 ,    ),(  )()( 32
1 ℜ∈=−×∇×∇ rrjrErE k  (4.10) 

where 
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and ) ,( ωrm  is the refractive index of the interior relative to that of the exterior. 
From this point on, we will omit the argument ω  for the sake of brevity, while 
still remembering that the relative refractive index may be frequency dependent. 
It follows from Eq. (4.11) that the forcing function )(rj  vanishes everywhere 
outside the interior region.  

Any solution of an inhomogeneous linear differential equation can be divided 
into two parts: (i) a solution of the respective homogeneous equation with the 
right-hand side identically equal to zero and (ii) a particular solution of the in-
homogeneous equation. The first part satisfies the equation 

 3inc2
1

inc     ,  )()( ℜ∈=−×∇×∇ r0rErE k  (4.13) 

and describes the field that would exist in free space in the absence of the scatter-
ing object, i.e., the incident field. The physically appropriate particular solution of 
Eq. (4.10) must give the scattered field )(sca rE  corresponding to the forcing 
function ).(rj  Obviously, of all possible particular solutions of Eq. (4.10), we 
must choose the one that satisfies the boundary conditions (4.4) and the radiation 
condition (4.7).     

To find ),(sca rE  we use the free space dyadic Green’s function ) ,( rr ′G  de-
fined by Eq. (B.1). We scalar post-multiply Eq. (4.10) by G  and scalar pre-
multiply Eq. (B.9) by :scaE   

    ), ,()(  ) ,()() ,()]([ sca2
1

sca rrrjrrrErrrE ′′=′′−′′×∇′×∇′ GGkG ⋅⋅⋅  (4.14) 

    ).()(  ) ,()()] ,([)( scasca2
1

sca rrrErrrErrrE −′′=′′−′×∇′×∇′′ δGkG ⋅⋅  (4.15) 

Subtracting Eq. (4.14) from Eq. (4.15) yields 

 )] ,([)() ,()]([ scasca rrrErrrE ′×∇′×∇′′−′′×∇′×∇′ GG ⋅⋅   

                       ).()() ,()( sca rrrErrrj −′′−′′= δG⋅  (4.16) 

Let us now invoke the dyadic Green’s theorem (see Appendix 4 of Van Bladel 
2007): 

                        )]()[(d3 AA
V

×∇×∇−×∇×∇ ⋅⋅ aar@  

                            ,)](ˆ[)()ˆ(d }{2 AA
S

⋅⋅ ananr ×∇×+×∇×= )  (4.17) 

where the closed surface S bounds the finite volume V and n̂  is the unit vector 
along the local outward normal to S. The integration of Eq. (4.16) over the in-
terior region INTV  then yields 
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                          (4.18) 
To apply Eq. (4.17) to the exterior region ,EXTV  we surround the scattering ob-
ject by a sphere SR of radius R and then take the limit .∞→R  We thus have: 
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where ,ˆ r′′=′ rr  |,|r′=′r  and we have taken into account that now the local 
outward normal to SINT is given by n′− ˆ  and that the forcing function )(rj ′  van-
ishes in the exterior region. Taking into account the dyadic identity (A.18) and 
the asymptotic behavior of the free space dyadic Green’s function at infinity (cf. 
Eq. (B.22)) 

 ), ,(ilim  )] ,([lim 1 rrrrr ′′−=′×∇′×′
→′→′

GrkG
rr ∞∞

 (4.20) 

as well as recalling the limit (B.21) and the radiation condition (4.7), we can con-
clude that the second integral on the right-hand side of Eq. (4.19) vanishes in the 
limit →R ∞. Adding Eqs. (4.18) and (4.19) thus yields 

 ,    ),() ,(d)( 33sca

INT

ℜ∈′′′= rrjrrrrE ⋅G
V

@  (4.21)  

where we have taken into account the boundary conditions (4.4), the dyadic ident-
ity (A.4), and the symmetry property (B.13).  

The final step is to substitute Eq. (4.11) in Eq. (4.21) and recall that  

 ).()()( scainc rErErE +=  (4.22) 

The result is the following VIE: 
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4.4  Discussion 

The VIE (4.23) plays a key role in the theory of electromagnetic scattering by 
particles and particle groups. It is therefore important to discuss its main concept-
ual implications. 

First, the VIE can be viewed as the very embodiment of the notion of elect-
romagnetic scattering. Indeed, it demonstrates that in the absence of the scatter-
ing object, i.e., when ,1)( ≡′rm  the total field is identically equal to the incident 
field. The presence of the object changes the total field, which means that the 
scattered field can be defined as the difference between the total fields in the 
presence and in the absence of the object. Importantly, the VIE implies that the 
incident field is not modified by the presence of the object and, thus, is not trans-
formed into the scattered field. This means that, contrary to the widespread mis-
conception, the cause of scattering is not the incident field, but rather the very 
presence of an object with a refractive index different from that of the host med-
ium (Mishchenko 2009). 

Second, the boundary conditions (4.4) and the radiation condition (4.7) are 
built into the VIE rather than serve as additional constraints imposed on the 
physically relevant solution of the differential frequency-domain MMEs. Fur-
thermore, the VIE shows that if the total field in the interior region is known then 
the total field everywhere in space can be computed by evaluating the integral 
over the finite volume VINT on the right-hand side of Eq. (4.23). Thus, the open-
domain boundary-value problem for the differential MMEs is replaced by the 
finite-domain integral-equation problem. This often makes the VIE a more con-
venient and potent tool for solving the electromagnetic scattering problem than 
the original MMEs.    

Third, the existence of the solution of the standard scattering problem implies 
that if the incident field is a plane electromagnetic wave then the VIE has at least 
one solution; however, the uniqueness of this solution has not been proven in 
general. Yet it is known that Fredholm integral equations of the second kind, 
such as the VIE, have a unique solution under rather generic assumptions (see, 
e.g., Vladimirov 1971). We will, therefore, assume in what follows that the VIE 
always has a unique solution. 

Fourth, the discussion in Section 4.2 implies that the incident field in Eq. 
(4.23) may be any solution of Eq. (4.13), as long as it can be expanded in plane 
electromagnetic waves. This factor makes the range of applicability of the VIE 
quite broad. 

Fifth, one could assume that since the general radiation condition (4.7) is 
built into the VIE, the latter should imply a rather universal behavior of the scat-
tered field at sufficiently large distances from the scattering object. We will see in 
the following chapter that the VIE can indeed be used to derive the general so-
called far-field limit for the scattered field without making any assumptions about 
the scattering object, except that it is finite.              
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4.5  Dyadic transition operator 

Since the total field in the interior of the scattering object is not known in general, 
the first step in using the VIE is to solve it for the total internal field either num-
erically or analytically. Initially, the internal field can be approximated by the 
incident field. This is the gist of the so-called Rayleigh–Gans approximation  
otherwise known as the Rayleigh–Debye or first Born approximation (van de 
Hulst 1957; Ishimaru 1978). The total field computed in the Rayleigh–Gans ap-
proximation can be substituted in the integral on the right-hand side of Eq. (4.23) 
in order to compute an improved approximation, and this iterative process can be 
continued until the total field converges within a given numerical accuracy. Al-
though this procedure can be rather involved, it shows that, in the final analysis, 
the scattered field can be expressed mathematically in terms of the incident field 
as follows: 

         ,    ,)() ,(d) ,(d  )( 3inc33sca

INTINT

ℜ∈′′′′′′′′′= rrErrrrrrrE ⋅⋅ TG
VV

@@  (4.24) 

where T  is the so-called dyadic transition operator (Tsang et al. 1985). Substitut-
ing Eq. (4.24) in Eq. (4.23) yields the following integral equation for :T  

      IkT )( ]1)([  ) ,( 22
1 rrrrr ′−−=′ δm  
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INT

VTGk
V

∈′′′′′′′′−+ rrrrrrrr ⋅@m  (4.25) 

Equations of this type also appear in the quantum theory of scattering and are 
called Lippmann–Schwinger equations (Newton 1982). 

An essential property of T  is that it is independent of the incident field and is 
a function of the scattering object only: it is fully defined by the distribution of 
the relative refractive index throughout the interior volume. We will see later that 
owing to this fundamental property, the concept of the dyadic transition operator 
is central to the theory of electromagnetic scattering by multi-particle groups. In 
particular, it can be used to derive from Eqs. (4.24) and (4.25) the system of so-
called Foldy equations serving as a natural precursor to the microphysical the-
ories of radiative transfer and weak localization in particulate media.   

Unfortunately, neither the convergence of the iterative procedure leading to 
Eq. (4.24) nor the existence and uniqueness of solution of Eq. (4.25) have gener-
ally been proven. As before, we will accept both as plausible mathematical hy-
potheses.   

Problems 

4.1:   Derive the frequency-domain Maxwell divergence equations from the fre-
quency-domain Maxwell curl equations.  
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4.2:   It is often stated in the literature that upon scattering, the incident field is 
transformed into the scattered field. Discuss the correctness of this state-
ment (cf. Mishchenko 2009).  

4.3:   Verify that the dyadic Green’s function has the dimension of inverse 
length, m–1.  

4.4:   Verify that the dyadic transition operator has the dimension of m–5.  

Notes and further reading 

The basic model of electromagnetic scattering outlined in this chapter relies on 
the assumption that the incident field is the same in the absence and in the pres-
ence of the scattering object. It is therefore implied that the object is located suf-
ficiently far from the source of the incident field and thereby does not affect the 
physical processes responsible for the generation of the incident field.  

Furthermore, in the framework of the basic model of electromagnetic scatter-
ing the existence of the monochromatic incident field is taken for granted. This 
allows us to bypass altogether the discussion of specific physical phenomena re-
sulting in the emission of electromagnetic waves, at the expense of making the 
model of purely monochromatic scattering vulnerable to criticism of being too 
idealistic in many actual cases. As will be discussed in Chapter 9, a practical way 
out of this potentially problematic situation is to consider the scattering of a 
polychromatic electromagnetic field consisting of monochromatic or quasi-
monochromatic components.   

The dyadic Green’s function ) ,( rr ′G  has a singularity at ,rr ′=  which 
makes the actual solution of the VIE for the internal field nontrivial. This aspect 
of the VIE formalism is discussed by Van Bladel (1961) and Lakhtakia and Mul-
holland (1993) who show that for INTV∈r  the integrals in Eq. (4.23) should be 
taken as principal values around the point .r′  The same applies, of course, to 
Eqs. (4.24) and (4.25). 

Some derivations of the VIE published in monographs and journal papers, 
including the original derivation by Saxon (1955b), do not invoke explicitly the 
boundary conditions (4.4). As such, they are applicable only to “fuzzy” scattering 
objects without distinct boundaries. This means that the refractive index is as-
sumed to depend on spatial coordinates continuously throughout the entire space 
rather than being discontinuous across particle surfaces.     
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Far-field scattering 

Panels (b) and (c) of Fig. 1.3 show that the structure of the electric field inside the 
scattering object as well as in its immediate vicinity can be quite complex. Yet 
there is an obvious simplification as the distance from the object increases, the 
scattered field eventually becoming a spherical outgoing wave irrespective of the 
specific nature of the object. This universal behavior of the scattered field in the 
so-called far zone plays an extremely important role in many applications of elect-
romagnetic scattering and thus deserves an express analysis. In this chapter we 
will derive general formulas describing the far-field regime and discuss theoret-
ical criteria of their applicability.  

5.1  Scattering in the far zone 

Let us denote by rrρ ′−=′  the vector connecting the center of the differential 
volume element r′3d  and an external observation point r (Fig. 5.1). Let us also 
assume that  
 11ρ′k  for any ,  INTV∈′r  (5.1) 

where ||ρ′=′ρ . Then Eq. (4.23) implies that  
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  (5.2) 

where ρ′′=′ ρρ̂  is the unit vector originating at r′  and directed towards the ob-
servation point (Problem 5.1).  

This formula has two important implications. First, it shows that the scattered 
field at an external observation point is a vector superposition of partial scattered 
fields (wavelets) which are created by infinitesimal volume elements constituting 
the interior of the object. Second, it demonstrates that each wavelet is an outgo-
ing transverse spherical wave (Fig. 5.2). Indeed, the identity dyadic in spherical 
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polar coordinates is given by Eq. (A.20), so that the dyadic factor ρρ ′⊗′− ˆˆI  in 
Eq. (5.2) ensures that each wavelet is transverse, i.e., the electric field vector of 
the wavelet at the observation point is perpendicular to its propagation direction 

:ρ̂′  
 .0)()ˆˆ  (ˆ =′′⊗′−′ rEρρρ ⋅⋅ I  (5.3) 

Furthermore, the electric field of the wavelet decays inversely with distance ρ′  
from the center of the infinitesimal volume element.  

Let us now assume that the origin of the laboratory coordinate system O is 
close to the geometrical center of the scattering object (Figs. 5.1 and 5.3) and 
consider the scattered field in the far zone of the entire object. Specifically, as-
suming that the distance r from the origin to the observation point is much 
greater than any linear dimension of the scatterer, 

 rr ′  for any ,  INTV∈′r  (5.4) 
we have 

 ρρ ′⊗′− ˆˆI ,ˆˆ rr ⊗−I  (5.5) 
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where rrr =ˆ  is the unit vector in the direction of r, Fig. 5.3. The last two terms 
on the right-hand side of Eq. (5.6) can be neglected in computing the slowly 
varying denominator in the expression on the right-hand side of Eq. (5.2), 
thereby yielding 

 
ρ′
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Fig. 5.1.  Derivation of Eq. (5.2). 
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but not in computing the rapidly oscillating factor .)iexp( 1ρ′k  Assuming, how-
ever, that 

 
r
rk
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2
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 1 for any ,INTV∈′r  (5.8) 

we finally derive: 

 )(sca rE ).ˆi(exp)(]1)([d)ˆˆ(
4

 
)iexp(

1
23

2
11

INT

rrrErrrr ′−′−′′⊗− ⋅⋅ kIk
r

rk
V

m@π
  

  (5.9) 

This remarkable formula is the main result of the far-field limit and demon-
strates that the scattered electric field at a large distance from the object behaves 
as a single outgoing transverse spherical wave centered at O and propagating in 
the direction of the radial unit vector .r̂  Indeed, the scattered field decays in-
versely with distance r from the origin and 

 .0  )(ˆ sca =rEr ⋅  (5.10) 

Thus, only the -θ  and components-ϕ of the electric vector of the scattered field 
are nonzero.  

Observation
point

i

j

 
Fig. 5.2.  Spherical wavelets generated by infinitesimal volume elements cen-
tered at points i  (dashed circle) and j (dot-dashed circle). 
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Equation (5.9) can be rewritten in the form 

 ,0  )ˆ(ˆ    ,)ˆ( 
)i(exp

  )( sca
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sca
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1sca == rErrErE ⋅
r

rk
 (5.11) 

where the vector )ˆ(sca
1 rE  is independent of r and describes the angular distrib-

ution of the scattered field in the far zone. 

5.2  Theoretical criteria of the far-field limit 

Let a be the radius of the smallest circumscribing sphere of the scattering object 
centered at O. Then the criteria (5.1), (5.4), and (5.8) of the far-field limit can be 
summarized as follows: 

                                       )(1 ark −  1,  (5.12) 
                                       r  a    or    rk1 ,1ak  (5.13) 
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    or    rk1 .
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22
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The inequality (5.13) means that the distance from any point inside the object 
to the external observation point must be much greater than the wavelength. This 
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Fig. 5.3.  Scattering in the far zone of the entire object. 
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requirement ensures that at the remote observation point, the partial field scat-
tered by any differential volume element develops into an outgoing spherical 
wavelet. 

The inequality (5.13) requires that the external observation point be located 
at a distance from the object much greater than the object’s size. This ensures 
that when the partial wavelets generated by the elementary volume elements con-
stituting the object arrive at the observation point, they propagate in essentially 
the same scattering direction, Fig. 5.4, and are equally attenuated by the factor 
1/distance: 

Observation
point

i

j
O

ˆ
i

ˆ
j

r̂

ρ

ρ

 
Fig. 5.4.  The individual spherical wavefronts generated by infinitesimal volume 
elements centered at points i (dashed curve) and j (dot-dashed curve) nearly 
merge with increasing distance of the observation point from the scattering ob-
ject and become locally indistinguishable from the cumulative spherical wave-
front centered at the common origin (solid curve). The respective propagation 
directions at the observation point also become progressively close and even-
tually coincide. 
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 ρ′ˆ r̂    and   
ρ′
1

r
1    for any . INTV∈′r  (5.15) 

The meaning of the inequality (5.14) is somewhat more subtle, but becomes 
clear from inspection of Fig. 5.5, in which the observation point is shown relative 
to the smallest circumscribing sphere of the object. The phase difference between 
the straight path connecting the observation point and a point on the sphere surf-
ace, on one hand, and the path connecting the observation point and the origin, 
on the other hand, is given by  

 )(1 rk −ρ .cos
2 1

2
1 ςak

r
ak

−  (5.16) 

The second term on the right-hand side of this expression is independent of r (for 
a fixed scattering direction), whereas the variation of the first term with changing 
r is significant, unless .122

1 rak  Therefore, we can interpret the inequality 
(5.14) as the requirement that the external observation point be so far from the 
entire scatterer that the phase difference between the paths connecting the observ-
ation point and any two points of the scatterer becomes independent of r for any 
fixed scattering direction. As a consequence, the surfaces of constant phase of the 
partial wavelets generated by the elementary volume elements constituting the 
object coincide locally when they reach an observation point situated in the far 
zone, and the wavelets form a single outgoing spherical wave (compare Figs. 5.2 

Observation
point

O
a

r

ς

ρ

 
Fig. 5.5.  Interpretation of the inequality (5.14). 
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and 5.4). This implies that the entire scatterer is effectively treated as a point-like 
body located at the origin of the laboratory coordinate system.  

The relative importance of the far-zone criteria (5.12)–(5.14) changes with 
particle size relative to the wavelength. For particles much smaller than the 
wavelength ),1( 1ak  the inequality (5.12) is the most restrictive of the three. 
When ak1  is of order unity, all three criteria are roughly equivalent. For particles 
much greater than the wavelength ),1( 1ak  the inequality (5.14) becomes the 
most demanding and can “move” the far zone much farther from the particle than 
the other two inequalities. 

In view of the inequality (5.13), the inequality (5.12) can be simplified as fol-
lows: 
 .11rk  (5.17) 

Furthermore, all three criteria of far-field scattering (FFS) can be written as the 
following single inequality: 

 ,,1max )( 2
1 2

1 xrk  (5.18) 

where akx 1=  is the dimensionless so-called size parameter of the object.  

5.3  Scattering dyadic and amplitude scattering matrix 

Assuming that the incident field is a plane electromagnetic wave with the time-
independent amplitude given by 

 )ˆi(exp  )( inc
1
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0

inc rnErE ⋅k=  (5.19) 

and using Eqs. (4.24) and (B.21), we have in the far-field limit: 
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where rn ˆˆ sca =  (see Fig. 5.3) and A  is the so-called scattering dyadic. Although 
A  depends on the incidence and scattering direction, it is independent of .inc

0E  It 
follows from Eqs. (5.10) and (5.20) that 

 .  )ˆ ,ˆ(ˆ incscasca 0nnn =A⋅  (5.21) 

However, because the incident field given by Eq. (5.19) is a transverse wave with 
electric field vector perpendicular to the direction of propagation, the dot product 

incincsca ˆ)ˆ,ˆ( nnn ⋅A  is not defined by Eq. (5.20). To complete the definition, we 
take this product to be zero: 

 .  ˆ)ˆ ,ˆ( incincsca 0nnn =⋅A  (5.22) 

Therefore, the final expression for the scattering dyadic in terms of the dyadic 
transition operator is as follows:  
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The reader can easily verify (cf. Problem 4.4) that the elements of the scattering 
dyadic have the dimension of length.  

According to the above definition, the scattering dyadic describes FFS of a 
plane electromagnetic wave. Although this may appear to suggest that the useful-
ness of the scattering dyadic is rather limited, its actual range of applicability is 
much wider. Indeed, it follows from the preceding discussion that the quantity 

)ˆ ,ˆ( incsca nnA  can be used to compute FFS of any incident field as long as the lat-
ter is expandable in elementary plane waves.   

Equations (5.21) and (5.22) show that only four out of the nine components 
of the scattering dyadic are independent in the spherical coordinate system cen-
tered at the origin, Fig. 5.3. It is therefore convenient to introduce the 22×  so-
called amplitude scattering matrix S, which expresses the θ - and ϕ-components 
of the scattered spherical wave in the θ - and ϕ-components of the incident plane 
wave: 
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where E denotes a two-component column formed by the θ - and ϕ-components 
of the electric field vector: 
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The elements of the amplitude scattering matrix have the dimension of length and 
are expressed in terms of the scattering dyadic as follows: 

                                                 ,ˆˆ incsca
11 θθ ⋅⋅ AS =  (5.26) 

                                                 ,ˆˆ incsca
12 φθ ⋅⋅ AS =  (5.27) 

                                                 ,ˆˆ incsca
21 θφ ⋅⋅ AS =  (5.28) 

 .ˆˆ incsca
22 φφ ⋅⋅ AS =  (5.29) 

Besides the wave number, the amplitude scattering matrix depends on the direc-
tions of incidence and scattering, as well as on the size, morphology, composition, 
and orientation of the scattering object with respect to the coordinate system. It 
also depends on the choice of the origin of the coordinate system relative to the 
object. If known, the amplitude scattering matrix gives the scattered and thus the 
total field, thereby providing a complete description of the scattering pattern in 
the far zone. 
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Equation (5.20) describes FFS in a tensorial form independent of the orienta-
tion of the laboratory reference frame. Unlike the scattering dyadic, the elements 
of the amplitude scattering matrix change if the reference frame is rotated with-
out a shift of its origin. The corresponding rotation transformation rule is derived 
in Section 2.4 of MTL1, assuming that the rotation is parameterized in terms of 
the Euler angles discussed in Appendix C.  

It should be kept in mind that if a transverse wave propagates along the z-
axis then the θ - and ϕ-components of the electric field vector are determined by 
the specific choice of the meridional plane. Therefore, the amplitude scattering 
matrix explicitly depends on incϕ  and ,scaϕ  even when 0inc =θ  or π  and/or scaθ  
= 0 or .π   

5.4  Reciprocity 

A fundamental property of the scattering dyadic is the Saxon’s reciprocity rel-
ation (Saxon 1955a): 

 ,)]ˆ ,ˆ([  )ˆ ,ˆ( Tincscascainc nnnn AA =−−  (5.30) 

where T denotes a transposed dyadic (see Appendix A). It is easy to see that this 
relation can be interpreted as follows: if the incidence and scattering directions 
are reversed and interchanged, then the new scattering dyadic is obtained by 
transposing the original scattering dyadic (Fig. 5.6). The derivation of Eq. (5.30) 
can be found in Section 2.3 of MTL1 or Section 3.4 of MTL2.   

The reciprocity relation for the amplitude scattering matrix follows from Eqs. 
(5.26)–(5.30): 
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(Problem 5.3). An interesting consequence of reciprocity is the so-called back-
scattering theorem (van de Hulst 1957), which directly follows from Eq. (5.31), 
after substituting nn ˆˆ inc =  and :ˆˆ sca nn −=  

(a) (b)
inc

n̂

sca
n̂

inc
n̂

sca
n̂

 
Fig. 5.6.  (a) Direct scattering configuration.  (b) Reciprocal scattering configuration.  
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Because of the universal nature of reciprocity, Eqs. (5.30)–(5.32) are impor-
tant tests in computations or measurements of light scattering by small particles: 
violation of reciprocity means that the computations or measurements are incor-
rect or inaccurate. Alternatively, the use of reciprocity can substantially shorten 
required computer time or reduce the measurement effort because one may calc-
ulate or measure light scattering for only half of the scattering geometries and 
then use Eqs. (5.30) and (5.31) for the reciprocal geometries. Reciprocity also 
plays a fundamental role in the effect of WL of electromagnetic waves in discrete 
random media, discussed in Chapter 21. 

Equations (5.30) and (5.31) are valid provided that the permeability, permit-
tivity, and conductivity of the scattering object are symmetric tensors. If the scat-
tering object and/or the surrounding medium consist of magneto-optic materials 
and are placed in a constant magnetic field B, then Eqs. (5.30) and (5.31) must 
be replaced by 

               ,)] ;ˆ ,ˆ([  ) ;ˆ ,ˆ( Tincscascainc BB nnnn AA =−−−  (5.33) 
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(Dolginov et al. 1995). 

5.5  Scale invariance rule 

A fundamental property of frequency-domain electromagnetic scattering is the 
so-called scale invariance rule (also referred to as the principle of electromag-
netic similitude). The general derivation of this rule based on the Lippmann–
Schwinger equation (4.25) can be found in Section 3.5 of MTL2. In application 
to the scattering dyadic and the amplitude scattering matrix, the scale invariance 
rule implies the following. If one multiplies all linear dimensions of the scatter-
ing object by a constant factor f (thereby not changing the shape and morphology 
of the object and its orientation with respect to the coordinate system) and multi-
plies the wave number 1k  by a factor ,1 f  then the dimensionless ratios 

aA )ˆ ,ˆ( incsca nn  and a)ˆ ,ˆ( incsca nnS  do not change, where a is any linear dimen-
sion of the object.  

In other words, the dimensionless ratios aA )ˆ ,ˆ( incsca nn  and a)ˆ ,ˆ( incsca nnS  
do not change if the dimensionless product ,1ak  traditionally called the size par-
ameter, remains the same. The size parameter can also be expressed in terms of 
the wavelength in the exterior region 11 2 kπλ =  as .2 1λπax =  This means that 
multiplying the particle size and the wavelength by the same factor f (see Fig. 
5.7) does not change the dimensionless scattering characteristics aA )ˆ ,ˆ( incsca nn  
and .)ˆ ,ˆ( incsca annS   
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The scale invariance rule can be very helpful in practice because it makes a 
single computation or measurement applicable to all couplets {size, wavelength} 
having the same ratio of size to wavelength, provided that the relative refractive 
index also remains the same. In particular, the scale invariance rule is the basic 
physical principle of the so-called microwave analog technique. The latter in-
volves measurements of microwave scattering by easy-to-manufacture centi-
meter-sized objects followed by extrapolation to other wavelengths (e.g., visible 
or infrared) by keeping the ratio of size to wavelength fixed (Section 16.3.2).     

Problems 

5.1:   Derive Eq. (5.2).  

5.2:   Discuss the implications of the criteria (5.12)–(5.14) for scattering objects 
comparable to and greater than the wavelength. 

5.3:   Derive Eq. (5.31).   

5.4: Verify that the backscattering dyadic is symmetric:  

 .)]ˆ ,ˆ([  )ˆ ,ˆ( Tnnnn −=− AA  (5.35) 

 Notes 

Until quite recently, the entire discipline of electromagnetic scattering by part-
icles had essentially been limited to the far-field approximation (see, e.g., van de 

λf

a

fa

1λ1  
Fig. 5.7.  Scale invariance rule. 
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Hulst 1957; Kerker 1969; Bohren and Huffman 1983). However, rapid advances 
in nanoscience and nanotechnology have resulted in the emergence of the disci-
pline of near-field scattering (e.g., Novonty and Hecht 2012). Furthermore, the 
recent derivation of the century-old radiative transfer equation directly from the 
MMEs has revealed the RTT to be an expressly near-field theory, even though it 
deals with a group of particles located in the far zones of each other (Chapter 19).  
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66  
The Foldy equations 

The formalism described in Chapters 4 and 5 applies equally to a scatterer in the 
form of a single body and to a fixed multi-particle group. However, when the 
scattering object is a cluster consisting of touching and/or separated distinct 
components, then it is often convenient to use a modified formalism in which the 
total scattered field is explicitly represented as a vector superposition of the par-
tial fields contributed by the cluster components. This approach is based on the 
system of integral so-called Foldy equations (FEs) which follow directly from the 
MMEs, automatically incorporate all boundary conditions and the radiation cond-
ition at infinity, and rigorously describe the scattered electric field at any point in 
space. In this chapter, we will derive both the exact form of the FEs and an     
approximate far-field version. The latter applies to a group of widely separated 
particles and offers significant simplifications essential for the development of 
microphysical theories of radiative transfer and WL.  

6.1  Vector form of the Foldy equations 

Consider electromagnetic scattering by a fixed group of N finite particles collect-
ively occupying the interior region ,INTV  according to Eq. (4.1). As before, we 
assume that the particles are imbedded in an infinite, homogeneous, linear, iso-
tropic, and nonabsorbing medium. We begin by re-writing Eq. (4.23) as follows:    

 ,    ),() ,()(d)()( 33inc

3
ℜ∈′′′′+=

ℜ
rrErrrrrErE ⋅GU@  (6.1)  

where the integration is performed over the entire space, the potential function 
U(r) is given by 

 ,    ,)(  )( 3

1
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=

rrr
N

i
iUU  (6.2) 

and )(riU  is the ith-particle potential function. The latter is given by 
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where 
 12 )(  )( kk ii rr =m  (6.4) 

is the refractive index of particle i relative to that of the host medium. All pos-
ition vectors originate at the origin O of an arbitrarily chosen laboratory coord-
inate system.   

We will now show that the solution of Eq. (6.1) everywhere in space can be 
expressed as follows: 
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where the electric field )(rEi  “exciting” particle i is given by 
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the )(exc rEij  are partial exciting fields given by 
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and iT  is the ith-particle dyadic transition operator with respect to the laboratory 
coordinate system and satisfies the following Lippmann–Schwinger equation: 

   . ,    ),,(),(d )()()(  ),( 3
ii

V
iii VTGUIUT

i

∈′′′′′′′′+′−=′ rrrrrrrrrrrrr ⋅@δ  (6.8) 

We first introduce the ith potential dyadic centered at the origin of the laboratory 
reference frame, 

 ,)()(  ),( IUU ii rrrrr ′−=′ δ  (6.9) 

and rewrite Eqs. (6.1) and (6.5)–(6.8) in the following compact operator form: 
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where  
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and 

 ).(),(d  ˆ 3 rErrr ′′′= ⋅BEB @  (6.15) 

Note that the ordering of operators in Eqs. (6.10)–(6.13) is important and cannot 
be changed at will. Equations (6.14) and (6.13) yield 
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Let us now evaluate the right-hand side of Eq. (6.10). Substituting sequentially 
Eqs. (6.11), (6.16), and (6.12) and then again Eq. (6.11) gives  
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Thus, the substitution of Eqs. (6.11)–(6.13) into the right-hand side of Eq. (6.10) 
yields the left-hand side, which proves that Eqs. (6.5)–(6.7) indeed give the sol-
ution of the VIE (6.1).   

Equations (6.5)–(6.7) are a direct consequence of the frequency-domain 
MMEs and represent the full vector form of the FEs. Importantly, iT  is the dy-
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adic transition operator of the ith particle in the absence of all the other particles 
(cf. Eqs. (4.25) and (6.8)). 

6.2  Neumann expansion of the total field 

The FEs (6.5)–(6.8) are mathematically equivalent to the VIE (4.23) and hardly 
offer computational advantages. There are three factors, however, which make 
them important. First, the FEs serve as a precursor to a highly efficient numer-
ically exact technique called the superposition T-matrix method (Litvinov and 
Ziegler 2008). Second, they allow one to introduce the Neumann expansion of 
the total field playing a key role in the theories of radiative transfer and WL. 
Third, as will be demonstrated in the following section, they can be used to in-
corporate the notion of the single-particle far field in the computation of the near 
field of a multi-particle group.  

The Neumann expansion is based on the fact that iT  for each i is an individ-
ual property of the ith particle computed as if this particle were alone rather than 
a member of the group. Indeed, iterating Eq. (6.12) yields 
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whereas the substitution of Eq. (6.18) in Eq. (6.11) results in the following ex-
pansion, traditionally called in mathematics the Neumann series:  

    ,scainc EEE +=   (6.19) 
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If one truly wishes to discuss electromagnetic scattering by a multi-particle 
group in terms of “multiple scattering,” it is these latter formulas that can be in-
terpreted, purely mathematically, as an order-of-scattering expansion of the total 
field. Indeed, the N dyadic transition operators iT̂  (i = 1, …, N ) are independent 
of each other, and each of them is a unique and complete electromagnetic ident-
ifier of the corresponding particle. Therefore, the term incˆˆ ETG i  might be thought 
of as the partial scattered field at the observation point generated by the ith part-
icle in response to the excitation by the incident field only, incˆˆˆˆ ETGTG ji  is the 
partial field generated by the same particle in response to the excitation caused by 
the jth particle in response to the excitation by the incident field, etc. This implies 
that the first term on the right-hand side of Eq. (6.20) might be interpreted as the 
sum of all single-scattering contributions, the second term as the sum of all dou-
ble-scattering contributions, etc. The first term on the right-hand side of Eq. 
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(6.19) represents the zeroth order of scattering, i.e., the incident field. 
 It is important to recognize, however, that although multiple scattering, as 

embodied by Eqs. (6.19) and (6.20), can be a useful mathematical abstraction, it 
is not a real physical phenomenon wherein the incident light is scattered sequen-
tially by one, two, three or more particles before reaching the observation point. 
For example, the term incˆˆˆˆˆˆ ETGTGTG lji  on the right-hand side of Eq. (6.20) cannot 
be interpreted by saying that “the incident wave approaches particle l, gets scat-
tered by particle l towards particle j, approaches particle j, gets scattered by part-
icle j towards particle i, approaches particle i, gets scattered by particle i towards 
the observation point, and finally arrives at the observation point.” Indeed, it fol-
lows from Eqs. (6.6) and (6.7) that all mutual excitations )(rEij  occur simultane-
ously and are not temporally discrete and ordered events. Furthermore, they are 
not, in general, electromagnetic waves and do not propagate in a specific direc-
tion. We can thus conclude that Eqs. (6.19) and (6.20) are nothing more than a 
mathematical expansion of the total field in a certain series.  

Furthermore, even though we have used in this chapter the “multi-particle 
group” terminology, the reader can easily verify that our derivation of the FEs 
applies to any set of N finite, nonoverlapping volume elements with refractive 
indices different from that of the unbounded host medium. Therefore, the interior 
region VINT in the FEs can be, for example, a single spheroid subdivided arbitrar-
ily into N nonoverlapping volume elements Vi. Of course, no one would claim 
that a spheroid is a multiple-scattering object, which demonstrates again that the 
FEs and their iterative order-of-scattering solution do not describe multiple scat-
tering as a real physical phenomenon. 

To the best of the author’s knowledge, the convergence of the Neumann ex-
pansion (6.19)–(6.20) has not been proven in general. As before, we will assume 
the convergence as a plausible mathematical hypothesis.  

6.3  Far-field Foldy equations 

Although the FEs can be solved numerically in order to compute the electric field 
scattered by a finite cluster consisting of arbitrarily positioned components, the 
solution becomes increasingly problematic and eventually impracticable with 
increasing number of cluster components and/or their sizes relative to the wave-
length. To make the problem more manageable, we will often assume that:  

● the particles forming the group are separated widely enough that each of 
them is located in the far zones of all the other particles; and  

● the observation point is located in the far zone of any constituent particle 
(but not necessarily in the far zone of the entire group). 

Although these assumptions define a rather special type of scattering object, they 
lead to a drastic simplification of the FEs and will eventually enable us to dev-
elop the microphysical theories of radiative transfer and WL. 
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Indeed, according to Eqs. (4.24), (5.11), and (6.7), the contribution of the jth 
particle to the field “exciting” the ith particle in Eq. (6.6) can now be represented 
as a simple outgoing spherical wavelet centered at the origin of particle j: 

         )(exc rEij )ˆ()( 1 jijjrG rE   (6.21a) 
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Here,  

 ,)i(exp)( 1

r
rkrG =  (6.22) 

 ,0ˆ    ),ˆ()( 1 == ijijijijijij RG REREE ⋅  (6.23) 

 ,ˆ    ,ˆ
ij

ij
ij

j

j
j Rr

R
R

r
r ==  (6.24) 

 || iijjr RrR −+= ,
2

||)(ˆ
2

ij

i
iijij R

R RrRrR −+−+ ⋅  (6.25) 

and the vectors r, rj, R i, R j, and R ij are shown in Fig. 6.1a. Note that we use a 
lower case bold letter to denote a vector ending at an observation point, a capital 
bold letter to denote a vector ending at a particle origin, and a caret above a vect-
or to denote a unit vector in the corresponding direction.  

Obviously, Eij is the partial exciting field at the origin of the ith particle (i.e., 
at )iRr =  generated by the jth particle. Thus, Eqs. (6.6) and (6.21b) show that 
each particle is excited by the incident field and the superposition of locally plane 
waves with amplitudes ijiijk ERR )ˆiexp( 1 ⋅−  and propagation directions :ˆ ijR  
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where we have assumed that the incident field is a plane electromagnetic wave 
given by 
 .0ˆ    ,)ˆiexp(  )( inc
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According to Eq. (5.20), the outgoing spherical wave contributed by the jth 
particle in response to a plane-wave excitation of the form )ˆiexp( 1

inc
0 jk rsE ⋅  is 

given by ,)ˆ,ˆ()( inc
0Esr ⋅jjj ArG  where jr  originates at jO  and )ˆ,ˆ( srjjA  is the jth 

particle scattering dyadic centered at .jO  To exploit this fact, we must rewrite 
Eq. (6.26) for particle j with respect to the jth-particle coordinate system centered 
at ,jO  Fig. 6.1a. Taking into account that jj Rrr +=   yields 
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The electric field at iO  generated in response to this excitation is simply     
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Equating Eq. (6.29) with the right-hand side of Eq. (6.21b) evaluated for iRr =  
finally yields a system of linear algebraic equations for determining the partial 
exciting fields :ijE  
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Fig. 6.1.  Scattering by widely separated particles. The local origins Oi and Oj 
are chosen arbitrarily inside particles i and j, respectively. 
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This system is much simpler than the original system of integral equations (6.6)–
(6.7) and can be solved readily on a computer, provided that N is not too large. 

After the system (6.30) has been solved, one can find the electric field excit-
ing each particle and the total field. Indeed, Eq. (6.26) gives, for a point :iV∈′′r  
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(see Fig. 6.1b), which is a vector superposition of plane waves. Substituting 
0r =′′i  in Eq. (6.31) gives a simple formula for the exciting field at the origin of 

particle i:  
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Finally, substituting Eq. (6.31) in Eq. (6.5) and recalling the mathematical form 
of the far-field response of a particle to a plane-wave excitation, we derive for the 
total electric field: 
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where the observation point r, Fig. 6.1b, is assumed to be in the far zone of any 
particle forming the group.  

Equation (6.33) can also be re-written as follows: 
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These formulas show that the total field at any observation point located 
sufficiently far from any particle in the sparse multi-particle group is the super-
position of the incident plane wave and N partial spherical wavelets contributed 
by the N particles. The observation point is not required to be in the far zone of 
the entire group. It can be anywhere in space (e.g., between particles i and j in 
Fig. 6.1a) as long as it is in the far zones of all the particles forming the group. 

Even though each component of the scattered field (6.35) is a transverse elect-
romagnetic wave, the scattered field itself is not, in general, a transverse electro-
magnetic wave. This is not surprising, since Eqs. (6.34) and (6.35) describe the 
near field of the multi-particle group despite the underlying assumption that the 
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observation point is located in the far zone of any constituent particle. The scat-
tered field (6.35) becomes a transverse electromagnetic wave only if the observ-
ation point is located in the far zone of the entire group, as defined by the criteria 
(5.12)–(5.14).  

6.4  Far-field Neumann expansion of the total field 

Let us now rewrite Eqs. (6.33) and (6.30) in a compact symbolic form: 
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where  
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Iterating Eq. (6.38) yields 
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whereas the substitution of Eq. (6.46) in Eq. (6.37) gives the far-field Neumann 
expansion of the total electric field:  
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The last two formulas represent the starting point in the development of the 
microphysical theories of radiative transfer and WL. 

Problems 

6.1:   What are the formal conditions of applicability of Eqs. (6.21a) and (6.21b)? 

6.2: What are the formal conditions of applicability of Eq. (6.33)?  

Notes and further reading 

A simplified version of Eqs. (6.5)–(6.7) was proposed phenomenologically by 
Leslie Foldy (László Földi, 1919–2001) to describe acoustic scattering by a sys-
tem of isotropically scattering centers (Foldy 1945). Various applications of 
Foldy’s approach were discussed by Lax (1951). A rigorous derivation of the 
quantum-mechanical version of these equations from the Schrödinger equation 
was given by Kenneth M. Watson (born in 1921) (see Watson (1953) as well as 
Section 11.3 of Goldberger and Watson (1964)). The case of electromagnetic 
scattering by a group of widely separated electrons was considered by Watson 
(1969). The general electromagnetic FEs in the form of Eqs. (6.5)–(6.7) were 
derived by Prishivalko et al. (1984), using Watson’s approach.  

The Neumann expansion (also known as the Liouville–Neumann or Liou-
ville–Neumann–Volterra series) was introduced by the French mathematician 
Joseph Liouville (1809–82) in 1837 and by the German mathematician Carl 
Gottfried Neumann (1832–1925) 30 years later. The Italian mathematician Vito 
Volterra (1860–1940) used this expansion in his general theory of integral equa-
tions as a technique for solving Fredholm and Volterra integral equations of the 
second kind. The unknown function is expanded in a power series in terms of so-
called iterated kernels. The method is applicable whenever the series converges 
(see Chapter 3 of Yosida (1960) and Section 16.3 of Arfken and Weber (2005) 
for further details).         



 

72 

77 

The Stokes parameters 

Because of the high frequency of time-harmonic oscillations, traditional optical 
instruments cannot measure the instantaneous electric and magnetic vectors assoc-
iated with an electromagnetic field. Furthermore, they cannot measure time av-
erages of linear combinations of the electric and magnetic field vectors because 
accumulating and averaging a signal proportional to ) ,( trE  or ) ,( trH  over a 
time interval long compared with the period of time-harmonic oscillations would 
yield a zero net result: 
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Therefore, the majority of optical instruments measure quantities that have the 
dimension of energy flux, are bilinear/quadratic forms in the electric and/or mag-
netic field vector components, and involve terms proportional to either tω2sin  or 

.cos2 tω  In the framework of the frequency-domain formalism, all these quant-
ities are defined in such a way that the time-harmonic factor )iexp( tω−  vanishes 
upon multiplication by its complex-conjugate value: .1)]i()[expi(exp ≡−− ∗tt ωω  
This implies that in order to make the theory of electromagnetic scattering appli-
cable to analyses of actual optical observations, the scattering phenomenon must 
be characterized in terms of appropriately defined derivative quantities that can 
be measured directly. It is, thus, clear that the concept of an actual observable 
must be central to the discipline of light scattering by particles and particle 
groups. 
 We have seen in Section 2.4 that an important vectorial characteristic of the 
electromagnetic field at a point in space is the Poynting vector (2.50). However, 
this is not the only quantity that has the dimension of energy flux, which implies 
that the Poynting vector does not carry all the information about the electromag-



 The Stokes parameters 73 

netic field that can potentially be measured with an optical instrument. For exam-
ple, it is easy to see from Eq. (3.20) that two plane electromagnetic waves with 
different complex vectors 0E′  and 0E ′′  can have identical Poynting vectors pro-
vided that .|||| 00 EE ′′=′  The measurement of the Poynting vector would not dis-
criminate between these two waves, whereas the measurement of a quadratic 
form in the electric and/or magnetic field vector components other than ∗

00 EE ⋅  
could.  

We will see in the following chapters that as far as an actual optical meas-
urement is concerned, a more general and useful characteristic of an arbitrary 
electromagnetic field is the so-called Poynting–Stokes tensor (PST), defined as 

). ,() ,() ,( ttt rrr HE ⊗=P  In this chapter, we will discuss an important particu-
lar case of the PST formalism which dates back to Sir George Gabriel Stokes. He 
proposed the use of four real-valued quantities that have the dimension of mono-
chromatic energy flux and fully characterize a transverse electromagnetic wave 
inasmuch as it is subject to practical optical analysis. These quantities, tradition-
ally referred to as the Stokes parameters, form the four-component so-called 
Stokes column vector and carry information about both the intensity and the po-
larization state of the wave. 

In this chapter we will define the Stokes parameters of a plane or spherical 
wave propagating in a homogeneous nonabsorbing medium and explain their so-
called ellipsometric content. 

7.1  The Stokes parameters of a plane electromagnetic wave 

To define the Stokes parameters, we use polar spherical coordinates associated 
with the local right-handed Cartesian coordinate system having its origin at the 
observation point, as shown in Fig. 7.1. Assuming that the medium is homogen-
eous and lossless, we specify the direction of propagation of a plane electromag-
netic wave by a unit vector n̂  or, equivalently, by a couplet {θ,ϕ}, where, as 
before, θ ] ,0[ π∈  is the polar (zenith) angle measured from the positive z-axis 
and ϕ )2 ,0[ π∈  is the azimuth angle measured from the positive x-axis in the 
clockwise direction when looking in the direction of the positive z-axis. Since the 
component of the electric field vector along the direction of propagation n̂  is 
equal to zero, the electric field at the observation point can be expressed as E~ = 

,~~
ϕθ EE +  where θE

~  and ϕE
~  are the θ - and ϕ-components of the electric field 

vector, respectively. The component θ̂~  ~
θθ E=E  lies in the meridional plane (i.e., 

the plane through n̂  and the z-axis), whereas the component = ~
ϕE φ̂~

ϕE  is per-
pendicular to this plane.1 The θ̂  and φ̂  are the corresponding unit vectors such 
that .ˆˆ  ˆ φθn ×=  The magnetic field can be decomposed similarly.  

–––––––––– 
1  In the microwave remote-sensing literature, θE

~  and ϕE
~  are often denoted as v

~E  and 
h

~E  and called the vertical and horizontal electric field vector components, respectively 
(e.g., Ulaby and Elachi 1990; Tsang et al. 2000). 
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The specification of a unit vector n̂  uniquely determines the meridional 
plane of the propagation direction, except when n̂  is oriented along the positive 
or negative direction of the z-axis. Although it may seem redundant to specify ϕ 
in addition to θ  when 0  =θ  or ,π  the unit vectors θ̂  and φ̂  and thus the elect-
ric field vector components θE

~  and ϕE
~  still depend on the implicit orientation of 

the meridional plane. Therefore, we will always assume that the specification of 
n̂  implicitly includes the specification of the appropriate meridional plane in 
cases when n̂  is parallel to the z-axis. To minimize confusion, we will often 
specify explicitly the direction of propagation using the angles θ and ϕ; the latter 
uniquely defines the meridional plane when 0=θ  or .π  

Consider a plane electromagnetic wave propagating in a homogeneous med-
ium without dispersion and losses and given by  

  )iˆi(exp  ),(~
0 tkt ω−= rnEr ⋅E  (7.2) 

with a real-valued wave number k. The magnetic field is then given by 
),,(~ˆ)(),(~ 21 tt rnr EH ×= μ,  which implies that ,(~)(),(~ 21 rr ϕθ μ EH ,−=t t) 

and ).,(~)(),(~ 21 tt rr θϕ μ EH ,=  Therefore, a simple complete set of linearly in-
dependent quadratic combinations of field components with nonzero time av-
erages can consist of the following four quantities:  

  ,  )],(~[),(~
00
∗∗ = θθθθ EEtt rr EE    ,  )],(~[),(~

00
∗∗ = ϕθϕθ EEtt rr EE    

  ,  )],(~[),(~
00
∗∗ = θϕθϕ EEtt rr EE    .  )],(~[),(~

00
∗∗ = ϕϕϕϕ EEtt rr EE    

ϕ

θ

x

yO

z

ϕ̂

n̂ ×= ϕ̂θ̂
θ̂

 
Fig. 7.1.  Local coordinate system used to describe the direction of propagation 
and the polarization state of a plane electromagnetic wave at the observation 
point O. 
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Furthermore, the products of these quantities and 21)(2
1 μ,  have the requisite 

dimension of monochromatic energy flux. It is, therefore, natural to define the 
Stokes parameters using these products as building blocks. 
 Specifically, the real-valued Stokes parameters I, Q, U, and V are defined as 
the elements of a 14×  Stokes column vector I, as follows (MTL1, MTL2): 
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Obviously, .0≥I  By virtue of being real-valued and having the dimension of 
energy flux, the Stokes parameters form a complete set of quantities needed to 
characterize a plane electromagnetic wave, inasmuch as it is subject to actual opt-
ical analysis. This means that: 

● Any other observable quantity is a linear combination of the four Stokes    
parameters.  

● It is impossible to distinguish between two plane waves with the same values 
of the Stokes parameters and the same angular frequencies using a traditional 
optical device (the so-called principle of optical equivalence).  

Indeed, the two complex amplitudes )i(exp0 θθθ ∆aE =  and )i(exp0 ϕϕϕ ∆aE =  
are characterized by four real numbers: the nonnegative amplitudes θa  and ϕa  
and the phases θ∆  and .∆∆∆ θϕ −=  The Stokes parameters carry information 
about the amplitudes and the phase difference ,∆  but not about .θ∆  The latter is 
the only quantity that could be used to distinguish different waves with the same 

,θa ,ϕa  and ∆  (and thus the same Stokes parameters), but it vanishes when a 
field vector component is multiplied by the complex conjugate value of the same 
or another field vector component. 
 Despite some differences in notation, our definition of the Stokes parameters 
(7.3) is consistent mathematically with that in Chandrasekhar (1950), van de 
Hulst (1957), Hansen and Travis (1974), Bohren and Huffman (1983), Kokha-
novsky (2003), Hovenier et al. (2004), Doicu et al. (2006), and Borghese et al. 
(2007). The conventional definition of the Stokes parameter U in the microwave 
remote-sensing literature differs from ours by a minus sign (e.g., Tsang et al. 
1985, 2000; Ulaby and Elachi 1990; Mätzler 2006; Cloude 2010).       
 The first Stokes parameter, I, is the intensity introduced in Section 3.1, with 
the explicit definition here applicable to a nonabsorbing homogeneous medium. 
The Stokes parameters Q, U, and V describe the polarization state of the wave, as 
will be discussed Section 7.3. It is easy to verify (see Problem 7.1) that the 
Stokes parameters of a plane monochromatic wave are not completely independ-
ent, but rather are related by the quadratic so-called Stokes identity 
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  .  2222 VUQI ++=  (7.4) 

We will see in the following chapter, however, that this identity may not hold for 
a polychromatic beam of light. 

7.2  Rotation transformation rule for the Stokes parameters 

It is important to recognize that the Stokes parameters of a plane electromagnetic 
wave are always defined with respect to a specific reference plane containing the 
direction of wave propagation. If the reference plane is rotated about the direc-
tion of propagation then the Stokes parameters are modified according to a rota-
tion transformation rule, which can be derived as follows. Consider a rotation of 
the coordinate axes θ  and ϕ  through an angle πη 2    0 <≤  in the clockwise di-
rection, when looking in the direction of propagation (Fig. 7.2). The transform-
ation rule for the rotation of a two-dimensional coordinate system yields the fol-
lowing transformation rule for the electric field vector components: 

                                   ,sincos  000 ηη ϕθθ EEE +=′  (7.5) 

  ,cossin  000 ηη ϕθϕ EEE +−=′  (7.6) 

where the primes denote the vector components with respect to the new reference 
frame. It then follows from Eq. (7.3) that the rotation transformation rule for the 
Stokes column vector is 

  ,)(  ILI η=′  (7.7) 
where  

′

′

η

n̂

O
η

ϕ̂

ϕ̂

θ̂θ̂  
Fig. 7.2.  Rotation of the θ- and ϕ-axes through an angle 0  ≥η  around n̂  in 
the clockwise direction when looking in the direction of propagation. 
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is the so-called Stokes rotation matrix for angle .η  It is easy to verify that an 
πη   =  rotation does not change the Stokes parameters. 

7.3  Ellipsometric content of the Stokes parameters 

Writing, as before, 

  ),i(exp  0 θθθ ∆aE =  (7.9) 
                                                  )i(exp  0 ϕϕϕ ∆aE =  (7.10) 

with real nonnegative amplitudes θa  and ϕa  and real phases θ∆  and ,ϕ∆  as 
well as recalling the definition (7.3), we obtain for the Stokes parameters 

                                              ),(  
2
1  22

ϕθμ
aaI += ,  (7.11)  

                                              ),(  
2
1  22

ϕθμ
aaQ −= ,  (7.12) 

  ,cos    ∆
μ ϕθ aaU ,−=  (7.13) 

                                              ,sin   ∆
μ ϕθ aaV ,=  (7.14) 

where 

  .  ϕθ ∆∆∆ −=  (7.15) 

Substituting Eqs. (7.9) and (7.10) in Eqs. (2.21) and (7.2), we derive for the 
real electric-field vector components: 

                                           ), (cos  ) ,( tat ωδθθθ −=rE  (7.16) 
  ),(cos  ) ,( tat ωδϕϕϕ −=rE  (7.17) 

where 

                                                   ,ˆ  rn ⋅k+= θθ ∆δ  (7.18) 

  .ˆ  rn ⋅k+= ϕϕ ∆δ  (7.19) 
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At any fixed point O in space, the endpoint of the real electric field vector given 
by Eqs. (7.16)–(7.19) describes an ellipse with specific major and minor axes 
and orientation (see Fig. 7.3a). The major axis of the ellipse makes an angle ζ  
with the positive direction of the ϕ-axis such that ).,0[  πζ ∈  By definition, this 
orientation angle is obtained by rotating the ϕ-axis in the clockwise direction 
when looking in the direction of propagation, until it is directed along the major 
axis of the ellipse. The ellipticity is defined as the ratio of the minor to the major 
axes of the ellipse and is usually expressed as |,tan| β  where ].4,4[ ππβ −∈  
By definition, β  is positive when the real electric field vector at O rotates clock-
wise, as viewed by an observer looking in the direction of propagation (Fig. 
7.3a). The polarization for positive β  is called right-handed, as opposed to the 
left-handed polarization corresponding to the anti-clockwise rotation of the elect-
ric field vector. 
 To express the orientation ζ  of the ellipse and the ellipticity |tan| β  in terms 
of the Stokes parameters, we first write the equations representing the rotation of 
the real electric field vector at O in the form 

                                   ),(sinsin  ) ,( tatq ωδβ −=rE  (7.20) 

  ),(coscos  ) ,( tatp ωδβ −=rE  (7.21) 

where pE  and qE  are the electric field vector components along the major and 
minor axes of the ellipse, respectively, Fig. 7.3a. One easily verifies that a pos-
itive (negative) β  indeed corresponds to the right-handed (left-handed) polariza-
tion. The connection between Eqs. (7.16)–(7.19) and Eqs. (7.20)–(7.21) can be 
established by using the simple transformation rule for rotation of a two-
dimensional coordinate system: 

  ,sin) ,(cos) ,(  ) ,( ζζθ ttt pq rrr EEE +−=  (7.22) 

                               .cos) ,(sin) ,(  ) ,( ζζϕ ttt pq rrr EEE −−=  (7.23) 

By equating the coefficients of tωcos  and tωsin  in the expanded Eqs. (7.16) 
and (7.17) with those in Eqs. (7.22) and (7.23), we obtain 

                  ,sincoscoscossinsin  cos ζδβζδβδθθ aaa +−=  (7.24) 
                  ,sinsincoscoscossin  sin ζδβζδβδθθ aaa +=  (7.25) 
  ,coscoscossinsinsin  cos ζδβζδβδϕϕ aaa −−=  (7.26) 
                  .cossincossincossin  sin ζδβζδβδϕϕ aaa −=  (7.27) 

Squaring and adding Eqs. (7.24) and (7.25) as well as Eqs. (7.26) and (7.27) 
gives 

  ),sincoscos(sin  222222 ζβζβθ += aa  (7.28) 
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(a) Polarization ellipse

(b) Elliptical polarization (V≠ 0)

(Q = U = 0)

Q < 0 U = 0 V < 0 Q > 0 U = 0 V > 0 Q = 0 U > 0 V < 0 Q = 0 U < 0 V > 0

Q = −I U = 0 Q = I U = 0 Q = 0 U = = 0 U = −I

V = − = I

q θ

p

ϕ

ζβ

I Q

I V

E

(c) Linear polarization (V = 0)

(d) Circular polarization

 
Fig. 7.3.  Ellipse described by the tip of the real electric vector at a fixed point O 
in space (top panel) and particular cases of elliptical, linear, and circular po-
larization. The plane electromagnetic wave propagates towards the reader. 
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 ).coscossin(sin  222222 ζβζβϕ += aa  (7.29) 

Multiplying Eqs. (7.24) and (7.26) as well as Eqs. (7.25) and (7.27) and adding 
yields 

  .2sin2cos  cos 2

2
1 ζβ∆ϕθ aaa −=  (7.30) 

Similarly, multiplying Eqs. (7.25) and (7.26) as well as Eqs. (7.24) and (7.27) 
and subtracting gives 

  .2sin  sin 2

2
1 β∆ϕθ aaa −=  (7.31) 

Comparing Eqs. (7.11)–(7.14) with Eqs. (7.28)–(7.31), we finally derive 

                                               , 
2
1  2aI

μ
,=  (7.32) 

  ,2cos2cos  ζβIQ −=  (7.33) 
                                               ,2sin2cos  ζβIU =  (7.34) 
                                               β2sin  IV −=  (7.35) 

with 

  .  222
ϕθ aaa +=  (7.36)  

 The parameters of the polarization ellipse are thus expressed in terms of the 
Stokes parameters as follows. The major and minor axes are given by 

βμ cos2 21)( ,I  and |,sin| 2 21)( βμ ,I  respectively (cf. Eqs. (7.20) and 
(7.21)). Equations (7.33) and (7.34) yield 

  .     2tan
Q
U−=ζ  (7.37) 

Since ,4  || πβ ≤  we have 0  2cos ≥β  so that ζ2cos  has the same sign as – Q. 
Therefore, from the different values of ζ  that satisfy Eq. (7.37), but differ by 

,2π  we must choose the one that makes the sign of ζ2cos  to be the same as 
that of  .Q−   The ellipticity and handedness follow from 

  .
  

   2tan
22 UQ

V
+

−=β  (7.38) 

Thus, the polarization is left-handed if V is positive and is right-handed if V is 
negative (Fig. 7.3b). 

The electromagnetic wave becomes linearly polarized when β  vanishes; 
then the electric field vector vibrates along the line making the angle ζ  with the 
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ϕ-axis (Fig. 7.3a) and V = 0. Furthermore, if 0=ζ  or 2πζ =  then U vanishes 
as well. This explains the usefulness of the modified Stokes representation of po-
larization given by Eq. (7.41) in situations involving linearly polarized light 
(Problem 7.3).   

If, however, ,4  πβ ±=  then both Q and U vanish; the electric field vector 
describes a circle in the clockwise )    ,4  ( IV −== πβ  or anti-clockwise β( = 

)    ,4 IV =−π  direction, if one is looking in the direction of propagation (Fig. 
7.3d). In this case the electromagnetic wave is circularly polarized, which dem-
onstrates the usefulness of the circular-polarization column vector defined by Eq. 
(7.42) (Problem 7.4).   

(a)

(b)

(c)
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n̂ ζ

θ
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θ
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ωπ2

 
Fig. 7.4.  (a) The helix described by the tip of the real electric field vector of a 
plane electromagnetic wave with right-handed polarization in the ) , ,( tϕθ  co-
ordinates at a fixed point in space.  (b) As in (a), but in the ) , ,( sϕθ  coordinates 
at a fixed moment in time.  (c) As in (b), but for a linearly polarized wave. 
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The polarization ellipse, along with a designation of the rotation direction 
(right- or left-handed), fully describes the temporal evolution of the real electric 
field vector at a fixed point in space. This evolution can also be visualized by 
plotting the curve in ) , ,( tϕθ  coordinates described by the tip of the electric field 
vector as a function of time. For example, in the case of an elliptically polarized 
plane wave with right-handed polarization, the curve is a right-handed helix with 
an elliptical projection onto the θϕ -plane centered around the t-axis (see Fig. 
7.4a). The pitch of the helix is simply ,2 ωπ  where ω  is the angular frequency.  

Another way to visualize a plane wave is to fix a moment in time and draw a 
three-dimensional curve in ) , ,( sϕθ  coordinates described by the tip of the elect-
ric field vector as a function of a spatial coordinate rn ⋅ˆ  =s  oriented along the 
direction of propagation .n̂  According to Eqs. (7.16)–(7.19), the electric field is 
the same for all {position, time} combinations with constant .tks ω−  Therefore, 
at any instant of time (say, t = 0) the locus of the points described by the tip of 
the electric field vector originating at different points on the s-axis is also a helix, 
with the same projection onto the θϕ -plane as the respective helix in the ) , ,( tϕθ  
coordinates, but with opposite handedness. For example, for the wave with right-
handed elliptical polarization shown in Fig. 7.4a, the respective curve in the 

) , ,( sϕθ  coordinates is a left-handed elliptical helix, shown in Fig. 7.4b. The 
pitch of this helix is the wavelength .λ  It is now clear that the propagation of the 
wave in time and space can be represented by progressive movement in time of 
the helix shown in Fig. 7.4b in the direction of n̂  with the speed of light. With 
increasing time, the intersection of the helix with any plane s = constant describes 
a right-handed vibration ellipse.  

In the case of a circularly polarized wave, the elliptical helix becomes a helix 
with a circular projection onto the θϕ -plane. If the wave is linearly polarized, 
then the helix degenerates into a simple sinusoidal curve in the plane making an 
angle ζ  with the ϕ -axis (Fig. 7.4c). 

Finally, we note that another choice of the time-harmonic factor (i.e., 
)i(exp tω  instead of ))i(exp tω−  has a specific effect on the parameter V, as dis-

cussed in Problem 7.9. 

7.4  The Stokes parameters of a spherical electromagnetic wave 

In complete analogy with the case of a plane wave, the Stokes column vector of 
an outgoing spherical wave (3.30)–(3.31) propagating in a homogeneous lossless 
medium can be defined as 
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All elements of this column vector have the dimension of monochromatic energy 
flux. As before, the first Stokes parameter is the intensity, defined this time by 
Eq. (3.38). 

Problems 

7.1:   Derive the Stokes identity (7.4).  

7.2: The Stokes column vector is not the only representation of polarization and 
not always the most convenient one. Three other representations frequently 
used in practice are the complex coherency column vector  
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the real so-called modified Stokes column vector  
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 and the complex-valued circular-polarization column vector  
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 Derive the explicit forms of 44×  transformation matrices B and A such 
that 

                                               ,  JDI =  (7.43) 

  ,    MS IBI =  (7.44) 
                                               .    CP IAI =  (7.45) 
 Show that 
                                              ,  1 IDJ −=  (7.46) 

  ,    MS1 IBI −=  (7.47) 
                                              CP1    IAI −=  (7.48) 

  and derive the explicit forms of the inverse matrices ,1−D ,1−B  and .1−A  
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7.3: What is MSI  for a plane electromagnetic wave polarized linearly in the -θ  
or direction?-ϕ   

7.4: What is CPI  for a circularly polarized plane electromagnetic wave with 
right-handed (left-handed) polarization?  

7.5: Derive the rotation matrices )(MS ηL  and )(CP ηL  for the modified Stokes 
and circular-polarization column vectors, respectively. 

7.6: Derive the following properties of the rotation matrix in the circular-
polarization representation:    

  ),()(    )()(    )( 1
CP

2
CP

2
CP

1
CP

21
CP ηηηηηη LLLLL ==+  (7.49) 

  .)]([    )( 1CPCP −=− ηη LL  (7.50) 

7.7: Derive the following properties of the Stokes rotation matrix:    

  ),()(    )()(    )( 122121 ηηηηηη LLLLL ==+  (7.51) 

  .)]([    )( 1−=− ηη LL  (7.52) 

7.8: Derive the following properties of the rotation matrix in the modified 
Stokes representation:    

  ),()(    )()(    )( 1
MS

2
MS

2
MS

1
MS

21
MS ηηηηηη LLLLL ==+  (7.53) 

  .)]([    )( 1MSMS −=− ηη LL  (7.54) 

7.9: Our definition of the Stokes parameter V in Eq. (7.3) is mathematically the 
same as that in van de Hulst (1957) and Hovenier et al. (2004). However, 
their choice of the time-harmonic factor is )i(exp tω  instead of our choice 

).i(exp tω−  Show that this causes the numerical values of their complex 
electric and magnetic field vectors to be complex conjugates of ours. Then 
show that the numerical value of their Stokes parameter V is minus that of 
our Stokes parameter V. What sense of circular polarization (right-handed 
or left-handed) corresponds to a positive numerical value of their Stokes 
parameter V ? 

7.10: Let a plane electromagnetic wave be specified by the following real electric 
field vector components: 

  ), ˆ(cos  ) ,( tkat ω∆θθθ −+= rnr ⋅E  (7.55) 

                                    ).ˆ(cos  ) ,( tkat ωϕϕ −= rnr ⋅E  (7.56) 

What are the Stokes parameters and the polarization state of the wave for 
?2π∆θ =  Sketch the polarization ellipses for 4π∆θ n=  with n = 0, 1, 

…, 7. 
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Notes and further reading 

Even before the development of Maxwell’s electromagnetics and his discovery of 
the electromagnetic nature of light, Sir George Gabriel Stokes (1819–1903) 
demonstrated that four quantities, now known as the Stokes parameters, could 
conveniently characterize the polarization state of any parallel beam of light, in-
cluding partially polarized and unpolarized polychromatic light (Stokes 1852). 
Furthermore, he noted that, unlike the quantities entering the amplitude formula-
tion of the optical field, these parameters could be directly measured by a suitable 
optical instrument.  

The fascinating subject of polarization attracted the attention of many other 
great scientists before and after Stokes, including Thomas Young (1773–1829), 
Augustin Jean Fresnel (1788–1827), Dominique François Arago (1786–1853), 

Thomas Young Augustin Jean Fresnel

Dominique François Arago Sir George Gabriel Stokes  
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Subrahmanyan Chandrasekhar (1910–95), and Hendrik Christoffel van de Hulst 
(1918–2000). Even Henri Poincaré, who is ranked by many as one the greatest 
and most transformative geniuses of all time (see, e.g., the scientific biographies 
of Poincaré by Verhulst (2012) and Gray (2013)), had found the time to contrib-
ute to this discipline by developing a useful polarization analysis tool known as 
the Poincaré sphere (Poincaré (1892); see also Kliger et al. (1990) and Collett 
(1992)). The early history of polarimetry (including its applications in astrophys-
ics) is described by Brosseau (1998) and Clarke (2010). 

Extensive treatments of theoretical and experimental aspects of polarimetry 
have been provided by Shurcliff (1962), Gehrels (1974), Coulson (1988), Kliger 
et al. (1990), Collett (1992), Brosseau (1998), Hovenier et al. (2004), and Cloude 
(2010). In Pye (2001), numerous manifestations of polarization in science and 
nature are described. 
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Poynting–Stokes tensor 

We have already mentioned that different combinations of electric and magnetic 
field vectors can yield the same Poynting vector. This means that forming the 
vector product of the electric and magnetic field vectors results in a quantity that 
does not carry unique information about the participating fields. In particular, the 
Poynting vector contains no information about the polarization state of a trans-
verse electromagnetic field. Thus, by its very definition, the Poynting vector can-
not be used to describe the phenomenon of electromagnetic scattering by, for ex-
ample, expressing the Poynting vector of the scattered field in that of the incident 
field.  

We have seen in the preceding chapter that the standard descriptor of polar-
ization is the Stokes column vector (7.3). However, this quantity contains no ex-
plicit information on the direction of the Poynting vector and can be defined only 
for a transverse (i.e., plane or spherical) electromagnetic wave, whereas the total 
electromagnetic field in the near zone of any object (e.g., at any observation point 
inside a cloud of particles) is never a transverse wave. It is, therefore, highly   
desirable to introduce an alternative quantity that:  

● can be defined for any electromagnetic field; 
● has the dimension of electromagnetic energy flux; and 
● enables a complete and self-contained description of electromagnetic scatter-

ing in the context of practical optical analysis. 

It has been shown by the author (Mishchenko 2010) that a quantity combin-
ing all these attributes is the PST defined as the dyadic product of the electric and 
magnetic field vectors: 

 ). ,() ,() ,( ttt rrr HE ⊗=P  (8.1) 

Indeed, by its very construct, the PST is applicable to an arbitrary electromag-
netic field. Furthermore, it can be used to find both the Poynting vector and, 
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whenever applicable, the Stokes parameters (Problems 8.1 and 8.2). Owing to its 
unique and convenient properties, the PST (8.1) will be central to the following 
discussion of electromagnetic scattering. 

In the case of a monochromatic electromagnetic field with an angular fre-
quency ,ω  we have, by analogy with Eq. (2.61),  

 ,)]([Re  ) ,( Trr Pt =〉〈P  (8.2) 

where the complex PST is defined by  

 .)]([)()(
2
1 ∗⊗= rErHrP  (8.3) 

As before, the use of Eqs. (8.2) and (8.3) relies on averaging ) ,( trP  over a per-
iod of time much longer than .2o ωπ=T   

The complex PST (8.3) involves both the electric and the magnetic field at 
the observation point r. It is sometimes convenient to have an alternative repre-
sentation involving only the electric field. The reader can easily verify (Problem 
8.3) that in the case of nonmagnetic materials, Eq. (8.3) everywhere in space can 
be written in the form  

 ,)],([
i2
1  )(

0
rrr rrr

=′′ ′×∇= CP
ωμ

 (8.4) 

where 
 ∗⊗′=′ )]([)(),( rErErrC  (8.5) 

is the so-called dyadic correlation function involving the electric field at two dif-
ferent points in space. The subscript r′  means that the ∇ operator acts only on 
E(r′). 

Problems 

8.1:   Express the complex Poynting vector in terms of the complex PST (8.3) 
using Cartesian coordinates.  

8.2:  Consider a transverse electromagnetic wave propagating in a homogeneous 
nonabsorbing medium and express its complex Poynting vector and Stokes 
column vector in terms of the complex PST (8.3), using local spherical co-
ordinates. 

8.3:   Derive Eq. (8.4).  
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Polychromatic electromagnetic fields 

The definition of a purely monochromatic electromagnetic field given in Section 
2.3 implies that the time dependence of the complex vectors ),(~ trE  and ),(~ trH  
is fully described by the complex-exponential factor )i(exp tω−  with a fixed an-
gular frequency .ω  This can be a good model for beams generated by certain 
types of laser, but not for the majority of natural and artificial electromagnetic 
fields. In reality, the electromagnetic field is typically polychromatic, i.e., is a 
superposition of a (possibly very large) number of monochromatic fields with 
different angular frequencies distributed over a given range ].,[ maxmin ωω  Fur-
thermore, in many cases the amplitudes of the complex electric and magnetic 
fields representing the component with an angular frequency ω  are not constant 
but rather fluctuate in time, albeit much more slowly than the factor ).i(exp tω−  
Then the resulting polychromatic field is said to consist of quasi-monochromatic 
components. The range of angular frequencies ],[ maxmin ωω  of monochromatic or 
quasi-monochromatic components can be relatively narrow for some artificial 
sources of light. However, it can also be very wide, the solar radiation and the 
light produced by incandescent lamps being prime examples.  

Given the ubiquity of polychromatic electromagnetic fields in natural and ar-
tificial environments, it is essential to analyze how the results of Chapters 7 and 8 
can be generalized to account for a mix of different angular frequencies and/or 
random fluctuations of the amplitudes of the constituent complex fields. We will 
see that this generalization is, in fact, quite straightforward provided that we ap-
ply averaging over a sufficiently long period of time.    

9.1  Time-averaged Poynting–Stokes tensor and Poynting vector                                     
of a polychromatic field with monochromatic components 

A simple polychromatic electromagnetic field exactly satisfying the MMEs     
everywhere in space is a vector superposition of a number N of monochromatic 
fields with a range of angular frequencies: 
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n
nn tt ωrHrH  (9.2) 

where each couple )](),([ rHrE nn  is a solution of the frequency-domain MMEs,  

 ,maxmin ωωω ≤≤ n  (9.3) 
and 
 nn ′≠ ωω  for any .nn ′≠  (9.4) 

Recalling the definition (8.1), we have: 

               ) ,() ,() ,( ttt rrr HE ⊗=P   (9.5) 
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Averaging the complex exponentials over a time interval  
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1 nnNnn

T
′≤′<≤ −ωω

π   (9.6) 
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where O stands for “of the order of . ” We can thus conclude that averaging the 
right-hand side of Eq. (9.5) over a sufficiently long time interval zeros out the 
entire sum (9.5a), as well as the nn ′≠  terms in the sum (9.5b). Hence,  

 ,)]([Re  ) ,( Trr Pt =〉〉〈〈 P  (9.9) 

where 〉〉〈〈  hereinafter denotes averaging over an appropriately long time inter-
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val that can potentially be much longer than that in Eqs. (2.40), (2.61), and (8.2);  

 ∑
=

=
N

n
nPP

1

)(  )( rr  (9.10) 

is the complex PST of the polychromatic field; and, according to Eq. (8.3), 

 ∗⊗= )]([)()(
2
1 rErHr nnnP  (9.11) 

is the complex PST of the nth monochromatic component. Thus, the time-
averaged PST of the polychromatic electromagnetic field (9.1)–(9.2) is inde-
pendent of t and is obtained by transposing the real part of the sum of the com-
plex PSTs of the participating monochromatic fields.  
 This simple additivity rule has great practical importance. However, it is im-
perative to remember that its validity relies on averaging Eq. (9.5b) over a 
sufficiently long period of time, especially when N is very large and || nn ′−ωω  is 
much smaller than either nω  or n′ω  for many combinations of n and .n′  Indeed, 
in such cases much longer averaging time can be necessary to make the sum of 
the N(N – 1) terms with nn ′≠  much smaller (in the absolute-value sense) than 
that of the N terms with .nn ′=  While this can typically be expected to be less of 
a problem at infrared and shorter wavelengths, special care is called for when 
dealing with micro- and radiowaves. 

An immediate consequence of Eqs. (9.9)–(9.11) and (H.14) is the respective 
additivity rule for the time-averaged Poynting vector of a polychromatic field 
with monochromatic components:   

 ),(Re  ) ,( rSr =〉〉〈〈 tS  (9.12) 

where 〉〉〈〈 ) ,( trS  is independent of t ; 

 ;)(  )(
1
∑

=

=
N

n
n rSrS  (9.13) 

and 

 ∗×= )]([)(  )(
2
1 rHrErS nnn  (9.14) 

is the complex Poynting vector of the nth monochromatic component. 

9.2  Time-averaged Stokes parameters of a parallel polychromatic beam        
with monochromatic components 

The simplest example of a polychromatic field is a parallel beam of infinite lat-
eral extent consisting of plane waves propagating through a homogeneous loss-
less medium in the same direction .n̂  In the complex-field representation, the 
resulting electric and magnetic fields everywhere in space are then given by  
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0 ).i  ˆi(exp    ) ,(~ ωrnHr ⋅H  (9.16) 

Equations (9.9)–(9.11) and (H.16) then imply the following additivity rule for 
the resulting time-averaged (and, thus, t-independent) Stokes parameters: 
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where nnnn VUQI and,,,  are the Stokes parameters of the nth monochromatic 
component. The additivity rule implies that the time-averaged Stokes parameters 
of the polychromatic beam are independent of r ; in other words, they do not 
change upon propagation of the beam. 
  The Stokes identity (7.4) is not valid, in general, for a polychromatic beam 
and must be replaced by the so-called Stokes–Verdet inequality  

  2222   〉〉〈〈+〉〉〈〈+〉〉〈〈≥〉〉〈〈 VUQI  (9.18) 

(see Problem 9.1). The beam is said to be fully polarized if the equality holds: 
.  2222 〉〉〈〈+〉〉〈〈+〉〉〈〈=〉〉〈〈 VUQI  This definition includes a single monochro-

matic plane wave (which is always fully polarized), but is, of course, more gen-
eral. It can be shown (see Problem 9.2) that a polychromatic parallel beam de-
fined by Eqs. (9.15) and (9.16) is fully polarized if and only if 
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α  for any ,and nn ′  (9.19) 

where nn ′α  is a positive real number. This means that all the ellipses described by 
the electric field vectors of the individual monochromatic plane waves have the 
same ellipticity, handedness, and orientation; only their sizes can be different.   
 If 0 222 =〉〉〈〈=〉〉〈〈=〉〉〈〈 VUQ  then the polychromatic beam is said to be un-
polarized (or natural). If 2222   〉〉〈〈+〉〉〈〈+〉〉〈〈>〉〉〈〈 VUQI  and at least one of the 
Stokes parameters 〉〉〈〈〉〉〈〈〉〉〈〈 VUQ and,,  is not equal to zero, then the beam is 
partially polarized; a beam with 0=〉〉〈〈 V  is called linearly polarized, while that 
with 0 =〉〉〈〈=〉〉〈〈 UQ  is said to be circularly polarized.  

9.3  Polychromatic field with quasi-monochromatic components 

The important property of the polychromatic field with monochromatic compo-
nents as defined by Eqs. (9.1) and (9.2) is that it satisfies the frequency-domain 
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MMEs exactly. However, this model can often be criticized as being unrealistic 
in that it ignores the nature of physical processes generating electromagnetic 
fields. Indeed, in many practical situations, each component of the polychromatic 
field (9.1)–(9.2) is in turn a superposition of many monochromatic subcompo-
nents, all having the same angular frequency, but different complex amplitudes. 
More often than not, the specific set of subcomponents contributing to an nth 
component and their number fluctuate in time, thereby making the resulting 
complex amplitudes En and Hn random functions of time. We thus have: 
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If the typical period of fluctuations Tfn of the amplitudes ),( tn rE  and ),( tn rH  is 
much longer than the period of time-harmonic oscillations nnT ωπ2o =  then the 
random vector field given by 
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is said to represent a quasi-monochromatic electromagnetic field. Note that the 
temporal fluctuations of the complex amplitudes ),( tn rE  and ),( tn rH  imply 
fluctuations of both the amplitudes and the phases of the real electric and mag-
netic fields. Although Tfn Ton , these random fluctuations usually occur too fast 
to be traced by traditional optical instruments. 

Strictly speaking, the field (9.22) does not satisfy the frequency-domain 
MMEs. However, by its very construct, each quasi-monochromatic component 
can be considered monochromatic (and hence can be found by solving the fre-
quency-domain MMEs) over time intervals that are much longer than Ton yet sig-
nificantly shorter than Tfn . This makes the concept of a quasi-monochromatic 
field a useful compromise allowing one to combine the simplicity of the fre-
quency-domain formalism with a more realistic representation of many natural 
and artificial electromagnetic fields.    

The instantaneous PST of the polychromatic field (9.20)–(9.21) is given by 
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It is quite reasonable in most cases to assume that for any ,nn ′≠  En(r, t) 
× )i(exp tnω−  and )i(exp) ,( tt nn ′′ − ωrH  are independent and, thus, uncorrelated 
random processes. This implies that the time average of the dyadic product of 
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these random fields is equal to the dyadic product of the time averages of the 
fields (Priestley 1992). Since the complex amplitudes ),( tn rE  and ),( tn rH  vary 
in time much more slowly than the respective time-harmonic factors, we have 

 .)i(exp) ,()i(exp) ,( 0rHrE =〉−〈=〉−〈 tttt nnnn ωω  (9.24) 

As a consequence, only the nn ′=  terms in Eq. (9.23b) survive averaging over 
time, thereby yielding a modified version of Eqs. Eq. (9.9)–(9.11) in which the 
total and component complex PSTs are now obtained by averaging over a suffi-
ciently long period of time: 
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1 〉〉〈〈 ∗⊗=〉〉〈〈 tttP nnn rErHr  (9.27) 

Note that all time averages in Eqs. (9.25)–(9.27) are independent of t owing to 
the presumed stationarity of the random processes Hn(r, t) ⊗ [En(r, ∗)]t  (cf. 
Priestley 1992). Also, the requisite averaging time is now much longer than Tfn 
(i.e., not just much longer than Ton) for any n. The time-averaged Poynting vector 
of the polychromatic field (9.20)–(9.21) is now given by 

 ,) ,(Re  ) ,( 〉〉〈〈=〉〉〈〈 tt rSrS  (9.28) 
in which 
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A parallel beam of infinite lateral extent consisting of quasi-monochromatic 
plane waves propagating in the direction n̂  is defined by  
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where )(0 tnE  and )(0 tnH  are “slowly” fluctuating complex amplitudes. Accord-
ing to Eqs. (9.25)–(9.27), Eq. (9.17) is now modified as follows: 
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where ),(),(),( tUtQtI nnn  and )(tVn  are the “quasi-instantaneous” Stokes para-
meters of the nth quasi-monochromatic component, and all time averages are 
independent of t. 

The time-integrated Stokes parameters of each quasi-monochromatic compo-
nent are essentially obtained by summing up the Stokes parameters of a temporal 
sequence of “quasi-instantaneous” monochromatic plane waves. Therefore, the 
Stokes–Verdet inequality now applies to each quasi-monochromatic component:  

  .)()( )( )( 2222 〉〉〈〈+〉〉〈〈+〉〉〈〈≥〉〉〈〈 tVtUtQtI nnnn  (9.34) 

The equality holds if and only if 
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where nβ  is a positive real-valued function of .and tt ′  This implies that the   
ellipticity, handedness, and orientation of the “instantaneous” ellipse described 
by the electric field vector of the quasi-monochromatic plane wave do not change 
in time. It follows from Eq. (9.34) that unlike a monochromatic plane electro-
magnetic wave, a quasi-monochromatic wave can be partially polarized and even 
unpolarized.  

It is straightforward to show that the total time-averaged Stokes parameters 
(9.33) of the polychromatic beam with quasi-monochromatic components also 
satisfy the Stokes–Verdet inequality (9.18). The equality holds if and only if each 
quasi-monochromatic component is fully polarized and 
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where nn ′α  is a positive real number (see Problem 9.3). 
As we have already mentioned, traditional optical instruments are incapable 

of tracing the temporal fluctuations of the amplitude and phase of a quasi-mono-
chromatic plane wave. Therefore, the principle of optical equivalence introduced 
in Section 7.1 can be generalized as follows: it is impossible by means of a tradi-
tional optical instrument to distinguish between two different quasi-monochro-
matic waves having the same angular frequency and the same time-averaged 
Stokes parameters. For example, there is only one kind of unpolarized quasi-
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monochromatic light, although it can be represented by temporal sequences of 
“instantaneous” monochromatic waves in an infinite variety of optically indistin-
guishable ways. 

9.4  Derivative polarimetric characteristics of a polychromatic beam 

The resulting electric field vector of a polychromatic parallel beam (9.15)–(9.16) 
or (9.31)–(9.32) does not describe an ellipse in a plane perpendicular to the 
propagation direction. Therefore, the ellipsometric analysis of Section 7.3 be- 
comes inapplicable, and the complete optical specification of the beam is pro-
vided by the time-averaged Stokes parameters. In other words, one does not need 
any quantity other than ,)(,)(,)( 〉〉〈〈〉〉〈〈〉〉〈〈 tUtQtI and 〉〉〈〈 )(tV  in order to fully 
characterize a polychromatic beam in the majority of practical applications. Yet 
there are several derivative descriptors of the polarization state of the beam that 
are commonly used in the literature and allegedly provide a more intuitive repre-
sentation of polarization than the Stokes parameters themselves. Not surprisingly, 
some of these descriptors are rooted in the ellipsometric analysis of a monochro-
matic plane wave. Prime examples of such derivative polarimetric characteristics 
are given below. 
 Upon recalling the definitions of unpolarized and fully polarized beams given 
in Section 9.2, it is natural to define the degree of elliptical polarization of a poly-
chromatic beam as 

  ,0      
222

≥++=
I

VUQP  (9.37) 

where the angular brackets 〉〉〈〈  around the Stokes parameters are omitted for 
the sake of brevity. Similarly, the degree of linear polarization is defined as  

  0    
22

L ≥+=
I

UQP  (9.38) 

and the degree of circular polarization as 

 .  C IVP =  (9.39) 

P vanishes for unpolarized light and is equal to unity for fully polarized light. For 
a partially polarized beam )1    0( << P  with ,0≠V  the sign of V can be inter-
preted to indicate the preferential handedness of the vibration ellipses described 
by the endpoints of the electric field vectors of the individual (or instantaneous) 
monochromatic waves constituting the beam. Specifically, a positive V indicates 
left-handed resulting polarization and a negative V indicates right-handed result-
ing polarization. By analogy with Eqs. (7.37) and (7.38), the quantities QU−  
and 2122 )  (|| UQV +  can be interpreted as specifying the orientation and elliptic-
ity, respectively, of an imaginary “preferential” vibration ellipse of the poly- 
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Fig. 9.1.  Analysis of a parallel polychromatic beam characterized by the time-
averaged Stokes parameters I, Q, U, and V. The angular brackets 〉〉〈〈  around 
the Stokes parameters are omitted for the sake of brevity. 
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chromatic beam. It is important to remember, however, that unlike the Stokes 
parameters, these quantities are not additive. It is straightforward to show (see 
Problem 9.4) that P, PL, and PC are invariant with respect to rotations of the ref-
erence frame around the direction of propagation.  

When U = 0, the ratio  

  IQPQ    −=  (9.40) 

is called the signed degree of linear polarization. QP  is positive when the vibra-
tions of the total electric field vector in the ϕ-direction (i.e., in the direction per-
pendicular to the meridional plane of the beam) dominate those in the θ -direct-
ion, and is negative otherwise.  
 The standard polarimetric analysis of a general polychromatic beam with 
time-averaged Stokes parameters I, Q, U, and V is summarized in Fig. 9.1. All 
results of this section also apply to the time-averaged Stokes parameters of a sin-
gle quasi-monochromatic plane wave. 

Problems 

9.1:  Derive the Stokes–Verdet inequality (9.18). 

9.2:  Prove that a polychromatic parallel beam with monochromatic components 
is fully polarized if and only if the condition (9.19) is satisfied. 

9.3:   Prove that if at least one quasi-monochromatic component in Eqs. (9.31)–
(9.32) is partially polarized then the entire polychromatic beam is partially 
polarized. 

9.4:   Prove that P, PL, and PC are invariant with respect to rotations of the refer-
ence frame around the direction of propagation. 

Further reading 

Intelligible introductions to the theory of random processes can be found in 
Priestley (1992) and Mandel and Wolf (1995).  
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Polychromatic scattering by fixed                                       
and randomly changing objects 

Equation (4.24) expresses the scattered (and thus the total) monochromatic field 
in terms of the incident monochromatic field (we remind the reader that the inci-
dent field is the total field in the absence of the scattering object). However, nei-
ther field can be measured directly with conventional optical instruments, which 
obviously calls for the derivation of the corresponding relationships between ob-
servable characteristics of the total and incident fields. In view of the discussion 
in Chapter 8, all such relationships should be particular cases of a general expres-
sion of the PST of the total field in the presence of the scattering object in terms 
of that of the incident field. This general expression will be derived below.  

There are two other important practical issues to consider. Indeed, our prev-
ious discussion of electromagnetic scattering has been based on the assumptions 
that: (i) the electromagnetic field is purely monochromatic, and (ii) the scattering 
object does not change with time. However, in the majority of actual applications 
the electromagnetic field is polychromatic and the scattering object changes in 
time randomly or quasi-randomly. Furthermore, the temporal variability of the 
object can be rapid enough to affect the result of averaging an actual optical ob-
servable over the time interval required to take a measurement.  

To address these key practical aspects of electromagnetic scattering, another 
goal of this chapter is to develop a simple yet general formalism that can be used 
to express the time-averaged PST of the total polychromatic field in terms of that 
of the incident polychromatic field for both fixed and randomly changing objects. 
We will also introduce the concept of ergodicity and explain its importance in 
dealing with stochastic scatterers.   

10.1  Monochromatic scattering by a fixed object 

Let us first consider monochromatic scattering by a fixed object. To include ex-
plicitly the time-harmonic factor, we rewrite Eq. (4.24) as follows: 
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 )ˆiexp(d), ,(d    ),(~ inc
1

3
1

3sca

INTINT

rnrrrrr ′′′′′′= ⋅⋅ kkGt
VV
@@E  

             ,),i(exp), ,( 3inc
0 ℜ∈−′′′× rErr tT ωω ⋅  (10.1) 

where we assume that the incident field is a plane electromagnetic wave propa-
gating in the direction of the unit vector :ˆ incn   

 ).iˆi(exp),(~ inc
1

inc
0

inc tkt ω−= rnEr ⋅E  (10.2) 

Hence, the total field can be expressed as 

 ,    ),iexp(),ˆ ,(  ),(~ 3inc
0

inc ℜ∈−= rEnrr tt ωω ⋅ETE  (10.3) 

where ET  is a transformation dyadic independent of inc
0E  and given by 

    rrrrrnnr ′′′′+= 3
1

3inc
1

inc d), ,(d)ˆiexp(  ),ˆ ,(
INTINT

@@
VV

kGIk ⋅⋅ωET  

                                                       )., ,()ˆi(exp inc
1 ωrrrn ′′′′′× Tk ⋅   (10.4) 

Note that we explicitly indicate the dependence of the dyadic transition operator 
on the angular frequency and the dependence of the dyadic Green’s function on 
the wave number 1k = .)( 21

01μω ,  It follows from Eqs. (3.12), (4.2), and (4.3) 
that a relationship similar to Eq. (10.3) must exist for the magnetic field as well:  

 ,    ),iexp(),ˆ ,(  ),(~ 3inc
0

inc ℜ∈−= rHnrr tt ωω ⋅HTH  (10.5) 

where the transformation dyadic HT  is independent of ,inc
0H  the latter being the 

complex amplitude of the incident plane wave: 

 ).iˆi(exp),(~ inc
1

inc
0

inc tkt ω−= rnHr ⋅H  (10.6) 

Let us now recall Eqs. (8.2) and (8.3), valid for any monochromatic field, and 
apply them separately to the total field }{ ),(),,( tt rr HE  and the incident field 

.),(),,( }{ incinc tt rr HE  Then Eqs. (10.3) and (10.5) imply the following formula 
for the complex PST of the total field (Problem 10.1): 

 ,    ,),ˆ ,(),ˆ ,(  )( 3Tincincinc ][ ℜ∈= ∗ rnrnrr ωω EH TT ⋅⋅ PP  (10.7) 
where 

 ∗⊗= ][ inc
0

inc
0

inc

2
1 EHP  (10.8) 

is the complex PST of the incident plane wave.  
Equation (10.7) is the sought relationship between the complex PSTs of the 

total and incident fields. We will see in what follows that this formula is a tem-
plate for many useful relationships between observable characteristics of the in-
cident and total fields. Importantly, Eq. (10.7) demonstrates that, in general, the 
elements of the tensor )(rP  depend on all the elements of the tensor .incP  As a 
consequence, the complex Poynting vector of the total field cannot be uniquely 
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expressed in that of the incident field (Problem 10.2), which illustrates that elect-
romagnetic scattering is a profoundly “vectorial” rather than “scalar” phenom-
enon. In other words, any characterization of electromagnetic scattering as a phe-
nomenon resulting in the transformation of the intensity of the incident light into 
that of the scattered light is fundamentally wrong. 

Equation (10.7) implies the existence of a linear (but not necessarily tenso-
rial) operator which relates )(rP  and incP  while being independent of .incP  We 
will denote this operator by T̂  and write symbolically: 

 .),ˆ ,(ˆ  )( incinc PP ωnrr T=  (10.9) 

10.2  Polychromatic scattering by a fixed object 

Our next step is to consider the incident field in the form of a polychromatic par-
allel beam with monochromatic components: 

                               ,)iˆi(exp),(~

1

inc
1

inc
0

inc ∑
=

−=
N

n
nn tkt ωrnEr ⋅E  (10.10) 

 .)iˆi(exp),(~

1

inc
1

inc
0

inc ∑
=

−=
N

n
nn tkt ωrnHr ⋅H  (10.11) 

According to Section 4.2, the total complex polychromatic field everywhere in 
space is now given by 

                           ,)iexp(),ˆ ,(),(~

1

inc
0

inc∑
=

−=
N

n
nnn tt ωω Enrr ⋅ETE  (10.12)    

 .)iexp(),ˆ ,(),(~

1

inc
0

inc∑
=

−=
N

n
nnn tt ωω Hnrr ⋅HTH  (10.13) 

Applying the results of Section 9.1 separately to the total and incident polychro-
matic fields }{ ),(),,( tt rr HE  and }{ ),(),,( incinc tt rr HE  implies that the time-
averaged PST of the total polychromatic field is given by Eqs. (9.9) and (9.10), in 
which 

 ∗= Tincincinc ][ ),ˆ ,(),ˆ ,()( nnnn PP ωω nrnrr EH TT ⋅⋅  (10.14) 

is the complex PST of the nth monochoromatic component of the total field, 
while 

 ∗⊗= ][ inc
0

inc
0

inc

2
1

nnnP EH  (10.15) 

is the complex PST of the nth monochromatic component of the incident parallel 
beam. Equation (10.9) now takes the form 
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 ∑
=

=
N

n
nn PP

1

incinc .),ˆ ,(ˆ  )( ωnrr T  (10.16) 

Finally, consider the incident field in the form of a polychromatic parallel 
beam with quasi-monochromatic components: 

                             ,)iˆi(exp)(),(~

1

inc
1

inc
0

inc ∑
=

−=
N

n
nn tktt ωrnEr ⋅E  (10.17) 

 .)iˆi(exp)(),(~

1

inc
1

inc
0

inc ∑
=

−=
N

n
nn tktt ωrnHr ⋅H  (10.18) 

For the total complex field everywhere in space, we now have:  

                         ,)iexp()(),ˆ ,(),(~

1

inc
0

inc∑
=

−=
N

n
nnn ttt ωω Enrr ⋅ETE  (10.19)    

 .)iexp()(),ˆ ,(),(~

1

inc
0

inc∑
=

−=
N

n
nnn ttt ωω Hnrr ⋅HTH  (10.20) 

As in Section 9.3, we assume that )iexp()(inc
0 tt nn ω−E  and )iexp()(inc

0 tt nn ′′ − ωH  for 
any nn ′≠  are independent and, thus, uncorrelated random processes with zero 
time averages. The time-averaged PST of the total polychromatic field is then 
given by Eqs. (9.25) and (9.26), in which 

 ∗〉〉〈〈=〉〉〈〈 Tincincinc ][ ),ˆ ,()(),ˆ ,(),( nnnn tPtP ωω nrnrr EH TT ⋅⋅  (10.21) 

is the time-averaged complex PST of the nth quasi-monochromatic component of 
the total field and 

 ∗⊗= )]([)()( inc
0

inc
0

inc

2
1 tttP nnn EH  (10.22) 

is the time-dependent complex PST of the nth quasi-monochromatic component 
of the incident parallel beam. Note that 〉〉〈〈 )(inc tPn  and hence 〉〉〈〈 ),( tPn r  are in-
dependent of time owing to the presumed stationarity of the random functions 

.)]([)( inc
0

inc
0

∗⊗ tt nn EH  Equation (10.9) takes the form 

 ∑
=

〉〉〈〈=〉〉〈〈
N

n
nn tPtP

1

incinc .)(),ˆ ,(ˆ  ),( ωnrr T  (10.23) 

Equations (10.14)–(10.16) and (10.21)–(10.23) are in fact quite remarkable. In-
deed, they imply that to express any time-averaged observable characteristic of 
the total polychromatic field in terms of those of the incident field, all one needs 
to do is solve N independent monochromatic scattering problems (corresponding 
to the N participating angular frequencies )nω and then use the appropriate addi-
tivity rule for the total complex PST. The averaging time must be sufficiently 
long, as discussed in Sections 9.1 and 9.3.   
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10.3  Stochastic scattering object 

The theory of electromagnetic scattering by a fixed object can be used directly to 
analyze the results of measurements with a microwave laboratory setup, such as 
the one shown in Fig. 1.6d. In most cases, however, the scattering object is sto-
chastic in that its size, morphology, position, and/or orientation randomly change 
in time. We will see in Section 17.1 that changing the size and/or shape of an 
individual particle (such as the one shown in Plate 1.1a), even by a fraction of a 
wavelength, can modify the solution of the MMEs quite significantly. Morpho-
logical changes of a large scattering object such as a cloud of water droplets 
(Plate 1.1b) that occur over a small fraction of a second can be orders of mag-
nitude greater and result in much more dramatic changes in the corresponding 
solution of the MMEs. In most cases, however, one is interested in time-averaged 
characteristics of the total electromagnetic field rather than in their detailed evo-
lution caused by specific temporal changes of the scattering object.         

To illustrate this point, let us consider a stochastic scatterer in the form of a 
cloud of particles, as shown in Fig. 10.1, and assume that the incident field is a 
monochromatic plane electromagnetic wave. Let us also assume that the cloud 

V

ΔV

ΔS

n̂

Plane electrom
agnetic w

ave

inc

S

 
Fig. 10.1.  Quasi-instantaneous energy budget of a volume element ΔV bounded 
by the closed surface ΔS. The arrows represent the distribution of 〉〈 ) ,( trS  
over ΔS obtained by solving the MMEs for the specific instantaneous multi-
particle configuration.   
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varies in time, but does it slowly enough that any significant (i.e., modifying the 
solution of the MMEs) changes of the cloud occur over time intervals Tv much 
longer than the period of time-harmonic oscillations of the electromagnetic field 

.2o ωπ=T  This allows us to compute the total field over any time interval much 
longer than To yet shorter than Tv by solving the frequency-domain MMEs (or, 
equivalently, the FEs). We can then use Eq. (2.61) to find the spatial distribution 
of the quasi-instantaneous Poynting vector obtained by averaging over a time 
interval T such that vo TTT  (see Section 2.3).   

Given the morphological complexity of the cloud, this spatial distribution can 
be expected to be quite intricate and form a quasi-random speckle pattern. Figure 
10.1 depicts schematically the distribution of the quasi-instantaneous Poynting 
vector 〉〈 ) ,( trS  over the closed boundary ΔS of a macroscopic volume element 
ΔV. This distribution depends on time, owing to temporal changes of the cloud, 
and fluctuates over time intervals of the order of Tv. According to Eq. (2.62), the 
quasi-instantaneous energy budget of the volume element ΔV is determined by 
integrating 〉〈 ) ,( trS  over ΔS : 

 ),(ˆ) ,(d)( 2

Δ
Δ rnrr ⋅〉〈−=〉〈 ttW

S
S S)  (10.24) 

where 0)(Δ ≥〉〈 tW S  is the net amount of electromagnetic energy entering the vol-
ume element ΔV per unit time and )(ˆ rn  is the local outward normal to the 
boundary. If 0)(Δ =〉〈 tW S  then the incoming energy is balanced by the outgoing 
energy. Otherwise there is absorption of electromagnetic energy inside the vol-
ume element. The energy budget of the entire volume V occupied by the cloud is 
evaluated similarly, except now the integral in Eq. (10.24) is taken over the 
closed boundary S (Fig. 10.1).    

In the majority of applications, one is interested in the energy budget aver-
aged over a much longer period of time. This is because: (i) any actual meas-
urement typically takes an amount of time much greater than Tv and/or (ii) the 
reaction of the cloud as a physical system to the incoming electromagnetic en-
ergy occurs on time scales much longer than Tv. To suppress the quasi-instanta-
neous speckle and thereby isolate the static pattern relevant to actual energy-
budget applications, one must average ) ,( trS  over an appropriately long time 
interval. The result is a much smoother distribution of the Poynting vector 

,) ,( 〉〉〈〈 trS  as shown schematically in Fig. 10.2. Equation (10.24) now takes the 
form 

 ).(ˆ) ,(d)( 2

Δ
Δ rnrr ⋅〉〉〈〈−=〉〉〈〈 ttW

S
S S)  (10.25) 

This example suggests that in the framework of typical applications of the 
theory of electromagnetic scattering, the basic quantity of actual relevance is the 
average of the PST over a relatively long time interval encompassing a represen-
tative set of physical states of a time-variable scattering object. It is therefore im-
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portant to generalize the results of Sections 10.1 and 10.2 by explicitly allowing 
the scattering object to randomly change in time.  

Assuming first that the incident field is a plane electromagnetic wave given 
by Eqs. (10.2) and (10.6), we have instead of Eqs. (10.1), (10.3), and (10.4):  
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                   ,),i(exp),, ,( 3inc
0 ℜ∈−′′′× rErr ttT ωω ⋅  (10.26) 

,    ),iexp(),,ˆ ,(  ),(~ 3inc
0

inc ℜ∈−= rEnrr ttt ωω ⋅ETE  (10.27) 
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1

inc d), ,(d)ˆiexp(  ),,ˆ ,(
INTINT
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tVtV

kGIkt ⋅⋅ωET  

                                               ),,, ,()ˆiexp( inc
1 tTk ωrrrn ′′′′′× ⋅   (10.28) 

where at any moment t the transition dyadic operator is the solution of the fol-
lowing equation: 
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Fig. 10.2.  Time-averaged energy budget of a volume element ΔV bounded by 
the closed surface ΔS. The arrows symbolize the distribution of 〉〉〈〈 ) ,( trS  
over the boundary ΔS, while the uniform shading is intended to emphasize that 
cloud particles move randomly throughout the volume V during a time interval 
much longer than Tv.  
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                              ).( , INT tV∈′rr   (10.29) 

Note that the relatively slow changes of the scattering object are accounted for by 
the explicit time dependence of the internal volume VINT and the relative refrac-
tive index m. Similarly,  

 .    ),iexp(),,ˆ ,(  ),(~ 3inc
0

inc ℜ∈−= rHnrr ttt ωω ⋅HTH  (10.30) 

This means that the quasi-instantaneous Poynting vector obtained by averaging 
over a time interval To T Tv is now time-dependent and given by 

 ,)],([Re  ) ,( TtPt rr =〉〈P  (10.31) 
where 
 .),,ˆ ,(ˆ  ),( incinc PttP ωnrr T=  (10.32) 

Averaging Eqs. (10.31) and (10.32) over a time interval T Tv yields Eq. (9.25) 
in which 

 .),,ˆ ,(ˆ  ),( incinc PttP 〉〉〈〈=〉〉〈〈 ωnrr T  (10.33) 

Assuming that the actual temporal variability of the stochastic scattering object 
causes ),,ˆ ,(ˆ inc tωnrT  to be a stationary random process and that T is sufficiently 
long implies that 〉〉〈〈 ),( tP r  and thus 〉〉〈〈 ) ,( trP  are independent of t. 

Finally, let us consider the incident field in the form of a polychromatic par-
allel beam with quasi-monochromatic components, as defined by Eqs. (10.17) 
and (10.18). The total complex field is now given by  

                        ,)iexp()(),,ˆ ,(),(~
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inc∑
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n
nnn tttt ωω Enrr ⋅ETE  (10.34)    
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and is also a polychromatic field with quasi-monochromatic components. Fur-
thermore, each quasi-monochromatic component of the total field has a zero time 
average: 
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 (10.36)    

(cf. Eq. (9.24)). Therefore, the corresponding results of Section 9.3 can be ap-
plied to both the incident and the total field. It is easy to verify that the time-
averaged PST of the total field is again given by Eqs. (9.25) and (9.26), in which   
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 〉〉〈〈=〉〉〈〈 ∗Tincincinc ][ ),,ˆ ,()(),,ˆ ,(),( ttPttP nnnn ωω nrnrr EH TT ⋅⋅   

                               .)(),,ˆ ,(ˆ incinc 〉〉〈〈= tPt nnωnrT  (10.37) 

Making the reasonable assumption that ),,ˆ ,(ˆ inc tnωnrT  and )(inc tPn  for any n are 
independent stationary random processes, we finally derive: 

 ,)(),,ˆ ,(ˆ  ),(
1

incinc∑
=

〉〉〈〈〉〉〈〈=〉〉〈〈
N

n
nn tPttP ωnrr T  (10.38) 

where all time averages are independent of t provided that averaging is per-
formed over a time interval T such that T Tv and T Tfn for any n.  

The only difference of the latter formula from Eq. (10.23) valid for a fixed 
scattering object is that the constant operator ),ˆ ,(ˆ inc

nωnrT  is replaced by the 
time-averaged operator .),,ˆ ,(ˆ inc 〉〉〈〈 tnωnrT  In other words, the averaging over 
time of the complex PST of the incident polychromatic beam is completely sepa-
rated from the averaging over time of the transformation operator .T̂  We will 
see in what follows that this separation offers substantial simplifications in many 
theoretical derivations. 

10.4  Ergodicity 

The time average of the transformation operator T̂  in Eqs. (10.33) and (10.38) is 
formally defined by 
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where the time interval T is much longer than Tv . During this time interval a 
variable scattering object goes through an infinite sequence of evolving discrete 
states governed by relevant physical and chemical processes. Therefore, the 
right-hand side of Eq. (10.39) must be evaluated by: (i) tracing the temporal evo-
lution of the internal volume )(INT tV  and the relative refractive index ,,( ωrm t) 
and (ii) computing ),,ˆ ,(ˆ inc t′ωnrT  for a sufficiently representative set of mo-
ments t′ ].2,2[ TtTt +−∈  A computer implementation of this averaging proce-
dure is not totally inconceivable, at least in some special cases. However, the di-
rect use of the definition (10.39) in analytical derivations – such as the derivation 
of the radiative transfer equation for a cloud of water droplets – typically leads to 
insurmountable technical difficulties. A far more practical approach in such cases 
is based on the assumption of ergodicity.  

Specifically, all further discussion of electromagnetic scattering by a time-
variable object will be based on the following two fundamental premises:  

● The scattering object can be uniquely characterized at any moment by a fi-
nite set of physical parameters. 
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● The scattering object is statistically random and sufficiently variable in time, 
and the time interval T is sufficiently long that averaging T̂  over this inter-
val is essentially equivalent to averaging T̂  over an appropriate analytical 
probability distribution of the physical parameters characterizing the scatter-
ing object. 

In other words, we will assume in what follows that averaging over time for one 
specific realization of a random scattering process is equivalent to ensemble av-
eraging. The equivalence of the time and ensemble averages is traditionally 
called ergodicity. 

To better understand the meaning of ergodicity, let us denote by )(tψ  the set 
of parameters providing the complete optical specification (or the state) of the 
stochastic scattering object at the moment t, i.e., the internal volume )(INT tV  and 
the relative refractive index ,,( ωrm t). T̂  depends on time by being a function 
of ).(tψ  It is convenient to rewrite Eq. (10.39) in a condensed form: 

 )].([ˆd 1  )(ˆ
2

2
tt

T
t

Tt

Tt
′′=〉〉〈〈

+

−
ψTT @  (10.40) 

Although the temporal variation of ψ  is assumed to be a random process, the 
explicit calculation of the integral in Eq. (10.40) requires the use of a particular 
realization of this process in the form of a specific – albeit fluctuating and “ran-
dom-looking” – function of time ).(1 t′ψ  The use of another realization of the 
same random process, ),(2 t′ψ  may result in a somewhat different value of 

.)(ˆ 〉〉〈〈 tT  However, with increasing T the range of instantaneous states of the ob-
ject captured by the time interval ]2,2[ TtTt +−  eventually becomes repre-
sentative of that captured by an infinitely long time interval, thereby yielding a t-
independent and realization-independent average :ˆ 〉〉〈〈 T   
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Notice now that in the limit ,∞→T  the integrals in Eq. (10.41) can be ex-
pected to “sample” virtually every physically realizable state ψ  of the object. 
Furthermore, this sampling becomes statistically representative in that the num-
ber of times each state is sampled is large and tends to infinity in the limit 

.∞→T  Most importantly, the cumulative contribution of a state ψ  to 〉〉〈〈 T̂  is 
independent of the specific moment in time when this state actually occurred in 
the process of the temporal evolution of the scattering object. Rather, it depends 
on how many times this state was sampled. Therefore, this cumulative contribu-
tion can be thought of as being proportional to the probability of occurrence of 
the state ψ  at any moment of time. This means that instead of specifying the 
state of the cloud at each moment t′  and integrating over all ,t′  one can intro-
duce an appropriate time-independent probability density function )(ψp  and in-
tegrate over the entire physically realizable range of states:  
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 ,ˆ  )(ˆ)(d  ˆ
ψψψψ 〉〈=〉〉〈〈 TTT p@≈  (10.42) 

where )(ψp  is normalized according to 

 .1  )(d =ψψ p@  (10.43) 

Equation (10.42) is the formal mathematical expression of the principle of er-
godicity introduced above.  

It should be kept in mind that for the assumption of ergodicity to yield an ac-
curate estimate of the time average ,ˆ 〉〉〈〈 T  the time interval T must be suffi-
ciently long. Physical processes such as Brownian motion and turbulence often 
help to establish a significant degree of randomness of particle positions and ori-
entations in a multi-particle scattering object, which seems to explain why many 
theoretical predictions based on the assumption of ergodicity have agreed well 
with experimental data (Berne and Pecora 1976). The assumption of ergodicity 
may appear to be far-fetched in the case of a large complex scattering object such 
as a cloud. However, there are factors making ergodicity more plausible in the 
practical rather than strictly mathematical sense. They will be discussed 
specifically in Section 19.13. 

Problems 

10.1: Derive Eq. (10.7). 

10.2: Show that in general, the complex Poynting vector of the total (and hence 
scattered) monochromatic field cannot be expressed uniquely in that of the 
incident monochromatic field.  

10.3: How do Eqs. (10.16), (10.23), and (10.38) change if the various mono-
chromatic or quasi-monochromatic components of the incident field are al-
lowed to have different incidence directions? 

Notes and further reading 

The ergodic hypothesis was introduced by James 
Clerk Maxwell and the great Austrian physicist 
Ludwig Boltzmann (1844–1906) as a basic under-
lying principle of statistical mechanics and kinetic 
theory. The mathematical aspects of the ergodic 
theory, its relation to the famous Poincaré recur-
rence theorem (Poincaré 1890), and its applications 
to statistical physics are described by Khinchin 
(1949), Uhlenbeck and Ford (1963), and Farquhar Ludwig Boltzmann
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(1964). Instructive discussions of the ergodic hypothesis and specific examples of 
nonergodic scattering media can be found in Pusey and van Megen (1989), Joos-
ten et al. (1990), Xue et al. (1992), Nisato et al. (2000), and Scheffold et al. 
(2001).       
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Measurement of electromagnetic energy flow 

Measurements of electromagnetic energy flow are an integral part of solving 
various energy-budget and optical-characterization problems. For example, the 
physical state of a cloud of water droplets or ice crystals in the terrestrial atmos-
phere can be affected by an imbalance between the incoming and outgoing elec-
tromagnetic energy, while measurements of specific manifestations of electro-
magnetic energy flow with a suitable device can potentially be analyzed to infer 
useful information about the cloud. Conceptually similar problems are encoun-
tered in many other areas of science and engineering. It is therefore very impor-
tant to understand clearly what specific measurement is afforded by an optical 
instrument and how to model this measurement theoretically. 

Let us recall, for example, the energy-budget problem for a macroscopic vol-
ume element of an idealized liquid-water cloud discussed in Section 1.4. Suppose 
that we have at our disposal a Poynting-meter, i.e., a device that can determine 
both the direction and the absolute value of the time-averaged local Poynting 
vector. Then measuring 〉〉〈〈 ) ,( trS  at a sufficiently representative number of 
points densely distributed over the boundary ΔS would enable one to evaluate the 
integral in Eq. (1.12) numerically and thereby quantify the degree of electromag-
netic energy imbalance of the volume element ΔV.     

Unfortunately, none of the existing photometers can, strictly speaking, be 
considered a Poynting-meter. Despite the wide variety of specific designs and the 
alleged ability to quantify the electromagnetic energy flow (e.g., Bukshtab 2012), 
the actual physical nature of the measurements afforded by these instruments had 
remained poorly understood and had rarely been formulated in the context of ad-
vanced theories of light–matter interactions. Furthermore, it had hardly been re-
cognized that the physical meaning of the signal generated by these instruments 
depends critically on the very nature of the electromagnetic field transporting 
radiative energy and hence on the object creating the electromagnetic field. 

The goal of this chapter is to clarify the physical framework of the measure-
ment with instruments that can be called “well-collimated radiometers” (WCRs). 
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They represent by far the most widely used class of photometers, which makes it 
imperative to have a clear understanding of what these instruments can really 
measure. In particular, the following sections are intended to:  

● summarize the basic operational principle of photoelectric detectors in the 
context of the QED theory of the photoelectric effect;     

● clarify the actual role of the optical tract of a WCR;  
● analyze the interaction of the electromagnetic radiation filtered out by the 

optical tract of a WCR with the end photodetector;  
● identify quantitative attributes of the electromagnetic energy flow that can be 

captured by a WCR, depending on the specific measurement setting; and  
● discuss how these attributes can be modeled theoretically for morphologi-

cally complex scattering objects and thereby enter the solution of energy-
budget as well as optical-characterization problems. 

As was pointed out in Section 2.4, the Poynting vector does not, strictly 
speaking, characterize the direction and rate of the local electromagnetic energy 
flow. It is, however, important to recognize that if one can measure the local 
time-averaged Poynting vector then Eq. (1.12) (or Eq. (2.62)) can be used to 
evaluate the radiative energy budget of the object in question, irrespective of the 
physical meaning of the vector product ). ,() ,( tt rr HE ×  Therefore, it is the prac-
tical measurability of the Poynting vector that will be one of the foci of the fol-
lowing discussion. We will not consider technical and technological issues re-
lated to the development of sensitive and efficient detectors of light. Instead, we 
will concentrate on the precise definitions of general measurement principles and 
their specific practical implications in the framework of electromagnetic scatter-
ing by particles and particle groups.  

11.1  Direction-insensitive detectors 

Typical devices used for the detection and quantification of electromagnetic en-
ergy flow are photomultipliers, photodiodes, and photoelectric charge-coupled 

(a) (b) (c)  
Fig. 11.1.  Typical detectors of electromagnetic energy flow based on the photo-
electric effect: (a) a photomultiplier, (b) a photodiode, and (c) a CCD. 
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devices (CCDs) illustrated in Fig. 11.1. A photomultiplier or a photodiode is a 
single photodetector reacting to the electromagnetic field “impinging” anywhere 
on its relatively large sensitive surface, whereas a photoelectric CCD is a two-di-
mensional array of smaller detectors (pixels) that are designed to react to the in-
coming electromagnetic field independently of each other. All these devices are 
based on the absorption of electromagnetic energy via the photoelectric effect. 
The physical nature of this phenomenon is well understood, both in the frame-
work of the semi-classical approach, wherein only the matter is quantized, while 
the electromagnetic field is treated classically (Dodd 1991), and in the framework 
of QED, wherein one quantizes both the matter and the electromagnetic field 
(Mandel and Wolf 1995).  

The essential property of the photoelectric effect is the Stoletov law, accord-
ing to which the photoelectric current is proportional to the intensity of the inci-
dent light. Although this law was discovered experimentally in 1889, it has since 
been confirmed and refined theoretically. The principal result of the most general 
QED treatment today can be formulated as follows (Kimble and Mandel 1984).  
Let us model the sensitive element of a photodetector as a thin plane-parallel 
layer. The outer flat surface of this layer Spd is exposed to a parallel beam of light 
that has an effectively infinite lateral extent, propagates normally to the surface, 
and consists of 1≥N  quasi-monochromatic components with different angular 
frequencies ,nω  where n numbers the quasi-monochromatic beams, so that 
1 .Nn ≤≤  The local sensitivity of the detector is assumed to be uniform over Spd 
and axially symmetric with respect to the local normal to Spd. Then the total 
number of photoelectrons recorded by the photodetector during a sufficiently 
long time interval T is given by 

 ∑
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where 〉〉〈〈 )(tIn  is the time-averaged intensity of the nth quasi-monochromatic 
component and )(pd

nK ω  is the quantum efficiency of the photodetector at the 
frequency .nω    

Despite the great practical importance of Eq. (11.1), it is imperative to always 
remember the specific conditions of its applicability formulated in the preceding 
paragraph. Any violation of these conditions may lead to complications and po-
tentially significant uncertainties. Indeed, the angular distribution of the emitted 
photoelectrons is not isotropic and, furthermore, can depend on the polarization 
state of the incident beam (Lee 1974; Huang 1980). The efficiency with which 
the photodetector collects the emitted photoelectrons propagating in various di-
rections can never be perfectly uniform and, in reality, can be substantially an-
isotropic. This anisotropy can be expected to be especially pronounced for 
thicker sensitive layers (Berglund and Spicer 1964). As a consequence, real 
photodetectors can exhibit strong sensitivity to the direction of propagation and 
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polarization state of the incident beam (Munz 1975; Chyba and Mandel 1988). 
The polarization sensitivity can often be mitigated by placing a depolarizer in 
front of the photodetector, but the angular sensitivity may be more difficult to 
compensate for. It is, therefore, essential to limit the practical use of photoelectric 
detectors to the case of parallel-beam illumination in the direction normal to the 
detector sensitive surface.      

It is important to remember that Eq. (11.1) was specifically derived for a par-
allel polychromatic incident beam with quasi-monochromatic components 
propagating in the same direction, which makes it inapplicable to the case of un-
collimated incident light. 

11.2  Photoelectric detector as a Poynting-meter 

The simplest photometer is a “bare” photoelectric detector with no optical ele-
ments – except, perhaps, a depolarizer – placed in front of its sensitive surface. 
Let us first assume that the detector is exposed to a plane electromagnetic wave 
propagating perpendicularly to its sensitive surface, as shown schematically in 
Fig. 11.2a. At any point of the sensitive surface, the direction of the instantan-
eous local Poynting vector is normal to the surface. Furthermore, the magnitude 
of the Poynting vector is uniform across the sensitive surface. We have seen in 
Section 3.1 that the time-averaged Poynting vector of a plane electromagnetic 
wave is given by 
 ,ˆ  ) ,( It nr =〉〈S  (11.2) 

where the unit vector n̂  specifies the direction of wave propagation and I is the 
intensity of the wave. Since the direction n̂  is assumed to be known, the meas-
urement illustrated in Fig. 11.2a can be thought of as yielding the time-averaged 
Poynting vector of the plane wave: 
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where ω  is the corresponding angular frequency. 
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Fig. 11.2.  A photodetector exposed to a plane electromagnetic wave. 
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More generally, let us assume that the detector is illuminated by a superposi-
tion of N parallel quasi-monochromatic beams propagating in the same direction 
n̂  and having angular frequencies close enough so that for any ,1 Nn ≤≤     

 )(pd
nK ω .pdK  (11.4)    

Then Eq. (11.1) implies that 
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where  
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is the time-averaged Poynting vector of the total beam and 〉〉〈〈 ) ,( tn rS  is that of 
the nth quasi-monochromatic component (see Eq. (9.29)). Thus, in the limited 
measurement setting, wherein the direction of the Poynting vector is constant and 
is assumed to be known, the photodetector can be said to serve as the Poynting-
meter. 

In practice, the active surface of the photodetector may be polarization sensi-
tive, in which case the actual reading of the detector is proportional to +〉〉〈〈 I  

,〉〉〈〈+〉〉〈〈+〉〉〈〈 VUQ VUQ ααα  where one or more of the proportionality factors 
,Qα ,Uα and Vα  is not equal to zero. In order to make the intensity measurement 

depicted in Fig. 11.2a useful, one must ensure that ,Qα ,Uα  and Vα  are much 
smaller (in the absolute-value sense) than unity. As we have indicated previously, 
this can often be accomplished by placing a depolarizer in front of the 
photodetector.   

The interpretation of the measurement with the photodetector becomes more 
uncertain if the propagation direction of the plane electromagnetic wave or the 
parallel polychromatic beam of light is arbitrary and is not known a priori (see 
Fig. 11.2b). In this case the electromagnetic power intercepted by the active sur-
face scales as ,cosθ  where θ  is the (unknown) angle between the propagation 
direction and the normal to the surface. Furthermore, the proportionality 
coefficients can also be expected to have a complex dependence on .θ  As a con-
sequence, the reading of the photodetector is now proportional to )([cos θαθ I  

],)()()( 〉〉〈〈+〉〉〈〈+〉〉〈〈+〉〉〈〈× VUQI VUQ θαθαθα  where )(θαI  is not necess-
arily equal to unity and θ  is unknown. These factors make problematic the use 
of the photodetector as a Poynting-meter, even if a high-quality depolarizer is 
placed in front of the sensitive surface. 

Even more problematic is the situation depicted in Fig. 11.3. Now the photo-
detector is placed inside a cloud composed of M randomly positioned and ran-
domly moving particles. This implies that the detector is located in the near zone 
of the entire scattering object and that the electromagnetic field impinging on the 
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sensitive surface is not a locally unidirectional transverse electromagnetic wave 
or a parallel polychromatic beam. The direction and magnitude of the instantan-
eous Poynting vector are now intricate functions of time and are also quite vari-
able across the sensitive surface of the detector. As a consequence, the measure-
ment afforded by the photodetector becomes essentially useless.  

Even more fundamentally, the local Poynting vector at any point r of the sen-
sitive surface at any moment in time is not the same as it would be in the absence 
of the detector. Indeed, let us assume for simplicity that the particles are sepa-
rated widely enough to satisfy the conditions of applicability of the far-field FEs. 
Then, according to Eqs. (6.34)–(6.35), the total instantaneous electric and mag-
netic fields at r in the absence of the detector are superpositions of the respective 
incident and M scattered fields: 
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where ),(sca ti rE  and ),(sca ti rH  describe an outgoing spherical wavelet centered 
at the origin of particle i. The corresponding local instantaneous Poynting vector 
is given by the vector product ).,(),(  ),( ttt rrr HES ×=  The major side effect 
of the presence of the detector is to block the spherical wavelets generated by the 
M ′  particles located to the left of the plane through the sensitive surface shown 
schematically by the dashed line in Fig. 11.3. The resulting “truncated” electric 
and magnetic fields at r are now given by 
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Fig. 11.3.  A “near-zone” photodetector placed inside the scattering object in the 
form of a cloud of M randomly moving discrete particles. 
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where the sums include only the contributions from the MM ′−  “unblocked” 
particles, and we assume that the detector blocks the incident plane wave as well. 
It is quite obvious that the corresponding “truncated” Poynting vector is not equal 
to the original Poynting vector: ).,(  ),(),(  ),( tttt rrrr SHES ≠′×′=′           

The photodetectors shown in Fig. 11.1 can be called direction insensitive ow-
ing to their inability to accurately decouple the direction and magnitude of the 
Poynting vector. The applicability of such instruments to the measurement of the 
Poynting vector is quite limited and relies on the following assumptions: 

● the incoming radiation is a plane electromagnetic wave or a parallel poly-
chromatic beam of light known to propagate perpendicularly to the sensitive 
surface of the photodetector; 

● the incoming radiation is (or is made) unpolarized; and 
● the range of constituent angular frequencies of the incoming polychromatic 

beam is narrow enough that the quantum efficiency of the photodetector can 
be considered frequency independent. 

11.3  Preisendorfer’s radiance-function meter 

In his search of a connection between the “mainland” of fundamental electro-
magnetics and the “island” of phenomenological photometry, Preisendorfer 
(1965) suggested a thought experiment allegedly yielding a direct measurement 
of the time-averaged Poynting vector. Although it turns out that this thought ex-
periment cannot be realized in practice, an analysis of its deficiencies is quite 
instructive and exposes the nature of major problems encountered in near-field 
measurements of directional electromagnetic energy flow, as exemplified by Fig. 
11.3. 

A hypothetical instrument capable of measuring both the direction and the 
magnitude of the Poynting vector of a plane electromagnetic wave (or a parallel 
polychromatic beam of light) is shown schematically in Plate 11.1a. The sensi-
tive surface of this detector Sd is polarization insensitive, is exposed directly to 
the incoming radiation, and is assumed to react to the local instantaneous 
Poynting vector only if this vector is directed along or almost along the optical 
axis of the instrument defined by the unit vector q̂  normal to Sd. Specifically, if 
the direction of ),( tr′S  at any point r′  of the sensitive surface at any moment t 
is within the small acceptance solid angle q̂ΔΩ  of the detector (e.g., vector 1S  
in Plate 11.1a) then this vector contributes to the cumulative reading of the in-
strument. Instantaneous local Poynting vectors with directions outside q̂ΔΩ  
(e.g., vectors 2S  and )3S  are ignored by the instrument and do not contribute to 
its reading.   

Let us first assume that this hypothetical directional detector of electromag-
netic energy flow is exposed to a monochromatic or quasi-monochromatic plane 
electromagnetic wave (Fig. 11.4) or, more generally, a parallel polychromatic 
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beam of light. It is clear that even if the propagation direction of the incoming 
light is unknown, it can be determined accurately by scanning all directions 

.4ˆ π∈q  As a result, both the direction and the magnitude of the Poynting vector 
can be determined.  

The near-field situation shown in Fig. 11.5 is much more complex. In this 
case the instantaneous local Poynting vector varies very rapidly both in time and 
across the sensitive area of the detector. At any given moment t′  and for any 
given orientation of the detector ,q̂  there can be differential elements of the sen-
sitive surface Sd at which the direction of the local instantaneous Poynting vector 
is very close to .q̂  Therefore, the time average of the signal generated by the di-
rectional detector is proportional to the following double integral: 
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Fig. 11.4.  A hypothetical directional detector exposed to a plane electromag-
netic wave. 

 
Fig. 11.5.  The hypothetical directional detector is placed inside a cloud of ran-
domly moving particles. 
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where |),(|),(),(ˆ ttt ′′′′=′′ rrr SSs  is the unit vector in the direction of the lo-
cal instantaneous Poynting vector ),,( t′′rS  while the step function 
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describes the directional selectivity of the instrument. It is now appropriate to 
introduce the quantity 
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essentially measured by the hypothetical directional detector, where the observa-
tion point r coincides with the center of the detector surface Sd. Note that the de-
pendence on r′  over Sd in Eq. (11.11b) vanishes upon averaging over a suffi-
ciently long time interval T and assuming that the diameter of the sensitive sur-
face is much smaller than any dimension of the particulate scattering medium. 
The quantity (11.11a) was introduced by Preisendorfer (1965) and will therefore 
be called the Preisendorfer radiance function. Importantly, the dimension of 

)ˆ,(~ qrN  is different from that of the Poynting vector S : it is W m–2 sr –1 rather 
than W m–2. It is now clear that to find the time average of the Poynting vector at 
the observation point r, we need to integrate the reading of the hypothetical di-
rectional detector over all directions },{ ϕθ  of the unit vector :q̂      
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Thus, if this thought experiment were possible then it would serve to yield 
the direct measurement of the Preisendorfer radiance function (11.11a) and the 
determination of the local time-averaged Poynting vector via Eq. (11.12). Unfor-
tunately, a practical implementation of this measurement methodology faces two 
major obstacles. First of all, to the best of the author’s knowledge, a directional 
detector of electromagnetic energy flow depicted schematically in Plate 11.1a has 
never been built, and it remains quite questionable whether it can be built in prin-
ciple. Obviously, assessing the very feasibility of a detector with directional sens-
itivity to the local instantaneous Poynting vector requires an advanced quantum-
mechanical analysis of light–matter interaction. It is possible that there exists a 
variant of the Heisenberg uncertainty principle that fundamentally prohibits such 
a measurement. Second of all, as we have already pointed out, the instrument 
blocks the spherical wavelets generated by the particles located to the left of the 
plane through the sensitive surface shown schematically by the dashed line in 
Fig. 11.5. As a consequence, the “truncated” instantaneous local Poynting vector 
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entering the right-hand side of Eq. (11.11b) is fundamentally different from what 
it would be in the absence of the detector.    

11.4  Well-collimated radiometers 

The majority of actual directional radiometers in use today are WCRs based on a 
profoundly different physical principle, as illustrated schematically in Plate 
11.1b. The main functional elements of a WCR are the objective and relay lenses, 
the diaphragm, and the photoelectric detector. Let us consider the reaction of a 
WCR to the electromagnetic field formed by superposing two plane waves 
propagating in directions q̂  and ,q̂′  respectively. The objective lens acts as a 
linear optical transformer in that its effect on the total field is a superposition of 
its effects on each plane-wave component. Specifically, the well-known paraxial 
approximation (see, e.g., Section 5.1 of Goodman (2005)) implies that in the near 
zone of the objective lens either plane wavefront is transformed into a converging 
spherical wavefront (Plate 11.1e) with its respective focal point located in the 
plane of the diaphragm. However, the ultimate fates of the two spherical wave-
fronts in Plate 11.1b are different. The pink spherical wavefront passes freely 
through the pinhole, is converted back into a plane wavefront, and is relayed onto 
the sensitive surface of the photodetector, thereby contributing to the cumulative 
reading of the WCR. The blue spherical wavefront gets annihilated by the dia-
phragm and does not contribute to the reading of the photodetector. 

Thus the combination {objective lens, diaphragm} serves to select only plane 
(or near-plane) wavefronts propagating in directions very close to the optical axis 
of the instrument and falling within its small acceptance solid angle  

 ,
4

Δ 2

2

f
dπ

Ω =  (11.13) 

where d is the diameter of the pinhole and f is the focal length of the objective 
lens. The fundamental difference between the two instruments shown in Plates 
11.1a and 11.1b is that the latter selects appropriately directed wavefronts, 
whereas the former is assumed to select appropriately directed instantaneous 
Poynting vectors (Mishchenko 2010). It can thus be said that the hypothetical 
directional meter of electromagnetic energy flow shown in Plate 11.1a is in-
tended to operate in the Poynting-vector domain, whereas the conventional WCR 
acts as a wave-domain filter.    

This analysis implies that the typical WCR does not necessarily react to the 
local Poynting vector at a point on the exterior surface of the objective lens, even 
if this vector is directed along the optical axis of the instrument. To demonstrate 
this, let us consider the electromagnetic field formed by a superposition of two 
plane electromagnetic waves propagating in directions 1q̂  and 2q̂  such that both 
form a 45° angle with the optical axis of the WCR (Plate 11.1c). The waves are 
linearly polarized, with their electric vectors E1 and E2 oscillating perpendicularly 
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to the paper, and fully coherent in that at any moment in time E1 = E2 at the cen-
tral point of the objective lens. Let the local instantaneous magnetic vectors of 
the waves be H1 and H2, respectively, as shown by the magenta arrows, while 
the corresponding instantaneous electric vectors E1 = E2 are directed towards the 
reader. The cumulative local instantaneous field is represented by the vectors E = 
2E1 and H = H1 + H2, the former again being directed towards the reader. One 
can see that the resulting local instantaneous Poynting vector S = E ×H, shown 
by the green arrow, is directed along the optical axis of the instrument. Moreover, 
it is easily verified that the Poynting vector at the central point is always directed 
along the optical axis of the WCR. Yet the reading of the detector is identically 
equal to zero since neither plane wavefront is passed by the {objective lens, dia-
phragm} filter.  

Conversely, a WCR can generate a nonzero signal when the local Poynting 
vector is zero. Indeed, let us consider the superposition of two plane waves 
propagating in opposite directions along the y-axis, as shown in Fig. 11.6a. The 
corresponding electric and magnetic fields are given by 

 ,ˆ)  (cos  ),(1 zr tkyt ω−= EE  ,ˆ)  (cos  ),(1 xr tkyt ω−= HH  (11.14) 
   ,ˆ)  (cos  ),(2 zr tkyt ω−= EE  ,ˆ)  (cos  ),(2 xr tkyt ω−−= HH  (11.15) 

respectively. One can see that at the origin ( y = 0), the total magnetic field and, 
as a consequence, the Poynting vector are identically equal to zero. Yet the 
WCRs in Figs. 11.6b and 11.6c block one of the waves and thereby record a non-
zero “Poynting vector” directed along the positive (Fig. 11.6b) or negative (Fig. 
11.6c) y-axis.    

The failure of the WCR to react to the instantaneous Poynting vector in Plate 
11.1c can be traced to the following fundamental fact: although the Poynting vec-
tor is sought at points on the exterior surface of the objective lens, the actual 
photodetector is invariably located very far (compared to the wavelength) from 
these points. What the optical scheme of the WCR can relay from the entrance 
plane onto the sensitive surface of the photodetector is a suitable plane (or quasi-
plane) wavefront, but not the Poynting vector of the total field. The only circum-
stance in which the WCR relays the Poynting vector itself is when the total field 
consists only of one or several plane or near-plane wavefronts propagating in the 
same direction along the optical axis of the instrument. In fact, it is the very prin-
ciple of serving as a wavefront angular filter (rather than a Poynting-vector angu-
lar filter) that allows one to build a WCR by using easy-to-fabricate macroscopic 
optical elements (such as lenses, mirrors, polarizers, prisms, diffraction gratings, 
etc.). In some cases these elements can be very large, as exemplified by modern 
astronomical telescopes (see, e.g., Figs. 1.6a and 1.6b).  

Thus, contrary to a widespread belief, a WCR cannot be said to measure the 
directional distribution of the electromagnetic energy flow at an observation 
point. It is therefore imperative to formulate precisely what a WCR does in actu-
ality. Let us assume that it is exposed to an electromagnetic field in the form of a 
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superposition of several plane wavefronts, as depicted schematically in Fig. 11.7. 
According to the above discussion, the WCR does the following: 

● selects only those wavefronts whose propagation directions fall within its 
small acceptance solid angle q̂ΔΩ  (i.e., ,ˆ,ˆ 43 qq  and ,ˆ 5q  but not ,ˆ,ˆ,ˆ 621 qqq  
and );ˆ 7q   

● sums up the respective instantaneous electric and magnetic field vectors: E′  
=E3 + E4 + 5E  and ;543 HHHH ++=′  and finally 

● integrates the modulus of the vector product HE ′×′  (which, by its very con-
struct, is always directed along – or very close to – the optical axis of the 
WCR; see Problem 11.1) over the entrance pupil Sep as well as over time. 

Plane wave 1

x

O

z

y

Plane wave 2

(a)

(b)

(c)

y

y

 
Fig. 11.6.  A WCR can register a nonzero signal even if the local Poynting vec-
tor is identically equal to zero.  
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Importantly, invoking the concept of the flat entrance pupil of a WCR, 
shown in Plate 11.1d, helps to accommodate the following two facts: 

● the electromagnetic power enters the WCR through the objective lens and is, 
therefore, proportional to the area of this lens; and 

● the actual registration of the resulting Poynting vector of the superposition of 
transmitted wavefronts occurs at the sensitive surface of the end photodetect-
or.  

Indeed, the optical scheme of the WCR serves to preserve the phase relations 
between the incoming wavefronts as they are relayed onto the sensitive surface of 
the detector. Suppose, for example, that one of two wavefronts propagating along 
the WCR axis is a plane electromagnetic wave {E1,H1}, while the other one is a 
spherical wave {E2,H2} with a large, but finite, radius of curvature. The phase 
difference between these wavefronts varies over a plane perpendicular to the di-
rection of propagation, thereby causing lateral variations of the resulting vector 
product )( 21 EE + × +1(H H2). It is easy to see that the combination of the object-
ive and relay lenses in Plate 11.1b yields the same phase-difference distribution 
over the sensitive surface of the detector as that over the flat entrance pupil. We 
will see in Chapter 13 that this functional feature of a WCR is essential in the 
practical measurement of extinction.         

Another fundamental feature of the basic optical scheme of a WCR is that the 
wavefronts impinging on the sensitive surface of the end photodetector always 
propagate normally to the surface, thereby eliminating one of the drawbacks of 
uncollimated radiometers discussed in Section 11.2. Although the photodetector 
can still have residual polarimetric sensitivity, this problem can be mitigated by 
inserting a depolarizer between the relay lens and the detector.        
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Fig. 11.7.  Response of a WCR to a superposition of several plane electromag-
netic waves. 
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Thus, the operation performed by a WCR is by no means equivalent to ac-
cumulating appropriately directed local instantaneous Poynting vectors of the 
total field over the entrance pupil (cf. Plate 11.1a). Despite this fundamental limi-
tation, the above discussion shows that the measurement afforded by a WCR is 
well defined and thus can be modeled theoretically. This, as will be described in 
later chapters, makes WCRs very useful tools in solving energy-budget and part-
icle-characterization problems. Furthermore, we will demonstrate in the follow-
ing chapter that a WCR can be upgraded to measure even the state of polarization 
of the superposition of wavefronts filtered out by its {objective lens, diaphragm} 
combination. This further increases the utility of WCRs in optical particle charac-
terization. 

The very fact that a WCR serves as a directional filter of plane or near-plane 
wavefronts imposes strict limitations on its practical use. For example, a WCR 
having a centimeter-sized or larger entrance pupil cannot be used to characterize 
the near field created by a micrometer-sized particle, such as that shown in Fig. 
1.3c. Solving this problem requires specifically designed nano-optical probes 
(Novotny and Hecht 2012) and is beyond the scope of this book. Instead, our dis-
cussion of FFS in Chapter 5 suggests that a WCR should ideally be located in the 
far zone of the entire scattering object and at a distance from the object much 
greater than the diameter of the entrance pupil. Then the part of the scattered 

ΔV

q̂

q̂

 
Fig. 11.8.  A WCR placed inside a random cloud of particles. 
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spherical wavefront cut out by the entrance pupil becomes sufficiently flat to pass 
in its entirety the {objective lens, diaphragm} filter.  

The WCR shown in Fig. 11.8 is located in the near zone of the cloud. We 
have seen, however, that if the cloud is formed by widely separated particles then 
the total field at any observation point located in the far zones of all the con-
stituent particles is a superposition of the incident field and individual spherical 
wavelets contributed by all the cloud particles. If the size of the cloud is much 
greater than the diameter of the entrance pupil then the majority of these wavelets 
are contributed by remote particles and develop into near-plane wavefronts at the 
location of the WCR. Therefore, the use of the WCR appears to be justified, as 
long as these wavefronts dominate the total local field.  

An implicit advantage of a WCR over the hypothetical directional meter of 
electromagnetic energy flow shown in Plate 11.1a is that the specific measure-
ment afforded by the WCR is much less affected by the WCR’s very presence. 
Indeed, we have seen in Section 11.3 that placing the directional meter inside a 
cloud of particles changes the local Poynting vector dramatically by blocking a 
large fraction of incoming spherical wavefronts (Fig. 11.5). The measurement 
afforded by the WCR is fundamentally different in that, by definition, the WCR 
selects only those incoming wavefronts that are generated by particles residing in 
the narrow conical volume q̂ΔV  defined by the WCR’s acceptance solid angle 

q̂ΔΩ  (Fig. 11.8). It is obvious that placing the WCR inside the cloud blocks 
none of these wavefronts. 

Admittedly, the addition of a foreign body such as a WCR modifies the par-
tial wavelets created at the observation point by the particles residing in the coni-
cal volume .Δ q̂V  However, the WCR can be expected to affect only the wavelets 
coming from particles located in the close vicinity of the WCR. If the size of the 
WCR is much smaller than that of the cloud then the fraction of such particles in 
the conical volume q̂ΔV  is relatively small, thereby making the actual signal 
measured by the WCR close to the imaginary signal caused by the same particles 
in the absence of the WCR. The situation depicted in Fig. 11.5 is fundamentally 
different in that the directional detector essentially destroys the signal that it is 
supposed to measure.    

11.5  Response of a well-collimated radiometer                                                                    
to polychromatic light 

Since in practice one usually deals with polychromatic rather than monochrom-
atic light, accounting for spectral dependence of WCR’s sensitivity becomes an 
essential part of the theoretical modeling of an actual photometric measurement. 
Let us consider the most general situation wherein a WCR is exposed to poly-
chromatic light with quasi-monochromatic components. This implies that electro-
magnetic radiation reaching the photodetector in Plate 11.1b is a superposition of 
plane wavefronts essentially parallel to the sensitive surface of the detector and 
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given by the complex fields 
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where the unit vector q̂  is directed along the inward normal to the sensitive sur-
face. The photoelectric response of the detector can now be modeled in the 
framework of the quantum theory of photodetection discussed in Section 11.1. 
Specifically, the total number of photoelectrons )(pe TN  generated by the detect-
or during a time interval T is now given by 

  ∑
=

〉〉〈〈=
N

n
nn tIKSTTN

1

dd
illpe ,)()(  )( ω  (11.18) 

where Sill is the illuminated area of the sensitive surface, )(d
nK ω  is the quantum 

efficiency of the photodetector at the frequency ,nω  and 〉〉〈〈 )(d tIn  is the time-
averaged intensity of the nth quasi-monochromatic component. 

In the absence of absorption of light by the objective and relay lenses, we 
would have ,)()( ep

d
ill 〉〉〈〈=〉〉〈〈 tIStIS nn  where 〉〉〈〈 )(tIn  is the time-averaged 

intensity of the nth quasi-monochromatic wavefront at the entrance pupil. How-
ever, the spectrally varying absorption by both lenses must be taken into account 
by introducing an additional attenuation factor ).(rlol

nK ω+  We thus have the fol-
lowing final formula for :)(pe TN  
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where    
  )()()( rloldWCR

nnn KKK ωωω +=  (11.20) 

is the cumulative spectrally dependent detection efficiency of the WCR. If the 
WCR is also capable of measuring the other Stokes parameters then, by analogy 
with Eq. (11.19), we can write the following symbolic expression: 
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where the four K WCR coefficients now incorporate the spectrally varying attenua-
tion by additional optical elements required to perform polarization measure-
ments, as described in the following chapter. Note that the nominal “photoelect-
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ron counts” Npe,Q , Npe,U , and Npe,V in Eq. (11.21) are obtained by subtracting real 
photoelectron counts registered with different orientations of polarizers and re-
tarders (see Section 12.3) and therefore can be negative.  

In many cases of practical interest the polychromatic field in question is a  
superposition of a very large number of quasi-monochromatic components with a 
quasi-continuous distribution of frequencies ranging from minω  to .maxω  Then 
Eq. (11.21) takes the form     
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Comparison of Eq. (9.33) with Eq. (11.21) shows that a WCR can be used to 
measure the cumulative Stokes parameters of the superposition of wavefronts 
selected by the WCR’s {objective lens, diaphragm} filter only if the total spectral 
range ];[ maxmin ωω  is narrow enough to ensure nearly constant coefficients 

,WCR
IK ,WCR

QK ,WCR
UK  and .WCR

VK  Otherwise the measurement convolves the spect-
ral diversity of the electromagnetic field with the spectrally varying sensitivity of 
the WCR, thereby yielding a signal that may be difficult, if even possible, to de-
cipher. This explains the frequent use of narrow spectral filters and optical mono-
chromators in the optical tract of a WCR intended to cut out a sufficiently narrow 
range of angular frequencies. Accordingly, we will always assume in what fol-
lows that the range ];[ maxmin ωω  is narrow enough that Eq. (11.21) can be simpli-
fied as follows:  
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Furthermore, we will assume that the frequency-independent coefficients ,WCR
IK  

,WCR
QK ,WCR

UK  and KI
WCR, WCR

VK  are known beforehand. This allows us to move 
them to the left-hand side,  
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and refer to the right-hand side of Eq. (11.24) as the net signal recorded by the 
WCR per unit time. 
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11.6  Panoramic radiometers 

A WCR is an inherently monodirectional instrument. The basic optical scheme of 
a multidirectional panoramic radiometer is depicted in Plate 11.1f. In this case 
the role of the diaphragm is played by each individual pixel of the L-pixel CCD. 
For example, the pink wavefront propagating along the optical axis in the direc-
tion q̂  is detected by the central pixel of the CCD, while the blue wavefront 
propagating in the direction q′ˆ  is not annihilated (cf. Plate 11.1b), but is rather 
detected by an off-center pixel. In other words, each pixel is expected to measure 
the cumulative Poynting vector of the superposition of plane or near-plane wave-
fronts propagating in the direction defined by the corresponding {objective lens, 
pixel} filter. As a result, a single exposure of the CCD yields L simultaneous 
measurements that are often thought of as forming a two-dimensional image. 

For a host of technical reasons not discussed here specifically, accurate radio-
metric measurements with CCDs are more problematic than those with photo-
multipliers and photodiodes. However, the following note is of a more basic   
nature. The quantum theory of the photoelectric effect is well established in the 
case of photodetection of a plane electromagnetic wave or a parallel polychrom-
atic beam propagating perpendicularly to the plane sensitive surface of the 
photodetector (Kimble and Mandel 1984; Mandel and Wolf 1995). The main 
practical result of this theory is summarized by Eq. (11.1) and helps in making 
the measurement with a WCR a well-characterized and theoretically interpretable 
procedure. It also further illustrates the essential role played by the relay lens in 
Plate 11.1b.    

Unlike the optical scheme of a WCR shown in Plate 11.1b, that of a pan-
oramic radiometer shown in Plate 11.1f implies that each pixel is located in the 
focal point of a converging spherical wavefront rather than being exposed to a 
plane wavefront. Furthermore, the angle between the symmetry axis of a spher-
ical wavefront and the normal to the sensitive surface varies over the CCD and 
can deviate from zero quite substantially. To the best of the author’s knowledge, 
the quantum theory of photodetection of a converging spherical wave has not 
been developed yet. As a consequence, the quantitative relationship between the 
individual intensities of the plane wavefronts in Plate 11.1f and the signals gen-
erated by the respective CCD pixels remains poorly characterized. This makes 
theoretical interpretations of measurements with panoramic radiometers more 
uncertain than those with WCRs.        

Problems 

11.1:   Consider a superposition of N transverse electromagnetic waves with all 
individual vector products ii HE ×  pointing in the same direction .n̂  Prove 
that the corresponding product ∑∑ =′ ′= × N

i i
N
i i 11 HE  for the superposition of 

these waves also points in the direction .n̂  
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11.2:   The so-called Gershun tube (e.g., McCluney 1994; Eppeldauer et al. 2005) 
is a simple optical device claimed by Preisendorfer (1965) to be a radiance-
function meter. This device is sketched in Fig. 11.9 and consists of a long 
tube with entrance and exit apertures followed by a photodetector. Show 
that the Gershun tube is, in fact, a wavefront-filtering WCR rather than a 
radiance-function meter. Express the acceptance solid angle of this device 
ΩΔ  in terms of the tube length L and the diameters D and d of the en-

trance and exit apertures, respectively, assuming that D d. Show that the 
acceptance solid angle increases and becomes partially vignetted with in-
creasing d. Compare the energy collection efficiency of the Gershun tube 
and the WCR sketched in Plate 11.1b by taking into account that the for-
mer is defined only by d.  

Notes and further reading 

The photoelectric effect was discovered experimentally in 1887 by Heinrich 
Hertz (1857–94) (see Hertz 1887) and studied systematically by Aleksandr Sto-
letov (1839–96). Stoletov’s experimental results were reported in a series of pa-
pers published in Comptes Rendus and Journal de Physique; a summary ap-
peared in the form of a Russian-language monograph (Stoletov 1889). The ex-
perimentally established proportionality of the photoelectric current to the intens-
ity of the incident light is the famous Stoletov law.  

Albert Einstein (1879–1955) attempted to explain the photoelectric effect by 
resurrecting the idea of light corpuscles advocated by Sir Isaac Newton (1642–
1727). Specifically, Einstein suggested that “the energy of a light ray spreading 
out from a point source is not continuously distributed over an increasing space 
but consists of a finite number of energy quanta which are localized at points in 
space, which move without dividing, and which can only be produced and ab-
sorbed as complete units” (see Arons and Peppard 1965).  

The obsolete phenomenological nature of Einstein’s localized light quanta 
(Kidd et al. 1989; Roychoudhuri et al. 2008) becomes obvious upon opening vir-
tually any advanced textbook on QED or quantum optics (e.g., Bohm 1951; 
Kramers 1957; Power 1964; Akhiezer and Berestetskii 1965; Mandel and Wolf 
1995; Meystre and Sargent 1999). Nevertheless, the lasting misinterpretation of 
the actual QED photons as localized particles of light has been kept flourishing 
by authors of many school and college textbooks, as well as by scores of incom-

ΩΔ

 
Fig. 11.9.  The Gershun tube. 
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petent popularizers of science. A typical example is the textbook by Taylor et al. 
(2004, p. 125), where one can find the following false statement: “It was found 
that an electromagnetic wave consists of tiny localized bundles of energy. These 
bundles, or quanta of light, have come to be called photons.” Similarly, Petty 
(2006, p. 32) defines electromagnetic radiation as a “shower of particles.”    

Although the term “photon” is ubiquitous in QED and quantum optics (e.g., 
Scully and Zubairy 1997), it is well known that there is no position operator for a 
photon and that it is impossible to introduce a photon wave function in the co-
ordinate representation (e.g., Section 2.2 of Akhiezer and Berestetskii (1965)). 
The actual QED photons are quantum excitations of the normal modes of the 
electromagnetic field and as such are associated with plane waves of definite 
wave vector and definite polarization, but infinite lateral extent (Mandel and 
Wolf 1995). This implies, of course, that photons are not localized point-like part-
icles of light (Lamb 1995). 

Contrary to the widespread misrepresentation of the true nature of QED phot-
ons in many entry-level textbooks and superficial popularizations of physics, the 
photoelectric and the Compton effects do not prove the existence of Newtonian 
corpuscles or Einstein’s localized light quanta. The main traits of either effect 
can be explained on the basis of the semi-classical approach pioneered by Max 
Planck (1858–1947) (see Planck 1906) wherein only matter is quantized, while 
the electromagnetic field remains classical (Kidd et al. 1989; Dodd 1991; Mandel 
and Wolf 1995). Even if quantization of the electromagnetic field proves to be 
necessary, it yields QED photons occupying the entire quantization domain 
rather than particles of light localized at points in space. Furthermore, based on 
the advanced QED theory of the photoelectric effect, Kimble and Mandel (1984) 
concluded that photodetectors do not count photons in any precise sense.        
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1122  
Measurement of the Stokes parameters 

We have seen in the preceding chapter that a WCR directly measures the abso-
lute value of the time-averaged Poynting vector (i.e., the intensity) for the super-
position of plane or near-plane wavefronts filtered out by the {objective lens, dia-
phragm} combination, by relaying it onto the sensitive surface of the photode-
tector. Since all these wavefronts propagate in essentially the same direction, i.e., 
along the optical axis of the instrument, they can be thought of as forming a par-
allel beam that can be characterized by all four Stokes parameters rather than 
only by the first one, i.e., the intensity (Sections 9.2 and 9.3). It turns out that by 
inserting special optical elements between the relay lens and the detector, it is 
possible to modify this beam in such a way that the new first Stokes parameter of 
the beam reaching the photodetector contains information about the second, third, 
or fourth Stokes parameters of the original beam. This is usually done by using 
so-called polarizers and retarders, and typically involves a succession of several 
measurements to fully characterize the four-component Stokes column vector. 

The following discussion will be based on the assumption that the WCR 
faces a monochromatic plane wave. However, the additivity of the Stokes pa-
rameters derived in Sections 9.2 and 9.3 allows for a straightforward generaliza-
tion of the results to polychromatic light assuming that, according to Section 
11.5, the range of angular frequencies involved is sufficiently narrow. 

12.1  Polarizers 

A polarizer is an optical element that attenuates the orthogonal components of the 
electric field vector of a plane electromagnetic wave unevenly. Let us denote the 
corresponding attenuation coefficients as θp  and ϕp  and consider first the situa-
tion when the two orthogonal transmission axes of a polarizer coincide with the 

-θ  and axes-ϕ  of the laboratory coordinate system (see Fig. 12.1). This means 
that after the electromagnetic wave has propagated through the polarizer, the or-
thogonal components of the electric field change as follows: 
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                                           ,1    0    ,  ≤≤=′ θθθθ pEpE  (12.1) 
  .1    0    ,  ≤≤=′ ϕϕϕϕ pEpE  (12.2) 

It then follows from the definition of the Stokes parameters, Eq. (7.3), that the 
Stokes column vector of the wave modifies according to 

 , IP I =′  (12.3) 
where 
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is the so-called Mueller matrix representing the effect of the polarizer on the 
transmitted wave (Problem 12.1).  

An important example of a polarizer is a neutral filter with == ϕθ pp p 
which equally attenuates the orthogonal components of the electric field vector 
and does not change the polarization state of the wave: 

  .1]1,1,[1,diag   2p=P  (12.5) 

In contrast, an ideal linear polarizer transmits only one orthogonal component of 
the wave, say, the component,-θ  and completely blocks the other one, thereby 
implying that .0  =ϕp  We thus have: 

n̂

θp

ϕp

Polarizer

ϕ

θ

θ

ϕ

 
Fig. 12.1. Propagation of a plane wave through a polarizer. The transmission 
axes of the polarizer coincide with those of the laboratory reference frame. The 
wave propagates in the direction of the unit vector .n̂   
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An ideal perfect linear polarizer does not change one orthogonal component 
)1 ( =θp  and completely blocks the other one :)0 ( =ϕp  
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If the transmission axes of a polarizer are rotated relative to the laboratory 
coordinate system (Fig. 12.2) then its Mueller matrix with respect to the labora-
tory coordinate system also changes. To obtain the resulting Stokes column vec-
tor with respect to the laboratory coordinate system, we need to: 

● “Rotate” the initial Stokes column vector through the angle η  in the clock-
wise direction in order to obtain the Stokes parameters of the original beam 
with respect to the polarizer axes. 

● Multiply the “rotated” Stokes column vector by the original (nonrotated) po-
larizer Mueller matrix. 

● “Rotate” the Stokes column vector thus obtained through the angle η−  in 
order to calculate the Stokes parameters of the resulting beam with respect to 
the laboratory coordinate system. 

n̂

η
Polarizer

θp

ϕp

ϕ

θ

θ

ϕ

θ

ϕ

 
Fig. 12.2.  The polarizer transmission axes are rotated through an angle ≥ η 0 
around n̂  in the clockwise direction when looking in the direction of .n̂   
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The final result is as follows: 

  ,)()(  ILPLI ηη−=′  (12.8) 

where L is the rotation matrix (7.8). Hence, the Mueller matrix of the rotated po-
larizer computed with respect to the laboratory coordinate system is given by 

  )()( )( ηηη LPLP −=  (12.9) 
with . )0( P P =  

12.2  Retarders 

A retarder is an optical element that changes the phase of the plane electromag-
netic wave by causing a phase shift of 2ζ+  along the axis-θ  and a phase shift 
of 2ζ−  along the axis-ϕ  (Fig. 12.3). We thus have 

                                               ,)2i(exp  θθ ζ EE +=′  (12.10) 
  ,)2i(exp  ϕϕ ζ EE −=′  (12.11) 

which yields  
  ,)( IR I ζ=′  (12.12) 

where the Mueller matrix of the retarder is given by (Problem 12.3) 
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Fig. 12.3.  Propagation of a plane wave through a retarder. 
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12.3  Measurement of the Stokes parameters 

Consider now the optical path shown in Fig. 12.4. The plane electromagnetic 
wave propagates through a retarder and a rotated ideal perfect linear polarizer 
and then impinges on the surface of a polarization-insensitive detector. The 
Stokes column vector of the resulting wave impinging on the detector surface is 
given by  
  ,)()(  IRPI ζη=′  (12.14) 

where the polarizer Mueller matrix is  
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(Problem 12.4). Hence the intensity of the resulting beam as a function of η  and 
ζ  is given by 

  ).sin2sincos2sin2cos(  ) ,(
2
1 ζηζηηζη VUQII −−+=′  (12.16) 

This formula suggests a simple way to determine the Stokes parameters of the 
original beam by measuring the intensity of the resulting beam using four differ-
ent combinations of η  and :ζ  

η

n̂

2ζ+

2ζ−

Retarder

plane
Detector

beam
Incident

polarizer
Linear

ϕ

ϕ

ϕ

ϕp

θ

θ

θ

θp

 
Fig. 12.4.  Measurement of the Stokes parameters with a retarder and an ideal 
perfect linear polarizer rotated with respect to the laboratory reference frame. 
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                                          ),0 ,90()0 ,0(  °°′+°°′= III  (12.17) 

  ),0 ,90()0 ,0(  °°′−°°′= IIQ  (12.18) 
                                          ,)0 ,45(2   IIU +°°′−=  (12.19) 
                                          )09 ,45(2  °°′−= IIV  (12.20) 
(Problem 12.5). 

Problems 

12.1:   Derive Eqs. (12.4). 

12.2: Derive the explicit form of )(ηP  assuming the general form of P  given by 
Eq. (12.4). What is the result for a neutral filter described by Eq. (12.5)?  

12.3: Derive Eq. (12.13).  

12.4:   Derive Eq. (12.15). 

12.5:   Verify Eqs. (12.17)–(12.20). 

Further reading 

Other methods for measuring the Stokes parameters and practical aspects of po-
larimetry are discussed in detail in the books by Shurcliff (1962), Clarke and 
Grainger (1971), Azzam and Bashara (1977), Kliger et al. (1990), and Collett 
(1992). Clarke (2010) and Mishchenko et al. (2010) discuss issues specific to 
polarimetric observations in astrophysics.         
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1133  
Description of far-field scattering in terms           

of actual optical observables 

As discussed in Chapter 5, scattering in the far zone is unique in that the scattered 
field always evolves into a simple outgoing spherical wave, irrespective of the 
physical nature of the scatterer. It should therefore be important, as well as in-
structive, to analyze how the general concepts introduced in Chapters 7–12 apply 
to this simplest type of electromagnetic scattering. Indeed, electromagnetic scat-
tering in the far zone of an object was previously described in terms of the inci-
dent and scattered fields related by the amplitude scattering matrix, that is, in 
terms of typically unobservable quantities. The aim of this chapter is to describe 
FFS in terms of quantities directly measurable with a WCR and/or directly quant-
ifying the electromagnetic energy budget of a finite volume element enclosing 
the scattering object.  

We will begin by considering the simplest case of monochromatic scattering 
by a fixed object imbedded in a lossless homogeneous medium and then general-
ize the results by allowing the incident field to be a polychromatic parallel beam 
and the object to change randomly in time. The main results of this chapter will 
be straightforward mathematical corollaries of the total field in the far zone being 
a superposition of plane and spherical wavefronts. Unlike the more complex case 
of near-field scattering by a large multi-particle group, the relative mathematical 
simplicity of FFS will allow us to bypass the computation of the PST and work 
directly with the Poynting vector and the Stokes parameters. 

13.1  Electromagnetic response of a well-collimated radiometer 

Consider the measurement configuration involving polarization-insensitive 
WCRs located at a distance r from the origin O in the far zone of the entire scat-
tering object, as shown in Fig. 13.1. The origin of the laboratory coordinate sys-
tem is assumed to be close to the geometrical center of the object, but otherwise 
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it is arbitrary. According to Section 5.1, the total electromagnetic field at the lo-
cation of a WCR is mathematically represented as a superposition of the incident 
field in the form of a plane electromagnetic wave propagating in the direction of 
the unit vector incn̂  and the scattered field in the form of an outgoing spherical 
wave centered at O. We remind the reader that the total field is the only real 
physical field, while the separation of this field into the incident and scattered 
components is notional only. We thus have for a far-zone point :r′  

 ,0  ˆ    ),ˆiexp(  )( incinc
0

inc
1

inc
0

inc =′=′ nErnErE ⋅⋅k  (13.1) 

                 ,ˆ)ˆiexp(   )( inc
0

incinc
1

0

1inc EnrnrH ×′=′ ⋅k
μ
,  (13.2) 

WCR 4

Sep

inc
n̂

O

r̂1

Scattered spherical
wave

Incident plane wave

r̂3

WCR 1

WCR 2

WCR 3

 
Fig. 13.1.  The net signal recorded by a well-collimated radiometer depends on 
its line of sight. 
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The entrance pupils of the four WCRs shown in Fig. 13.1 are centered at the end-
points of the respective position vectors ,ˆ11 rr r= ,ˆˆ inc

22 nrr rr == ,ˆ33 rr r= and 
.ˆ44 rr r=  The distance r from the origin is assumed to be much greater than the 

diameter D of the entrance pupils to ensure that the part of the scattered wave-
front (shown by the dashed curve in Fig. 13.1) cut out by an entrance pupil is 
essentially flat. Specifically, it satisfies the inequality    

 2
ep

r
S

< ΩΔ  (13.5) 

(see Problem 13.1), where, as before, Sep is the area of the entrance pupil and 
ΩΔ  is the WCR acceptance solid angle defined by Eq. (11.13). 

The optical axis of WCR 3 coincides neither with the respective radial di-
rection 3r̂  nor with the incidence direction .ˆ incn  According to the discussion in 
Section 11.4, this implies that neither the incident plane wave nor the locally flat 
scattered wavefront can pass the {objective lens, diaphragm} filter, which makes 
the reading of WCR 3 identically equal to zero. In other words, if the optical axis 
of a WCR does not go through the origin O and is not parallel to incn̂  then the 
WCR records no signal.  

The optical axis of WCR 4 is parallel to the incidence direction, but does not 
coincide with the respective radial direction ,ˆ4r  which implies that only the inci-
dent plane-wave component passes the {objective lens, diaphragm} filter. There-
fore, the time-averaged net power recorded by WCR 4 is given by 

 ,inc
ep4 ISW =〉〈  (13.6) 

where 

 2inc
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1inc ||
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1 E

μ
,=I  (13. 7) 

is the nominal intensity of the incident plane-wave component, i.e., computed as 
if the scattered spherical-wave component of the total field were zero (see Eq. 
(3.20) with ).0I =m    

The optical axis of WCR 1 coincides with the corresponding radial direction 
,ˆ1r  but not with the incidence direction .ˆ incn  Therefore, the {objective lens, dia-

phragm} filter of WCR 1 passes only the scattered wavefront. According to Sec-
tion 11.4, the net time-averaged electromagnetic power recorded by WCR 1 is  
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where 
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,=  (13.9)  

is the nominal intensity of the scattered spherical-wave component, i.e., com-
puted as if the incident plane-wave component of the total field were zero (see 
Eq. (3.38) with ).0I =m    

The computation of the electromagnetic response of WCR 2 oriented along 
the incidence direction is more involved because the corresponding {objective 
lens, diaphragm} filter passes both the incident and the forward-scattered wave-
front. The time-averaged Poynting vector 〉′〈 ) ,( trS  at any point r′  of the en-
trance pupil of WCR 2 is the sum of three terms: 

         }{ )]([)(Re  ) ,(
2
1 ∗′×′=〉′〈 rHrEr tS  

            ,) ,() ,() ,( extscainc 〉′〈+〉′〈+〉′〈= ttt rrr SSS  (13.10) 

where  
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and 

 }{ )]([)(Re  ) ,( scascasca

2
1 ∗′×′=〉′〈 rHrEr tS  (13.12) 

are the Poynting vector components associated with the incident and the scattered 
wavefront, respectively, and 
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quantifies the “interaction” between the incident and scattered wavefronts. The 
resulting electromagnetic response is obtained by integrating the absolute value 
of the Poynting vector (13.10) over the entrance pupil of WCR 2. 

It is convenient at this point to make use of the following far-zone decompo-
sition of the incident electric field into incoming and outgoing spherical-wave 
components centered at the origin O : 

 ,)i(exp )ˆˆ()i(exp )ˆˆ( 2i  )( inc
0

1inc1inc

1

inc

1

ErnrnrE ⎥⎦
⎤

⎢⎣
⎡

′
′′−−

′
′−′+=′

→′ r
rk

r
rk

krk
δδ

π
∞

      

  (13.14) 
where |,|r′=′r ,ˆ r′′=′ rr  and 
 )()cos(cos  )ˆˆ( ϕϕδθθδδ ′−′−=′− rr  (13.15) 

is the solid-angle delta function (see Appendix D). Similarly, the incident mag-
netic field is given by  
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Substituting these decompositions in Eq. (13.13) and integrating the absolute 
value of the Poynting vector (13.10) over the entrance pupil of WCR 2 yields 
(Problem 13.2): 
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Equations (13.17) represent the so-called optical theorem. The first term on 
the right-hand side of Eq. (13.17b) is proportional to Sep and is equal to the net 
electromagnetic power that would be recorded by WCR 2 in the absence of the 
scattering object. The second term is independent of Sep and describes attenuation 
caused by interposing the object between the light source and the WCR. Thus, 
the WCR centered at the object along the forward-scattering direction can be said 
to measure the nominal power of the incident plane wave attenuated by the inter-
ference of the incident and scattered wavefronts, plus a relatively small contribu-
tion from the scattered wavefront. The detector centered at the object along any 
other radial direction reacts only to the scattered wavefront.  

The fact that the extinction term in Eqs. (13.17) is independent of Sep has a 
simple qualitative explanation. Although the radius of curvature of the spherical 
wave at WCR 2 is large, it is still finite. Because of that, the phase difference be-
tween the incident and scattered wavefronts varies over the flat entrance pupil 
(see Fig. 13.2), thereby causing the Poynting vector component 〉′〈 ) ,(ext trS  to 
oscillate with increasing frequency as the distance of the observation point r ′ 
from the center of the entrance pupil increases. These high-frequency oscillations 
between positive and negative values effectively cancel each other upon the inte-
gration over the entrance pupil. The only exception is the immediate vicinity of 
the exact forward-scattering direction, where the phase difference between the 
incident and scattered wavefronts remains approximately constant. Hence the 
appearance of a delta-function term on the right-hand side of Eq. (13.13), causing 
a nonzero extinction term in Eqs. (13.17). This explanation also demonstrates the 
importance of the optical scheme of WCR 2 preserving the lateral distribution of 
the phase difference between the incident and scattered wavefronts as they are 
relayed onto the sensitive surface of the photodetector (recall the discussion in 
Section 11.4).      

The ratio of minus the second term on the right-hand side of Eq. (13.17b) to 
the nominal intensity of the incident plane wave has the dimension of area and is 
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called the extinction cross section, .extC  Therefore, Eq. (13.17b) can be written as  
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We will see in later chapters that the extinction cross section can exceed the area 
of the object’s geometrical projection by a factor of several. Therefore, it is im-
perative to satisfy the following requirement: 

 Dep  2a, (13.20)  
where Dep is the diameter of the entrance pupil and a is the radius of the smallest 
circumscribing sphere of the scattering object. Indeed, this requirement implies 
that the signal measured by WCR 2 is positive and, thus, physically meaningful. 
In general, this requirement does not apply to WCR 1 in Fig. 13.1.  

incn̂

O

Scattered spherical
wave

Incident plane wave

Entrance pupil

 
Fig. 13.2.  The scattered spherical wavefront “interacts” with the incident plane 
wavefront only in the immediate vicinity of the exact forward-scattering direc-
tion. 
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There is another fundamental reason for imposing the requirement (13.20). 
As we have already emphasized, the far-field approximation implies the treat-
ment of the scatterer as a point-like object. This treatment is justified for the deri-
vation of the above formulas, but becomes too crude when one attempts to de-
scribe the interaction of the incident plane wave and the scattered field over the 
entrance pupil of the WCR facing the incident light. To do that properly, we 
should recall that the actual scattered field is a superposition of spherical wave-
lets generated by elementary volume elements of the scattering object (Section 
5.1). It is clear from the previous discussion that each wavelet “interacts” with 
the incident plane wave only along the straight line drawn through the center of 
the corresponding volume element and parallel to the incidence direction incn̂  
(Fig. 13.3a). Therefore, to capture each individual interaction, the surface of the 
entrance pupil must exceed the area of the shadow cast by the scatterer onto the 
plane normal to ,ˆ incn  Fig. 13.3b.  

Another important practical aspect of FFS measurements is that the angular 
scattering pattern, as measured by WCR 1, for an object comparable to and larger 
than the wavelength is known to vary dramatically with scattering direction. This 
angular variability can be traced back to the complex exponential factor 

)ˆiexp( 1 rr ′− ⋅k  on the right-hand side of Eq. (5.9). Indeed, the electric field con-
tributions from two arbitrary elementary volumes of the scattering object cen-
tered at r′  and r ′′  interfere in the far zone, the result of the interference being 
controlled by the product  

 )].(ˆiexp[)]ˆiexp()[ˆi(exp 111 rrrrrrr ′′−′−=′′−′− ∗ ⋅⋅⋅ kkk  (13.21) 

Obviously, depending on the angle between r̂  and rr ′′−′  and on |,| rr ′′−′  this 
complex exponential can be a rapidly varying function of .r̂  As a result, the an-
gular scattering pattern in the far zone can be expected to be a superposition of 
multiple maxima and minima generated by different pairs of elementary volume 
elements of the scatterer. The most rapidly changing component of the scattering 
pattern should be caused by the pairs of volume elements with rrr ˆ)( ⊥′′−′  and 

|| rr ′′−′ .2a  Therefore, the far-field angular pattern can be expected to vary 
quite significantly, even when the scattering direction changes by as little as 

)2( 1akπ (rad) since this change corresponds to a change of the phase 
)(ˆ1 rrr ′′−′⋅k  equal to .π  An example of this strong angular variability can be 

seen in Plate 17.1, discussed in Section 17.1.      
Thus, for a WCR to fully resolve this angular variability, the distance r from 

the scattering object to the detector must satisfy the following inequality:  

 r .1ep

π
akD

 (13.22) 

If this requirement is not met then WCR 1 records a complex convolution of the 
angular scattering pattern with the instrument angular aperture. For particles 
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Fig. 13.3.  (a) The spherical wavelets generated by different elementary volume 
elements interact with the incident plane wave along the respective straight 
lines parallel to .ˆ incn  (b) To capture the interaction of all spherical wavelets 
generated by different elementary volume elements with the incident plane 
wave, the entrance pupil of a WCR must be larger than the object’s geometri-
cal projection onto the pupil. 
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greater than the wavelength, the condition (13.22) can become more demanding 
than the condition (13.5). 

To conclude this section, let us go back to Fig. 13.1. It is easily seen that the 
time-averaged Poynting vector (13.10) at any point r′  of the entrance pupil of 
WCR 1 is not directed along the optical axis of the instrument, since the complex 
electric and magnetic field vectors )(rE ′  and )(rH ′  of the total field are not par-
allel to the pupil plane. Yet, WCR 1 records a nonzero time-averaged signal de-
scribed by Eq. (13.8). Similarly, the time-averaged Poynting vector 〉′〈 ) ,( trS  at 
any point r′  of the entrance pupil of WCR 4 is not directed along the incidence 
direction, and yet WCR 4 registers a nonzero time-averaged signal given by Eq. 
(13.6). On the other hand, depending on the orientation of WCR 3, the Poynting 
vector 〉′〈 ) ,( trS  can be directed along its optical axis at certain points of its en-
trance pupil. Despite that, WCR 3 records no signal whatsoever. These facts 
demonstrate again that, in general, a WCR does not measure the directional flow 
of electromagnetic energy, but rather generates a certain signal defined by its 
specific optical design. The only exception is the case when all the wavefronts 
constituting the local electromagnetic field are parallel to the entrance pupil of 
the WCR. Only WCR 2 in Fig. 13.1 satisfies this condition and hence integrates 
over its entrance pupil the actual time-averaged Poynting vector of the total elect-
romagnetic field. Thus, Fig. 13.1 demonstrates again that it is imperative to un-
derstand the physical nature of the actual measurement afforded by a WCR    
rather than to ascribe to the WCR a desirable measurement capability. 

Despite the inherent inability of WCRs 1 and 4 to react to the local time-
averaged Poynting vector, the readings of these two instruments can be used to 
calculate 〉〈 ) ,( 1 trS  in the particular setting of FFS. Indeed, owing to Eqs. (13.14) 
and (13.16) and the fact that ,ˆˆ inc

1 nr ≠  the time-averaged interaction component 
〉〈 ) ,( 1

ext trS  in Eq. (13.10) must vanish. Therefore, summing the measured vect-
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13.2  Phase matrix 

The fact that WCR 1 in Fig. 13.1 faces a quasi-plane wavefront, while WCR 2 
faces a superposition of plane and quasi-plane wavefronts propagating in essen-
tially the same direction allows us to apply directly the concepts introduced in 
Chapters 7 and 12. Indeed, we have assumed in the preceding section that the 
WCRs can measure only the total power of electromagnetic radiation impinging 
on their photodetectors and make no distinction between electromagnetic waves 
with different states of polarization. A WCR can indeed be made polarization-
insensitive. However, we have seen in Chapter 12 that by interposing one or 
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more optical elements, such as polarizers and retarders, before the scattering ob-
ject, one can generate the incident field with a specific state of polarization, 
whereas interposing one or more optical elements following the relay lens en-
ables the WCR to measure the power corresponding to particular polarization 
components of the field impinging on the sensitive surface of the photodetector. 
By repeating the measurement for a number of different combinations and/or ori-
entations of the optical elements, one can, in principle, determine the specific 
mathematical relationship between a complete set of polarization characteristics 
of the incident field and that of the field impinging on the entrance pupil of a 
WCR. This relationship is usually formulated in terms of the Stokes parameters 
and the so-called phase and extinction matrices.  

Let us first consider the situation when the scattering direction is away from 
the incidence direction ).ˆˆ( incnr ≠  According to the previous discussion, WCR 1 
in Fig. 13.1 reacts only to the outgoing spherical wave. Therefore, one can ex-
press the net polarization response of WCR 1 in terms of the Stokes column vec-
tor of the scattered wave as follows:  

 ),ˆ(  scasca
ep nrS I1Signal =〉〈  (13.24) 

where .ˆˆ 1
sca rn =  Recalling Eqs. (5.11) and (7.3), we have 
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An equivalent, but mathematically more convenient, form of Eq. (13.25) is that 
in terms of the coherency column vector defined by Eq. (7.40): 

 ),ˆ(    scasca
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where  
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Recalling that the coherency column vector of the incident plane wave is given by 
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it is straightforward to derive the following mathematical relationship between 
the coherency column vectors of the incident and scattered waves:  

 ,)ˆ ,ˆ( 1  )ˆ( incincsca
2

scasca JZJ nnn J

r
r =  (13.29) 

where the elements of the 44 ×  coherency phase matrix )ˆ ,ˆ( incsca nnJZ  have the 
dimension of area and are quadratic combinations of the elements of the ampli-
tude scattering matrix )ˆ ,ˆ( incsca nnS  defined by Eq. (5.24): 

 .

||||

||||

2
2221222221

2
21

1222112212211121

2212211222112111

2
1211121211

2
11

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

∗∗

∗∗∗∗

∗∗∗∗

∗∗

SSSSSS
SSSSSSSS
SSSSSSSS

SSSSSS

JZ  (13.30) 

The Stokes column vector of the plane incident wave is given by  

 .

)()(i
)()(

)()(
)()(

 
2
1 

][ inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

inc
0

0

1inc

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
+

=

∗∗

∗∗

∗∗

∗∗

ϕθθϕ

θϕϕθ

ϕϕθθ

ϕϕθθ

μ
EEEE
EEEE

EEEE
EEEE

,I  (13.31) 

The corresponding scattering relationship now reads: 

 ,)ˆ ,ˆ( 1  )ˆ( incincsca
2

scasca IZI nnn
r

r =  (13.32) 

where )ˆ ,ˆ( incsca nnZ  is the 44×  Stokes phase matrix. Explicit formulas for the 
elements of the Stokes phase matrix in terms of the amplitude scattering matrix 
elements result from  

 1incscaincsca )ˆ ,ˆ(  )ˆ ,ˆ( −= DZDZ nnnn J  (13.33) 

(Problem 13.3), where the matrices D and D– 1 are given by Eq. (H.9), and are as 
follows (Problem 13.4):  
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 ,Re  )( 2122121123
∗∗ −−= SSSSZ  (13.40) 

 ,Im  )( 2122121124
∗∗ +−= SSSSZ  (13.41) 

 ,Re  )( 1222211131
∗∗ +−= SSSSZ  (13.42) 

 ,Re  )( 1222211132
∗∗ −−= SSSSZ  (13.43) 

 ,Re  )( 2112221133
∗∗ += SSSSZ  (13.44) 

 ,Im  )( 1221221134
∗∗ += SSSSZ  (13.45) 

 ,Im  )( 1222112141
∗∗ +−= SSSSZ  (13.46) 

 ,Im  )( 1222112142
∗∗ −−= SSSSZ  (13.47) 

 ,Im  )( 2112112243
∗∗ −= SSSSZ  (13.48) 

 .Re  )( 2112112244
∗∗ −= SSSSZ  (13.49) 

The elements of the Stokes phase matrix Z are real-valued. Like the ampli-
tude scattering matrix, the Stokes and coherency phase matrices depend on incϕ  
and scaϕ  explicitly, even when the incident and/or scattered light propagates 
along the z-axis of the laboratory coordinate system.  

The elements of both phase matrices Z and Z J have the dimension of area. It 
is easy to see that the dimensionless products of 2

1k  and the phase matrix ele-
ments satisfy the scale invariance rule (see Section 5.5). Another way to create 
scale-invariant quantities is to divide the phase matrix elements by .2a  

In general, all 16 elements of the Stokes phase matrix are nonzero. However, 
the phase matrix elements are expressed in terms of only seven independent real 
numbers resulting from the four moduli || ijS  (i, j = 1, 2) and three differences in 
phase between the Sij. Therefore, only seven of the phase matrix elements are 
actually independent, and there must exist nine independent relations among the 
sixteen phase matrix elements. Furthermore, the specific mathematical structure 
of the phase matrix can also be used to derive many useful linear and quadratic 
inequalities for the Stokes phase matrix elements. The most important of these 
inequalities are  
 0  11 ≥Z  (13.50) 

(this property follows directly from Eq. (13.34)) and  

 11 || ZZij ≤    (i, j = 1, …, 4). (13.51) 

Hovenier and van der Mee (2000) review this subject and discuss how the gen-
eral properties of the phase matrix can be used for testing the results of theoreti-
cal computations and laboratory measurements.   

Equations (13.34)–(13.49) and (5.31) imply the following reciprocity rela-
tion for the Stokes phase matrix: 

 ,)]ˆ ,ˆ([  )ˆ ,ˆ( 3
Tincsca

3
scainc ΔZΔZ nnnn =−−  (13.52) 
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where T denotes a transposed matrix and the 4 ×4 diagonal matrix 3Δ  is given 
by   
 ].1,1,1,1[diag      1

3
T
33 −=== −ΔΔΔ  (13.53) 

The backscattering theorem (5.32) along with Eqs. (13.34), (13.39), (13.44), and 
(13.49) yields the following general property of the backscattering Stokes phase 
matrix (Mishchenko et al. 2000, p. 15): 

 .0  )ˆ ,ˆ()ˆ ,ˆ()ˆ ,ˆ()ˆ ,ˆ( 44332211 =−−−+−−− nnnnnnnn ZZZZ  (13.54) 

13.3  Extinction matrix 

Let us now consider the case of a polarimetric WCR centered at the exact for-
ward-scattering direction =  ˆ(r ),ˆ incn  i.e., WCR 2 in Fig. 13.1. Because now both 
the incident plane wave and the scattered outgoing spherical wave propagate in 
essentially the same direction and are transverse, their superposition is also a 
transverse wave propagating in the forward direction. Therefore, we can define 
the coherency column vector of the total field for propagation directions r′ˆ  very 
close to incn̂  as follows: 
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where the total electric field is given by 

 ).ˆ()ˆ(  )ˆ( scainc rErErE ′′+′′=′′ rrr  (13.56) 

Integrating the elements of )ˆ( r′′rJ  over the entrance pupil of WCR 2 and using 
Eqs. (13.3) and (13.14), we derive for the coherency-vector representation of the 
recorded net polarized signal (Problem 13.6): 
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           ),( )ˆ(  2incincinc
ep

−+−= rS J OJΚJ n  (13.57b) 

where )ˆ ,ˆ( incinc nnJZ  is the forward-scattering coherency phase matrix, )( 2−rO  is a 
4 ×4 matrix with all elements vanishing at infinity as ,2−r  and the elements of the 
4 ×4 coherency extinction matrix ) ,( incinc ϕθJΚ  are expressed in the elements of 
the forward-scattering amplitude matrix ) ,  ; ,( incincincinc ϕθϕθS  according to the 
following formula: 
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In the Stokes-vector representation,  
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where 
 ),ˆ(  )ˆ( incinc nn rr JDI =  (13.60) 

and the 4 ×4 Stokes extinction matrix )ˆ( incnK  is given by   

 .)ˆ(  )ˆ( 1incinc −= DΚDΚ nn J  (13.61) 

The explicit formulas for the elements of this matrix in terms of the elements of 
the forward-scattering amplitude matrix ) ,  ; ,( incincincinc ϕθϕθS  are as follows 
(Problem 13.7): 

 ,4 ..., ,1    ),(Im 2  2211
1

=+= jSS
k

K jj
π  (13.62) 

 ),(Im 2    2211
1

2112 SS
k

KK −== π  (13.63) 

 ),(Im 2   2112
1

3113 SS
k

KK +−== π  (13.64) 

 ),(Re 2    1221
1

4114 SS
k

KK −== π  (13.65) 

 ),(Im 2    1221
1

3223 SS
k

KK −=−= π  (13.66) 

 ),(Re 2     2112
1

4224 SS
k

KK +−=−= π  (13.67) 

 ).(Re 2    1122
1

4334 SS
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The elements of the coherency and Stokes extinction matrices have the di-
mension of area. The dimensionless products of 2

1k  and elements of either ex-
tinction matrix, as well as the dimensionless ratios of the extinction matrix ele-
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ments and a2 satisfy the scale invariance rule (Section 5.5).  
Equations (13.59) generalize the optical theorem. They show that the pres-

ence of the scattering object changes not only the total power of the electromag-
netic radiation recorded by the WCR facing the incident wave (WCR 2 in Fig. 
13.1), but also, perhaps, its state of polarization. The latter phenomenon is called 
dichroism and results from different attenuation rates for different polarization 
components of the incident wave.  

By placing WCR 2 appropriately far from the scatterer, one can make the 
contribution of the third term on the right-hand side of Eq. (13.59b) negligibly 
small: 

 .)ˆ(    incincinc
ep IΚI2Signal n−=〉〈

→
S

r ∞
 (13.69) 

As a consequence, the extinction matrix becomes a directly measurable quantity.  
It is clear from Eqs. (13.62)–(13.68) that only seven of the sixteen elements 

of the Stokes extinction matrix are independent. It is easy to verify that this is 
also true of the coherency extinction matrix. The elements of both matrices ex-
plicitly depend on ,incϕ  even when the incident wave propagates along the posi-
tive or negative direction of the z-axis. 

From Eqs. (5.31) and (13.62)–(13.68) we obtain the reciprocity relation for 
the Stokes extinction matrix: 
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It is also straightforward to derive a closely related symmetry property (Problem 
13.8): 
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Thus, the only effect of reversing the direction of propagation is to change the 
sign of four elements of the Stokes extinction matrix.  

13.4  Energy-budget problem 

In the preceding three sections, we have discussed how the knowledge of the to-
tal electromagnetic field in the far zone can be used to quantify the electromag-
netic response of an arbitrarily oriented WCR. In this section we will discuss the 
theoretical as well as experimental solution of the energy-budget problem for a 
volume enclosing the scattering object. Let us first surround the object by an 
imaginary sphere S of radius r large enough to be in the far zone. Since the host 
medium is assumed to be nonabsorbing and the scattering object is assumed to be 
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composed of passive materials (Section 2.5), the net rate at which the electro-
magnetic energy crosses the surface S of the sphere is always nonnegative and is 
equal to the power absorbed by the object:  

 rrrrrr ˆ) ,(ˆd  ˆ) ,(d  
4

22abs ⋅⋅ 〉〈−=〉〈−=〉〈 trtW
S

SS @)
π

 (13.72) 

(see Eq. (2.62)). According to Eq. (13.10), 〉〈 absW  can be written as a combina-
tion of three terms: 
 ,  extscaincabs 〉〈+〉〈−〉〈=〉〈 WWWW  (13.73) 
where 

 ,ˆ) ,(ˆd  inc

4

2inc rrr ⋅〉〈−=〉〈 trW S@
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 (13.74) 

                                     ,ˆ) ,(ˆd sca

4

2sca rrr ⋅〉〈=〉〈 trW S@
π

 (13.75) 

                                     .ˆ) ,(ˆd ext

4

2ext rrr ⋅〉〈−=〉〈 trW S@
π

 (13.76) 

〈W inc〉 vanishes identically because the surrounding medium is nonabsorbing and 
〈S inc (r, t)〉 is a constant vector independent of r. Therefore, 〉〈 absW  is equal to 
the difference between the energy extinction rate and the energy scattering rate: 

 .  scaextabs 〉〈−〉〈=〉〈 WWW  (13.77) 

Substituting Eqs. (13.12)–(13.16) in Eqs. (13.75) and (13.76) and recalling the 
definitions of the extinction and scattering cross sections, we derive, after some 
algebra: 

 ,)()ˆ(Im 2  ][ inc
0

incsca
1

0

1

1

ext ∗=〉〈 EnE ⋅
μ

π ,
k

W  (13.78) 

                               .|)ˆ(|ˆd 
2
1 2sca

1
40

1sca rEr@
πμ

,=〉〈W  (13.79) 

In view of Eqs. (5.11) and (5.24), the last two formulas can be rewritten as fol-
lows (Problem 13.9): 
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14
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Equation (13.80) is another representation of the optical theorem and, along 
with Eqs. (13.62)–(13.68), shows that extinction is determined only by the amp-
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litude scattering matrix corresponding to the exact forward direction. This is a 
direct consequence of the fact that extinction results from the interference be-
tween the incident and scattered wavefronts (Eq. (13.13)) and the presence of 
delta-function terms in Eqs. (13.14) and (13.16).  

Note that the presence of the terms proportional to the delta function 
)ˆˆ( inc rn +δ  on the right-hand sides of Eqs. (13.14) and (13.16) seems to indicate 

that there is interference of the incident field and the field scattered in the exact 
backscattering direction. It is easy to verify, however, that the backscattering 
contribution of the interference term 〉〈 ) ,(ext trS  to extW  vanishes upon taking 
the real part of the right-hand side of Eq. (13.13).  

Although we have derived Eqs. (13.80) and (13.81b) by considering a spheri-
cal far-field boundary S enclosing the object, the corresponding energy absorp-
tion rate (13.77) applies to any finite volume, as long as its boundary S ′ encloses 
the object completely (Fig. 13.4). Indeed, since the host medium is nonabsorbing, 
there is no energy loss in the volume V~  bounded by the surfaces S and S ′. There-
fore, the net rate at which the electromagnetic energy crosses the surface S ′ must 
exactly equal the flow of energy through the spherical surface S.  

This result, along with Eqs. (13.80) and (13.81a), implies that the energy 
budget of any volume enclosing the object can be determined by using a far-field 
WCR. Indeed, it follows from Eqs. (13.24) and (13.69) that all one needs to do is 
to scan all outgoing propagation directions with a WCR pointed at the object. Of 
course, in real practice this procedure can be quite cumbersome. 

13.5  Derivative characteristics of far-field scattering 

Like the amplitude scattering matrix, the phase and extinction matrices are intrin-
sic far-field properties of the scattering object and are independent of the incident 

S

′S

V
~

 
Fig. 13.4.  Energy budget of a finite volume enclosing the scattering object. 
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field, besides being functions of the direction of incidence and of the angular fre-
quency. The knowledge of these matrices allows one to model the response of an 
arbitrarily oriented far-zone WCR via Eqs. (13.24), (13.32), and (13.59), as well 
as to evaluate the energy budget of an arbitrary volume enclosing the object via 
Eqs. (13.77), (13.80), and (13.81b). Conversely, a far-zone WCR can be used to 
measure the phase and extinction matrices and, thus, to solve the energy-budget 
problem experimentally. We will see in later chapters that Z and K are sensitive 
functions of the object’s size, morphology, composition, and orientation. There-
fore, the very fact that the measurement of these matrices with a far-zone WCR 
can be modeled theoretically enables one to solve the inverse scattering problem 
and use WCRs – especially those with a polarimetric capability – as useful opti-
cal-characterization tools.  

Although the phase and extinction matrices are the most general measurable 
descriptors of FFS and are independent of the Stokes parameters of the incident 
field, several derivative quantities have also been used, despite their potential de-
pendence on Q inc, U inc, and/or V inc. For example, Eqs. (13.78)–(13.81) are often 
re-written in terms of the respective optical cross sections:  

                                                  ,  inc
ext

ext ICW =〉〈  (13.82) 

 ,  inc
sca

sca ICW =〉〈  (13.83) 

where the extinction cross section is given by Eq. (13.19) or, equivalently, by  
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while the scattering cross section is given by  
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The absorption cross section is defined as the difference of the extinction and 
scattering cross sections: 
 ,0 scaextabs ≥−= CCC  (13.86) 

while the single-scattering albedo is defined as the ratio of the scattering and ex-
tinction cross sections: 

 .1    
ext

sca ≤=
C
C

ϖ  (13.87) 

Obviously, 0 abs =C  and 1  =ϖ  for a lossless (nonabsorbing) object.  
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All optical cross sections are inherently nonnegative real-valued quantities 
and have the dimension of area. Unless the scattering object is spherically sym-
metric, they depend on the propagation direction, polarization state, and wave-
length of the incident wave, as well as on the object’s size, morphology, relative 
refractive index, and orientation with respect to the laboratory reference frame. 
The products of all three optical cross sections and 2

1k  obey the scale invariance 
rule. 

Equation (13.18) shows that the extinction cross section is a well-defined, 
observable quantity that can be determined by measuring 〉〈 2W  without and with 
the scattering object interposed between the source of light and WCR 2. The 
nominal effect of the object is to reduce the area of the entrance pupil by “casting 
a shadow” of area Cext. Of course, this does not mean that Cext is merely given by 
the area G of the object’s geometrical projection on the detector surface. How-
ever, this geometrical interpretation of the extinction cross section illustrates the 
rationale for introducing the dimensionless efficiency factor for extinction as the 
ratio of the extinction cross section and the geometrical cross section: 

 . ext
ext G

CQ =  (13.88) 

We will see later that, depending on the object’s physical parameters, extQ  can be 
considerably greater or much less than unity. The efficiency factors for scattering 
and absorption are defined analogously: 
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It is easy to verify that all three efficiency factors obey the scale invariance rule. 
The quantity 
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has the dimension of area and is called the differential scattering cross section. It 
characterizes the angular dependence of the electromagnetic response of WCR 1 
in Fig. 13.1 by specifying nominally the electromagnetic power scattered into a 
unit solid angle about a given direction per unit incident intensity.1 The differen-
tial scattering cross section depends on the polarization state of the incident light 
as well as on the incidence and scattering directions. It is easily seen that   
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4
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–––––––––– 
1  Note that the symbol Ωdd scaC  should not be interpreted as a derivative. 
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A quantity related to the differential scattering cross section is the phase 
function )ˆ ,ˆ( incnrp  defined by 
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C
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The convenience of the phase function is that it is dimensionless and normalized: 
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The asymmetry parameter g is defined as the average cosine of the scattering   
angle )ˆˆ(arccos  incnr ⋅=Θ  (i.e., the angle between the incidence and scattering 
directions): 
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The asymmetry parameter is positive if the phase function is peaked more toward 
the forward-scattering direction ,ˆ ˆ incnr =  is negative if )ˆ ,ˆ( incnrp  is peaked more 
toward the backscattering direction ,ˆ ˆ incnr −=  and vanishes if the phase function 
is symmetric with respect to the plane perpendicular to the incidence direction. It 
is easily seen that ].1 ,1[ +−∈g  The limiting values correspond to the (artificial) 
phase functions )ˆˆ(4 incnr +δπ  and ),ˆˆ(4 incnr −δπ  respectively. 

13.6  Polychromatic far-field scattering by a fixed object 

Up until now we have been discussing only the case of monochromatic scatter-
ing. Let us now consider the incident field in the form of a parallel polychromatic 
beam with N monochromatic components, as described by Eqs. (10.10) and 
(10.11), while still assuming that the scattering object is fixed. It should be re-
cognized that in the final analysis, Eqs. (13.32) and (13.59a) are particular coordi-
nate-specific cases of Eq. (10.9). Therefore, similarly to Eq. (10.16), we can gen-
eralize Eqs. (13.24), (13.32), and (13.59a) as follows (Problem 13.10): 
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  (13.96) 
where the phase and extinction matrices are explicit functions of the angular fre-
quency, the double angular brackets denote averaging over a time interval long 
enough to satisfy the inequality (9.6), and inc

nI  is the Stokes column vector of the 
nth monochromatic component. Similarly, Eqs. (13.80) and (13.81b) take the 
form  
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Consistent with the discussion in Section 11.5, the formulas (13.95) and (13.96) 
(but not Eqs. (13.97) and (13.98)) are based on the assumption that the detection 
efficiency of the WCRs is frequency-independent, which implies a sufficiently 
narrow range of constituent angular frequencies. 

Let us now consider the incident field in the form of a polychromatic parallel 
beam with quasi-monochromatic components given by Eqs. (10.17) and (10.18). 
A straightforward derivation analogous to that in Section 10.2 then yields the 
following generalized version of Eqs. (13.95)–(13.98) (Problem 13.11): 
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where 〉〉〈〈  denotes averaging over a time interval much longer than Tfn for any 
n. As before, the range of constituent angular frequencies in Eqs. (13.99) and 
(13.100) is assumed to be appropriately narrow.   

13.7  Far-field scattering by a stochastic object 

Let us now allow the size, morphology, refractive index, and orientation of the 
scattering object to change randomly in time. We will assume, however, that the 
object is always centered at (or very close to) the origin O of the laboratory coor-
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dinate system and that the observation point is sufficiently far from the origin. 
This ensures that the formal criteria of FFS (5.15)–(5.17) are satisfied at all 
times. Furthermore, consistent with the discussion in Section 10.3, the temporal 
fluctuations of the object are assumed to occur much more slowly than the time-
harmonic oscillations of the electromagnetic field. The above assumptions de-
scribe, for example, the scattering configuration shown in Plate 1.1a, wherein the 
position, size, shape, and orientation of the levitated micro-droplet can fluctuate 
in time.  

Consider first the incident field in the form of a monochromatic plane wave 
given by Eqs. (10.2) and (10.6). Then, by analogy with Eq. (10.33), the formulas 
(13.24), (13.32), and (13.59a) can be generalized as follows (Problem 13.12): 
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where the phase and extinction matrices are now explicit functions of time and 
the double angular brackets denote averaging over a time interval much longer 
than Tv.  

Assume now that the incident field is a polychromatic parallel beam with stat-
istically independent quasi-monochromatic components given by Eqs. (10.17) 
and (10.18). Consistent with the discussion in Section 10.3, we also assume that 
the extinction and phase matrices corresponding to any nω  on one hand and the 
quasi-instantaneous Stokes parameters of the corresponding quasi-monochro-
matic component of the incident field on the other hand are independent station-
ary random processes. Then Eqs. (13.99)–(13.102) take the following more gen-
eral form (Problem 13.13):  
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where double angular brackets denote averaging over a time interval T such that 
T Tv and T Tfn for any n. These formulas are very important, since they show 
that averaging over time the extinction and phase matrices can be completely 
separated from averaging over time the Stokes parameters of the polychromatic 
incident field. This will allow us to use the principle of ergodicity in the follow-
ing section. As before, Eqs. (13.107) and (13.108) are derived under the assump-
tion that the detection efficiency of the WCR is frequency independent, which 
dictates a sufficiently narrow range of constituent angular frequencies. 

13.8  Far-field scattering by an ergodic random object 

Our final step is to assume that the random scattering object is ergodic and re-
place time averages of the extinction and phase matrices by appropriate ensemble 
averages, according to the discussion in Section 10.4. Then Eqs. (3.103)–(3.106) 
become  
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where the state of the object ψ  includes its size, morphology, relative refractive 
index, and shape, as well as its orientation and position with respect to the labora-
tory reference frame. Similarly, Eqs. (3.107)–(3.110) are modified as follows:   
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Again, the use of Eqs. (13.115) and (13.116) implies an appropriately narrow 
range of constituent angular frequencies. 

The practical importance of Eqs. (13.111)–(13.118) is hard to overstate. Al-
though these formulas or their adaptations have usually been taken for granted, 
our detailed analysis shows that their explicit derivation is quite involved and is 
based on a number of specific assumptions that ultimately define the range of 
their applicability. 

13.9  Ensemble averaging 

Ensemble averaging of the extinction and phase matrices is, in principle, rather 
straightforward, provided that both matrices can be computed by solving the 
MMEs for a given scattering object characterized by the state },;{ ξψ R=  where 
R is the position vector of the object’s origin and ξ  denotes collectively the ob-
ject’s microphysical state, i.e., all physical characteristics of the object except for 
its coordinates. By analogy with Eq. (10.42), we have 
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where )(ψp  is the corresponding probability density function. 
As an example, let us assume that the droplet shown in Plate 1.1a can be 

modeled as a homogeneous ellipsoidal particle with semi-axes fluctuating within 
the ranges ], ,[  maxmin aaa ∈  ], ,[ maxmin bbb ∈  and ∈c [cmin, cmax] and with its geo-
metrical center O′  being confined to a spherical volume V around the origin O of 
the laboratory coordinate system (Fig. 13.5). The orientation of the particle with 
respect to the laboratory coordinate system can be parameterized by affixing a 
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Cartesian coordinate system to the particle and specifying the Euler angles ,α ,β  
and γ  that transform the laboratory coordinate system into the particle coordinate 
system (see Appendix C). Then the ensemble average of the extinction matrix is 
given by 
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where R is the position vector of the particle origin O′  and the probability den-
sity function ) , , , , ,;( cbap γβαR  satisfies the following normalization condition: 
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 (13.121) 
The integrals in Eq. (13.120) can be evaluated numerically by using an appropri-
ate quadrature formula (Appendix E). Similarly, 
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Fig. 13.5.  The origin of the particle reference frame does not coincide with that 
of the laboratory reference frame. 



Chapter 13 162 

Equation (13.119) can often be simplified. For example, if the residence vol-
ume V is sufficiently small, then the need to average over particle positions can 
be obviated. Indeed, let the electric field of the incident plane wave be given by 
the usual expression  
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where r is the position vector originating at O, and let r′  be the position vector 
of the same observation point, but originating at the particle origin O′  (Fig. 
13.5). Since ,Rrr +′=  the incident electric field at the observation point can 
also be written as follows: 
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We know that the outgoing spherical wave generated by the particle in response 
to a plane-wave excitation of the form )ˆiexp( inc
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by 

 ,);ˆ,ˆ()iexp( inc
0

inc1 Enr ⋅ξ′
′

′
A

r
rk  

where r′′=′ rr̂  is the scattering direction originating at the particle origin O′  
and );ˆ,ˆ( inc ξnr′A  is the scattering dyadic with respect to the particle reference 
frame. Therefore, the incident field (13.123) results in the following scattered 
field:   
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Using the law of cosines, 
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we finally obtain 
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where rrr =ˆ  is the scattering direction originating at O,  
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is the scattering dyadic of the particle with respect to the laboratory coordinate 
system, 
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and we have further assumed that the following inequalities hold:  
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and 
 );ˆ,ˆ( inc ξnr′A ).;ˆ,ˆ( inc ξnrA  (13.132) 

Equation (13.127) describes a transverse outgoing spherical wave centered at 
the origin of the laboratory reference frame. This allows us to proceed in exactly 
the same way as we did in Section 5.3. Specifically, exploiting the transverse 
character of the wave yields   
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where we have used the notation of Eq. (5.25). The amplitude scattering matrix 
of the particle with respect to the laboratory coordinate system, ),;;ˆ,ˆ( inc ξRnrS  
is expressed in terms of that with respect to the particle coordinate system, 

),;ˆ,ˆ( inc ξnrS  as follows: 
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where it is assumed that the spatial orientations of the two coordinate systems are 
identical. An obvious consequence of this latter formula is that, irrespective of 
the particle’s position within the residence volume V, the phase and extinction 
matrices of the particle with respect to the laboratory reference frame remain the 
same and are equal to those with respect to the particle reference frame (Problem 
13.15): 
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This result obviously eliminates the need to integrate over V in Eqs. (13.120) and 
(13.122), albeit at the expense of requiring that the criteria (13.130)–(13.132) be 
satisfied. The first two criteria imply that the observation point must be in the far 
zone of the entire residence volume in addition to being in the far zone of the 
particle itself. The requirement (13.20) must also be modified accordingly. Then 
Eqs. (13.111)–(13.114) take the form 
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where  
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the )(ξξp  being the corresponding probability density function normalized to 
unity: 

  .1)(d =ξξ ξp@  (13.142) 

Similarly, Eqs. (13.115)–(13.118) take the form  

∑
=

〉〉〈〈〉〈=〉〉〈〈
N

n
nnr

S

1

incincsca
2
ep ,),;ˆ ,ˆ(  IZ1Signal ξξωnn  (13.143) 

∑∑
==

〉〉〈〈〉〈−〉〉〈〈=〉〉〈〈
N

n
nn

N

n
nS

1

incinc

1

inc
ep ),;ˆ(   IΚI2Signal ξξωn  

                               ∑
=

〉〉〈〈〉〈+
N

n
nnr

S

1

incincinc
2
ep ,),;ˆ ,ˆ(  IZ ξξωnn  (13.144) 

∑
=

〉〉〈〈〉〈+〉〉〈〈〉〈=〉〉〈〈
N

n
nnnn QIW

1

incinc
12

incinc
11

ext ),;ˆ(),;ˆ(  [ ξξ ξωΚξωΚ nn  

                              〉〉〈〈〉〈+ incinc
13 ),;ˆ( nn UξξωΚ n  

                              ,),;ˆ( ]incinc
14 〉〉〈〈〉〈+ nn VξξωΚ n  (13.145) 

〉〉〈〈〉〈+〉〉〈〈〉〈=〉〉〈〈 ∑
=

incinc
12

incinc
11

41

sca ),;ˆ ,ˆ(),;ˆ ,ˆ(ˆd [ nnnn

N

n

QZIZW ξξ
π

ξωξω nrnrr@  

                                         〉〉〈〈〉〈+ incinc
13 ),;ˆ ,ˆ( nn UZ ξξωnr  

                                         .),;ˆ ,ˆ( ]incinc
14 〉〉〈〈〉〈+ nn VZ ξξωnr  (13.146) 

Further simplifications of the ensemble averaging procedure are possible if 
the shape/size and orientation probability distributions are statistically independ-
ent of each other. The total probability density function )(ξξp  can then be repre-
sented as a product of two functions, one of which describes the distribution of 
particle orientations, and the other describes the particle shape/size distribution. 
For example, in the case of the ellipsoidal droplet,  

 ), , ,() , ,() , , , , ,( so cbappcbap γβαγβαξ =  (13.147) 

where the orientation, ), , ,(o γβαp  and shape/size, ), , ,(s cbap  probability density 
functions are each normalized to unity: 
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As a consequence, the tasks of computing orientation and shape/size averages are 
separated. 

Similarly, it is often convenient to separate averaging over shapes and sizes 
by assuming that these microphysical parameters are statistically independent of 
each other. For example, the shape of a spheroidal particle can be specified by its 
aspect ratio ε  (i.e., the ratio of the largest to the smallest axes) along with the 
designation of either prolate or oblate, whereas the particle size can be specified 
by an equivalent-sphere radius r. Then the shape/size probability density function 

) ,(s rp ε  can be represented as a product 

 ),()() ,(s rnprp εε ε=  (13.150) 

where )(εεp  describes the distribution of spheroid aspect ratios and )(rn  is the 
distribution of equivalent-sphere radii. Again, both )(εεp  and )(rn  are normal-
ized to unity:   
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In the absence of external forces such as magnetic, electrostatic, or aerodynamic 
forces, all orientations of a stochastic nonspherical particle are equiprobable. In this 
practically important case of random orientation, the orientation distribution func-
tion is uniform with respect to the Euler angles of rotation, and we have 

 2randomo, 8
1) , ,(
π

γβα =p  (13.153) 

(Problem 13.18). Particular details of the particle shape can also simplify the ori-
entation distribution function. For example, for a rotationally symmetric body, it 
is convenient to direct the z-axis of the particle reference frame along the axis of 
rotation, in which case the orientation distribution function in the laboratory ref-
erence frame becomes independent of the Euler angle γ  (Problem 13.19): 

 ). ,(
2
1) , ,( oo βα
π

γβα pp =  (13.154) 

Problems 

13.1:   Derive the inequality (13.5).  

13.2: Derive Eq. (13.17a).  
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13.3: Derive Eq. (13.33).  

13.4: Derive Eqs. (13.34)–(13.49). 

13.5: Derive the reciprocity relation for the coherency phase matrix JZ  given by 
Eq. (13.30).  

13.6: Derive Eqs. (13.57) and (13.58).  

13.7: Derive Eqs. (13.62)–(13.68).  

13.8: Derive Eq. (13.71).  

13.9: Derive Eqs. (13.80) and (13.81).  

13.10: Derive Eqs. (13.95)–(13.98). 

13.11: Derive Eqs. (13.99)–(13.102). 

13.12: Derive Eqs. (13.103)–(13.106). 

13.13: Derive Eqs. (13.107)–(13.110). 

13.14: What should be the minimal distance from the origin O in Fig. 13.5 to a 
WCR having an acceptance solid angle ?ΔΩ  Express this distance in 
terms of the radius of the spherical volume V and the maximal linear di-
mension L of the droplet. Keep in mind the discussion following Eq. (5.2) 
in Section 5.1.  

13.15: Derive Eqs. (13.135) and (13.136). 

13.16: Consider a WCR with its optical axis centered at the origin O (Fig. 13.5) 
along the radial direction q̂ . Show that the pair of Eqs. (13.143) and 
(13.144) can be combined into the following single formula:    
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where the angular step function )ˆ,Δ( inc
ˆ nqΩχ  is defined by Eq. (11.10). 

Generalize this formula by allowing the incident electromagnetic field to 
be a superposition of several polychromatic beams with different propaga-
tion directions. 

13.17: Generalize Eqs. (13.145) and (13.146) by allowing the incident field to be 
a superposition of several polychromatic beams with different propagation 
directions.  

13.18: Verify Eq. (13.153). 

13.19: Verify Eq. (13.154). 
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Notes and further reading 

Instructive discussions of the optical theorem can be found in Berg et al. (2008) 
and Mishchenko et al. (2009a). They demonstrate that practical measurements of 
the extinction cross section can be a nontrivial problem. A more detailed discus-
sion of electromagnetic scattering by a single random particle can be found in 
Chapter 6 of MTL2.   
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1144 

Electromagnetic scattering by a small random           
group of sparsely distributed particles 

Although the far-field formulas derived in Chapter 13 for a stochastic scattering 
object are attractively simple, they have a rather limited range of applicability. 
Indeed, one of the criteria of the far zone, Eq. (5.14), becomes quite challenging 
for an object significantly greater than the wavelength (Problems 14.1 and 14.2) 
and often prohibits direct use of the far-field approximation. It turns out, however, 
that many aspects of the far-field formalism can be preserved if the stochastic 
scattering object belongs to a particular morphological type. Specifically, in this 
chapter we will assume that the object can be defined as a group of N distinct 
particles separated from each other and distributed throughout an imaginary vol-
ume element V. Accordingly, the starting point of the analysis of electromagnetic 
scattering by this object will be the FEs derived in Section 6.1 rather than the 
VIE. In addition, we will assume that:   
● the total number of particles forming the object is sufficiently small and the 

average distance between them is sufficiently large that in the framework of 
the FEs (Section 6.1), each particle can be assumed to be “excited” only by 
the incident field;  

● the N-particle object is observed from a distance much greater than any lin-
ear dimension of the volume element V ;  

● although the observation point is allowed to be in the near zone of the entire 
object, it is remote enough to be in the far zone of any of the N distinct part-
icles forming the object; and 

● the N particles are moving randomly and independently of each other 
throughout the volume element V.  

The prime example of an application satisfying these requirements is the analysis 
of laboratory measurements of light scattering by tenuous collections of natural 
and artificial small particles, as discussed in Section 16.3.1. 
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As usual, we will first consider the scattering of a plane electromagnetic 
wave and then discuss the more general case of polychromatic scattering. 

14.1  Single-scattering approximation for a fixed group of particles 

We have seen in Section 6.1 that electromagnetic scattering by the object in the 
form of an arbitrary fixed group of N distinct finite particles is rigorously de-
scribed by the vector form of the FEs (6.5)–(6.7). Let us now assume that the 
second term on the right-hand side of Eq. (6.6) is negligibly small in comparison 
with the first term. This means that each particle is excited only by the incident 
field, which is the gist of the so-called single-scattering approximation (SSA) for 
the fixed N-particle object. We then have instead of Eq. (6.5): 

 ,    ,)(  )(  )( 3scainc ℜ∈+= rrErErE  (14.1) 

where the total scattered field is a vector sum of the partial scattered fields con-
tributed by the individual particles: 
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It is easily seen that each partial field is independent of the partial fields scattered 
by all the other particles forming the object (see Eq. (4.24)).  

Let us now choose the origin O of the laboratory coordinate system close to 
the geometrical center of the entire object, assume that the incident field is a 
plane electromagnetic wave with the propagation direction given by the unit vect-
or ,ŝ  
 ,0ˆ    ,)ˆi(exp)( inc

01
inc
0

inc == sErsErE ⋅⋅k  (14.4) 

                                    ,)ˆi(expˆ)( 1
inc
0

0

1inc rsEsrH ⋅k×=
μ
,  (14.5) 

and consider an external observation point that is located close enough to be in 
the near zone of the N-particle object, yet far enough to be in the far zone of any 
particle from the group, as shown in Fig. 14.1. Recall now Eqs. (5.19) and (5.20), 
which imply that the outgoing spherical wave generated by particle i in response 
to a plane-wave excitation of the form )ˆiexp( 1

inc
0 ik rsE ⋅  in the far zone of this 

particle is given by 

 ,)ˆ ,ˆ(
)i(exp inc

0
1 Esr ⋅ii

i

i A
r

rk
 

where ir  originates inside particle i (Fig. 14.1), )ˆ ,ˆ( sriiA  is the ith particle scat-
tering dyadic centered at the particle origin, and iii rrr =ˆ  is the unit vector in 
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the scattering direction. To make use of this fact, we must rewrite Eq. (14.4) as 
follows:  
 ),ˆi(exp)ˆi(exp)( 11

inc
0

inc
ii kk RsrsErE ⋅⋅=  (14.6) 

where iR  connects the origin of the laboratory coordinate system with the origin 
of particle i (Fig. 14.1). We then have: 
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This formula is valid provided that the following inequalities hold for each part- 
icle from the group:  
 )(1 ii ark − 1, (14.8) 

 ir ,ia  (14.9) 

 ir ,
2

2
1 iak  (14.10) 

where ai is the radius of the smallest circumscribing sphere of particle i centered 
at its origin (cf. Eqs. (5.12)–(5.14)). The corresponding partial magnetic field is 
given by 

 ).(ˆ)( sca
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1sca rErrH iii ×=
μ
,  (14.11) 

O

r

V iR
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Observation
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S

 
Fig. 14.1.  A fixed group of N particles distributed throughout a volume element 
V is observed from a large distance r. 
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The reader can easily verify that Eqs. (14.2) and (14.7) could also be derived by 
keeping only the first sum on the right-hand side of the far-field Neumann expan-
sion (6.48). 

The above formulas, coupled with Eqs. (8.2) and (8.3), imply that the aver-
age of the PST of the total electromagnetic field at the remote observation point 
over a time interval much longer that the period of time-harmonic oscillations To 
is given by the real part of the following complex PST: 
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    14.2  Ensemble-averaged Poynting–Stokes tensor of the total field  

Let us now assume that the N-particle object is random and ergodic. Specifically, 
we assume that:  
● averaging the complex PST of the entire object over a period of time much 

longer than Tv can be replaced by ensemble averaging: 

                          ;)(  )( ψ〉〈=〉〉〈〈 rr PP  (14.13)  

● all particle positions ,iR  as well as all particle microphysical states iξ  (and 
hence the corresponding particle-centered scattering dyadics ))ˆ ,ˆ( sriiA  as 
functions of time are independent random processes.  

The latter assumption implies that averaging over all the individual-particle co-
ordinates and all the individual-particle microphysical states can be performed in-
dependently:  
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To perform the averaging over the individual positions of the N particles, we 
assume that the corresponding coordinate probability density functions are given 
by  
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which means that the individual spatial distributions of all the N particles 
throughout the entire volume element V are mutually independent and statist-      
ically uniform. This implies, of course, that the average particle packing density 
must be sufficiently small. 

Let us first consider the last term on the right-hand side of Eq. (14.15) and 
make the following two assumptions: (i) the distance r from the origin of the 
laboratory coordinate system to the observation point (Fig. 14.1) is much greater 
than the characteristic linear dimension L of the volume V,  

 r L, (14.17) 
and (ii) the angular variability of the individual particle-centered scattering dy-
adics is sufficiently weak:  

 )ˆ ,ˆ( sriiA )ˆ ,ˆ( sriA  for any i. (14.18) 

Then integrating the last term over all particle positions yields  

 ∑
=

∗⊗×
N

i
ii AA

r 1

inc
0

inc
02

0

1 ])ˆ ,ˆ([])ˆ ,ˆ([ˆ1
2
1 EsrEsrr ⋅⋅

μ
,  (14.19)  

for any observation point r located at a sufficiently large distance from the vol-
ume element V.   

To determine the contributions of the second, third, and fourth terms on the 
right-hand side of Eq. (14.15), we need to know the averages ii RrE 〉〈 )(sca  and 

.)(ˆ sca
iii RrEr 〉×〈  Either average can be conveniently calculated using the spher-  

ical coordinate system originating at the observation point, as shown in Fig. 
14.2a. For example, taking into account that ,ii RrR ′+=  where the vector iR′  
connects the observation point and the origin of particle i, and recalling Eq. 
(14.7), we have:  
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Applying then the Saxon asymptotic expression (D.10) to the complex exponen-
tial )ˆiexp( 1 ik Rs ′⋅  yields  
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The presence of two solid-angle delta functions in this formula implies that each 
average partial field ii RrE 〉〈 )(sca  is contributed to only by those points of the vol-
ume element V that belong to the segment )(Δ rs  of the infinite straight line par-
allel to the unit vector ŝ  and going through the observation point (Figs. 14.2a and 
14.2b). Therefore, the following three scenarios must be considered in the com-
putation of :)(sca

ii RrE 〉〈   
● the observation point lies on a line that is parallel to the incidence direction 

and does not go through V (point 1 in Fig. 14.2b);  
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Δs(r3
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Fig. 14.2.  Near-field scattering geometry. 
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● the observation point is “shadowed” by V (point 2); or 
● the observation point is located in front of V with respect to the incidence di-

rection (point 3). 
It is easily seen that the same scenarios must be considered in the computation of 
the average .)(ˆ sca

iii RrEr 〉×〈  
First of all, it is quite obvious that for any point 1,   
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which, along with Eq. (14.19), yields 
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Second of all, it is straightforward to show that for any point 2, 
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Furthermore, it follows from Eqs. (5.26)–(5.29), (13.62)–(13.65), and (13.84) 
that the factor  
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is of the same order of magnitude as the sum of the extinction cross sections of 
all the particles filling the volume V divided by the volume’s geometrical cross 
section:  
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Assuming that this ratio is much smaller than unity, 
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we can neglect the fourth term on the right-hand side of Eq. (14.15) in compari-
son with the second and third terms at any observation point shadowed by the 
volume V. As a consequence, 
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Finally, let us consider point 3. It can be shown (Problem 14.3) that the con-
tributions of the second and third terms on the right-hand side of Eq. (14.15) to 
Re Rr 〉〈 )( 3P  cancel each other: 
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Also, we should take into account that the radial integral in Eq. (14.21) now con-
tains a rapidly oscillating factor ),i2(exp 1 iRk ′  which makes ii RrE 〉〈 )( 3

sca  much 
smaller than ii RrE 〉〈 )( 2

sca  provided that )(Δ 31 rsk 1. The latter condition is 
equivalent to the inequality  

 Lk1 1, (14.29) 

where L is the characteristic linear dimension of the volume element V. The same 
arguments apply to the average .)(ˆ 3

sca
iii RrEr 〉×〈  Thus we can conclude that the 

contribution of the fourth term on the right-hand side of Eq. (14.15) to Rr 〉〈 )( 3P  
(and thus to the electromagnetic energy budget of the volume element V ) is even 
smaller than that to .)( 2 Rr 〉〈P  Thus, 
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  (14.30)  

    14.3  Energy-budget problem  

 Let us now apply Eqs. (14.23), (14.27), and (14.30) to solving the standard en-
ergy-budget problem for the random N-particle object. Specifically, we surround 
the volume element V by an imaginary sphere S having a radius r much greater 
than the volume’s typical linear dimension L, as shown in Fig. 14.1, and evaluate 
the integral 

 .ˆ)(dRe  2abs rrSr RR ⋅〉〈−=〉〈 )
S

W  (14.31) 

Equation (H.15) implies that the component incS  of the average Poynting vector 
contributed by incP  is always directed along the unit vector .ŝ  The same is true 
of the component RrS 〉〈 )(ext  contributed by the second term on the right-hand 
side of Eq. (14.27), whereas the component RrS 〉〈 )(sca  contributed by the term 
(14.19) is always directed along the unit vector .r̂  It is easily seen that the int-   
egral of rS ˆinc ⋅  vanishes identically, while the component RrS 〉〈 )(ext  deviates 
from zero only over the shadow cast by the volume V on the spherical surface S. 
Performing the requisite integrations and recalling Eqs. (5.24) and (13.62)–
(13.65), we finally obtain (Problem 14.4):          
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In the above formulas, );ˆ( isΚ  and );ˆ ,ˆ( isrZ  are the particle-centered extinction 
and phase matrices of particle i, respectively, while Tincincincincinc ],,,[ VUQI=I  is 
the Stokes column vector of the incident field. 

    14.4  Response of a remote well-collimated radiometer  

Let us now quantify the electromagnetic response of the two remote polarimetric 
WCRs shown in Fig. 14.3 and having their optical axes centered at the volume 
element V. We assume that both instruments are located in the near zone of the 
scattering object, yet sufficiently far from it. Specifically, we assume that either 
WCR is located in the far zones of all the N particles occupying the volume ele-
ment V, which implies that the partial wavelets scattered by the particles become 
locally flat by the time they reach a WCR. Furthermore, although the acceptance 
solid angle ΩΔ  of either WCR is very small, its distance r from the center of the 
volume element V is sufficiently large that the solid angle subtended by V, as 
viewed from the WCR, is smaller than :ΔΩ  

ŝ V

r1
ˆ

Ω

WCR 1

WCR 2

 
Fig. 14.3.  Near-field measurement configuration. 
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 2

2

4r
Lπ < .ΔΩ  (14.35) 

As a consequence, either WCR captures all partial wavelets scattered by the N 
particles, irrespective of particles’ locations within V, while WCR 2 also captures 
the incident plane wave. We also assume that the entrance pupil Sep of WCR 2 is 
larger that than the geometrical shadow cast by the volume: 

 
4

2Lπ < .epS  (14.36) 

We will also assume that the inequalities (13.5), (14.17), and (14.18) hold.  
Let us first consider the response of WCR 1. According to Section 11.4, this 

instrument integrates over its entrance pupil the time-averaged Stokes column 
vector of the superposition of the N near-plane wavelets propagating essentially 
in the same direction .ˆ1r  This Stokes column vector can be expressed in the cor-
responding time-averaged complex PST according to Eq. (H.16). Since the {ob-
jective lens, diaphragm} filter of WCR 1 does not pass the incident plane wave, 
the resulting PST averaged over all particle positions is given by Eq. (14.23), but 
without the incident-field term on the right-hand side: 
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After recalling Eqs. (13.34)–(13.49), it is straightforward to show (Problem 14.5) 
that the polarized response of WCR 1 averaged over all particle positions is given 
by 
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Unlike the situation with WCR 1, the {objective lens, diaphragm} filter of 
WCR 2 does pass the incident plane wave as well as the N partial near-plane 
wavelets. As a consequence, the corresponding PST averaged over all particle 
positions is given by Eq. (14.27). The integration of this PST over the entrance 
pupil of WCR 2 finally yields (Problem 14.6):  
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14.5  First-order-scattering approximation 

Equations (14.32)–(14.34), (14.38) and (14.39) summarize the so-called first-or-
der-scattering approximation (FOSA) for the object in the form of a small group 
of sparsely distributed, randomly moving particles. Comparison of these formu-
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las with their far-field counterparts (13.77), (13.80), and (13.81b) is quite instruc-
tive and shows that: (i) the energy budget of the small random group is a simple 
“incoherent” sum of the individual-particle energy budgets, and (ii) the polarized 
readings of near-field yet sufficiently distant WCRs can be modeled by summing 
up the corresponding single-particle far-field readings.  

An important and convenient feature of the FOSA is that it satisfies the en-
ergy conservation law. Indeed, comparison of Eqs. (14.32)–(14.34) with Eqs. 
(13.77), (13.80), and (13.81b) shows that R〉〈 absW  for the entire volume element 
V vanishes, provided that each member of the N-particle group is nonabsorbing.   

The main results of the FOSA can be generalized by assuming that the 
microphysical states of the N particles change randomly and independently of 
each other as well as independently of the particle positions. Then invoking Eqs. 
(14.13) and (14.14) yields:        
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A fundamental consequence of the “additivity” of the extinction and phase mat-
rices in Eqs. (14.40)–(14.43) is that the actual random N-particle ensemble is 
optically indistinguishable from an ensemble composed of N statistically identical 
particles each having the same average extinction and phase matrices given by   
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The matrices ξξ 〉〈 );ˆ(sK  and ξξ 〉〈 );ˆ ,ˆ( srZ  can be thought of as being averaged 
according to Eq. (13.141) over a synthetic probability distribution of microphys-
ical states of one particle )(ξξp  derived from the N individual-particle distribu-
tions ).( iip ξξ  Then Eqs. (14.40)–(14.43) take a much simpler form, essentially 
replicating that of Eqs. (13.137)–(13.140), the principal difference being the ex-
tra factor N : 
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Finally, Eqs. (14.40)–(14.43) and (14.45)–(14.48) can be generalized to al-
low for the case of polychromatic light with M quasi-monochromatic comp-      
onents. For example, Eqs. (14.45)–(14.48) become 
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where the index m numbers the quasi-monochromatic components and, as usual, 
the detection efficiency of the WCRs is assumed to be frequency independent. 
Again, it is instructive to compare Eqs. (14.49)–(14.52) with Eqs. (13.143)–
(13.146). 

    14.6  Analysis of the first-order-scattering approximation 

The main attraction of the FOSA is that it obviates the need to solve the MMEs 
for a statistically representative set of sparse N-particle configurations explicitly 
and reduces this complicated (if not impracticable) task to the much simpler 
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problem of solving the MMEs for only one particle, followed by averaging over a 
representative distribution of the particle microphysical states. Even though this 
approximation has traditionally been taken for granted and used in countless ap-
plications, our discussion demonstrates that its explicit derivation from the 
MMEs is not necessarily trivial and rests on several specific assumptions. Indeed, 
the use of the FOSA to solve the energy-budget problem for a random N-particle 
object requires that the following conditions be met: 
● Each particle in the group is effectively excited by the incident field only, 

which allows one to replace the exact FEs by the approximate versions 
(14.1)–(14.3).  

● The observation point is located sufficiently far from the volume element V 
to ensure that the inequalities (14.8)–(14.10) and (14.17), as well as the ap-
proximate equality (14.18), hold.    

● The random N-particle object is fully ergodic, thereby making it possible to 
replace averaging over time by ensemble averaging. According to Section 
10.4, this condition implies that the averaging time must be much longer 
than the typical temporal scale of variability of the N-particle object.   

● All particle positions and all particle microphysical states as functions of 
time are mutually independent random processes. All positions of any of the 
N particles throughout the volume element V are equally probable, thereby 
justifying the use of the uniform probability density function (14.16). These 
conditions imply that the average distance R〉〈 npd  between neighboring part-
icles must be much greater than their sizes: 

 iad R〉〈 np  for ....,,1 Ni =  (14.53) 

● The sum of the extinction cross sections of the particles filling the volume 
element V is much smaller than the volume’s geometrical cross section, Eq. 
(14.26).  

● The size parameter of the volume element V is much greater than unity, Eq. 
(14.29). 

Should the FOSA also be used to quantify the (polarized) reading of a remote 
WCR, the inequalities (13.5), (14.35), and (14.36) must be satisfied as well. Fur-
thermore, in this case the condition (14.18) implies the inequality   

 r
π

iakD 1ep  for ,...,,1 Ni =  (14.54) 

where, as before, Dep is the diameter of the entrance pupil of the WCR (cf. Eq. 
(13.22)). 

The qualitatively obvious implication of the SSA is that the average separa-
tion between the particles must be appropriately large and their total number N 
must be sufficiently small. Although it is difficult to formulate universal quanti-
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tative criteria of applicability of the SSA, comparisons of the FOSA predictions 
with the results of numerically exact computer solutions of the MMEs for ran-
dom multi-particle objects can provide useful guidance. Such comparisons will 
be described and discussed in Section 18.5.   

By explicitly allowing the remote observation point to be located in the near 
zone of the volume element V, the FOSA obviates the need to satisfy the most 
demanding requirement of the far-field approximation, i.e., the inequality (5.14) 
with a = L. It is therefore interesting to analyze what would happen if the obser-
vation point were moved to the far zone of the entire volume element. A direct 
consequence of taking the limit ∞→r  is that iR′  becomes parallel to ,ŝ  which 
causes the factor )iexp( )ˆiexp( 11 ii rkk Rs ′⋅  in Eq. (14.20) and in the analogous 
formula for iii RrEr 〉×〈 )(ˆ sca  to vanish. Although this requires a tedious deriva-
tion, it can be shown by inspection that the contributions of the second, third, and 
fifth terms on the right-hand side of Eq. (14.15) to ,ext 〉〉〈〈 W  ,sca 〉〉〈〈 W  

,〉〉〈〈 1 Signal  and 〉〉〈〈 2 Signal  do not change. However, the fourth term changes 
dramatically at far-zone observation points in the immediate vicinity of the exact 
forward-scattering direction. To demonstrate the most striking consequence of 
this change, let us assume that the N particles have identical and time-independ-
ent scattering dyadics. Then the reader can verify that  
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ss
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r
S
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which, obviously, is N times greater than the FOSA prediction (14.47) (Problem 
14.7).  

The result (14.55) can be interpreted as being a consequence of the so-called 
forward-scattering interference effect illustrated in Fig. 14.4. Panel 14.4a shows 
that irrespective of the instantaneous positions of particles i and j within the vol-

ŝ

(b)

ŝ

(a)

i

j

.

ŝŝ

i

j

 
Fig. 14.4.  Forward-scattering interference.  (a) The observation point is located 
in the far zone of the entire N-particle object.  (b) The observation point is lo-
cated in the far zone of each individual particle, yet in the near zone of the en-
tire N-particle object.  
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ume element V, the phases of the respective partial wavelets arriving at a far-zone 
observation point corresponding to the exact forward-scattering direction are al-
ways the same, thereby causing a consistently constructive interference. If both 
particles have identical microphysical properties then averaging the term ir̂ × 

∗⊗ )()( 2
sca

2
sca rErE ji  over all particle positions yields the same contribution to 

Rr 〉〈 )( 2P  as the term ,)()(ˆ 2
sca

2
sca ∗⊗× rErEr iii  which explains the factor N 2 in 

Eq. (14.55). In the case of a near-field observation point, the phase difference 
between the two partial wavelets oscillates rapidly as particles i and j move, 
thereby resulting in a much weaker contribution of the position-averaged product 

∗⊗× )()(ˆ 2
sca

2
sca rErEr jii  to .)( 2 Rr 〉〈P   

Although the far-zone value of 〉〉〈〈 1 Signal  in the limit sr ˆˆ1 →  is N times 
greater than the near-zone value, the angular width of the forward-scattering in-
terference peak can be expected to be of the order .11 Lkλ  As a consequence, the 
contribution of this peak to 〉〉〈〈 scaW  is usually very small and can typically be 
neglected. The forward-scattering interference effect will be further discussed in 
Section 18.4. 

Problems 

14.1:   Consider the measurement arrangement shown in Fig. 16.8 and assume that 
the laser beam illuminates a 5-mm-radius volume filled with particles. 
What should be the distance from the particulate volume to the monitors in 
order to satisfy the FFS criteria (5.12)–(5.14) for the entire volume, pro-
vided that the laser wavelength is 600 nm?   

14.2: What should be the minimal distance from a 100-m-radius cloud of water 
droplets to an observation point in order to satisfy the FFS criteria (5.12)–
(5.14) for the entire cloud, provided that the wavelength of observation is 
600 nm? 

14.3: Derive Eq. (14.28). 

14.4: Derive Eqs. (14.32)–(14.34). 

14.5: Derive Eq. (14.38). 

14.6: Derive Eq. (14.39). 

14.7: Derive the far-field limit (14.55). 

14.8: Generalize Eqs. (14.49) and (14.50) by allowing the incident field to be a 
superposition of several polychromatic beams with different propagation 
directions.  

14.9: Consider a WCR with its optical axis centered at the volume element V in 
the direction q̂  and rewrite Eqs. (14.51) and (14.52) in the form of a single 
formula    
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where the angular step function )ˆ,Δ( ˆ sqΩχ  is defined by Eq. (11.10). Gen-
eralize this formula by allowing the incident field to be a superposition of 
several polychromatic beams with different propagation directions. 
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Statistically isotropic and mirror-symmetric               
random particles 

Equations (13.52), (13.54), (13.70), and (13.71) are the most general symmetry 
properties of the phase and extinction matrices appearing in the far-field limit of 
electromagnetic scattering by a fixed object. It is obvious that they also apply to 
the matrices ξξ 〉〈 );ˆ( incnK  and ξξ 〉〈 );ˆ ,ˆ( incsca nnZ  entering the far-field formulas 
(13.137)–(13.146) and the FOSA formulas (14.45)–(14.52) derived for ergodic 
random scatterers. The reader should recall that in the far-field formulation these 
matrices, defined by Eq. (13.141), characterize the entire random object, while in 
the framework of the FOSA they characterize the “virtual” random particle that 
de facto replaces each random member of the N-particle group. In what follows, 
we will often refer to either an FFS object or a FOSA particle as a “particle”. 

The matrices ξξ 〉〈 );ˆ( incnK  and ξξ 〉〈 );ˆ ,ˆ( incsca nnZ  can possess additional 
symmetries depending on the specific form of the probability density function 

).(ξξp  A particularly important class of functions )(ξξp  represents so-called 
statistically isotropic and mirror-symmetric random particles (hereinafter ISRPs). 
By definition, )(ξξp  represents an ISRP if it possesses the following properties: 
● )(ξξp  is a product of morphology and orientation probability density func-

tions, 
 ),,,()()( o γβαςξ ςξ ppp ≡  (15.1) 

both )(ςςp  and ),,(o γβαp  being normalized to unity: 

                                ,1)(d =ςς ςp@   (15.2) 
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The morphology ς  can be thought of as specifying the spatial distribution of 
the relative refractive index with respect to the “particle reference frame” 
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affixed to either the entire FFS object or the virtual FOSA particle, while the 
Euler rotation angles ),,( γβα  specify the orientation of the particle refer-
ence frame relative to the laboratory reference frame according to Appendix 
C. Note that ς  includes implicitly the overall size of either the FFS object or 
the virtual FOSA particle. Equation (15.1) implies that the random mor-
phologies ς  and orientations ),,( γβα  are statistically independent of each 
other.     

● )(ςςp  is such that the probability of occurrence of any morphology ς  is 
equal to the probability of occurrence of its mirror image: 

 ). of imagemirror ()( ςς ςς pp ≡  (15.4) 

● All particle orientations are completely random (equiprobable), thereby im-
plying that the orientation probability density function amounts to a con-
stant: 

 .
8

1) , ,( 2o π
γβα ≡p  (15.5) 

Although this class of functions )(ξξp  might be viewed as being rather special, 
it nonetheless results in sufficiently accurate optical parameterizations of many 
random scatterers encountered in practice and is by far the most frequently used 
theoretical model. Moreover, we shall see below that the assumptions of isotropy 
and mirror symmetry lead to significant mathematical simplifications and allows 
one to develop efficient computer algorithms.  

In particular, it turns out that a convenient concept in the analysis of electro-
magnetic scattering by an ISRP is that of the 44×  scattering matrix. As we have 
seen in Chapter 13, the phase matrix is defined such that it links the Stokes par-
ameters of the incident and scattered fields defined relative to their respective 
meridional planes. In contrast, the scattering matrix F links the Stokes parameters 
of the incident and scattered fields defined with respect to the scattering plane, 
that is, the plane through the unit vectors incn̂  and scan̂  (Perrin 1942; van de 
Hulst 1957).   

A simple way to introduce the scattering matrix is to align the z-axis of the 
laboratory reference frame with the incidence direction and superpose the meri-
dional plane corresponding to 0=ϕ  with the scattering plane (Fig. 15.1). Then 
the scattering matrix F can be defined as  

 ).;0,0;0,();( incincscascasca ξϕθϕθξθ ==== ZF  (15.6) 

In general, all 16 elements of the scattering matrix are nonzero and depend on the 
particle’s orientation with respect to the incidence and scattering directions. 

This choice of the laboratory reference frame, with the z-axis along the inci-
dence direction and the xz-half-plane, with ,0≥x  coinciding with the scattering 
plane, can often be inconvenient because any change in the incidence direction 
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and/or orientation of the scattering plane also changes the particle orientation 
with respect to the reference frame. However, we will show in the following sec-
tions that the notion of the scattering matrix can be very useful in application to 
an ISRP because then the scattering matrix becomes independent of the incidence 
direction and orientation of the scattering plane, depends only on the angle 

scaθΘ =  between the incidence and scattering directions, and has a simple 
block-diagonal structure. 

15.1  Symmetries of the Stokes scattering matrix 

We begin by considering special symmetry properties of the amplitude scattering 
matrix that exist when the incidence and scattering directions both lie in the xz-
plane (van de Hulst 1957). For the particle shown schematically in Fig. 15.2a, let  

 ⎥⎦
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Fig. 15.1.  Definition of the scattering matrix. 

(a) (b) (c) (d)  
Fig. 15.2.  Two orientations of an arbitrary particle and two orientations of its 
mirror counterpart that give rise to certain symmetries in scattering patterns. 
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be the amplitude scattering matrix that corresponds to the directions of incidence 
and scattering given by incn̂  and ,ˆ scan  respectively (Fig. 15.3). Rotating this par-
ticle by °180  about the bisectrix (i.e., the line in the scattering plane that bisects 
the angle Θπ −  between the unit vectors incn̂−  and scan̂  in Fig. 15.3) puts it in 
the orientation shown schematically in Fig. 15.2b. It is clear that the amplitude 
scattering matrix (15.7a) is also the amplitude scattering matrix for this rotated 
particle when the directions of incidence and scattering are given by scan̂−  and 

,ˆ incn−  respectively. Therefore, the reciprocity relation (5.31) implies that the 
amplitude scattering matrix of the particle shown in Fig. 15.2b that corresponds 
to the original directions of incidence and scattering, incn̂  and ,ˆ scan  is simply 

 .
2212

2111
⎥⎦
⎤

⎢⎣
⎡
−

−
SS
SS

 (15.7b) 

Mirroring the original particle, Fig. 15.2a, with respect to the scattering plane 
gives the particle shown in Fig. 15.2c. If we also reversed the direction of the unit 
vectors incϕ̂  and scaϕ̂  in Fig. 15.3 then we would have the same scattering prob-
lem as for the particle shown in Fig. 15.2a. We may thus conclude that the ampli-
tude scattering matrix for the particle shown in Fig. 15.2c that corresponds to the 
directions of incidence and scattering incn̂  and scan̂  is  

Bisectrix

x

z

O

inc
n̂

sca
n̂

inc
n̂−

sca
n̂−

Θ

 
Fig. 15.3.  The xz-plane of the laboratory reference frame acts as the scattering plane. The 
arrows perpendicular to the vectors-n̂  show the corresponding vectors.-θ̂  The symbols 
⊕ and ⊙ indicate the corresponding vectors-ϕ̂  directed into and out of the paper, respec-
tively. 



Chapter 15 188 

 .
2221

1211
⎥⎦
⎤

⎢⎣
⎡
−

−
SS
SS

 (15.7c)  

Finally, mirroring the original particle with respect to the bisectrix plane (i.e., the 
plane through the bisectrix and the y-axis) gives the particle shown in Fig. 15.2d.  
Since this particle is the mirror counterpart of the particle shown in Fig. 15.2b, its 
amplitude scattering matrix corresponding to the directions of incidence and scat-
tering incn̂  and scan̂  is given by 
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It can be seen that any two of the three transformations shown in Figs. 15.2b–
15.2d give the third one. 

We will now discuss the implications of Eqs. (15.7a)–(15.7d) for average 
Stokes scattering matrices by considering the following four examples (van de 
Hulst 1957). 

1. Let us first assume that there is only one kind of particle morphology ς  
and that any specific orientation, say Fig. 15.2a, is accompanied by the reciprocal 
orientation, Fig. 15.2b. It then follows from Eqs. (13.34)–(13.49), (15.6), 
(15.7a), and (15.7b) that the average scattering matrix has the following symme-
try: 

 .

44342414

34332313

24232212
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⎥
⎥
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FFFF
FFFF
FFFF
FFFF

 (15.8) 

The number of independent matrix elements is thus 10. 
2. As a second example, let us assume that any morphology in orientation (a) 

is accompanied by a mirror morphology in orientation (c) (see Fig. 15.2). This 
excludes, for example, morphologies in the form of only right-handed or only 
left-handed helices. It is easy to verify that the resulting average scattering matrix 
involves eight independent elements and has the following structure: 

 .

00
00

00
00

4443

3433
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1211

⎥
⎥
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⎦

⎤
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 (15.9) 

3. As a third example, assume that any morphology in orientation (a) is ac-
companied by a mirror morphology in orientation (d). The average scattering 
matrix becomes 
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and has 10 independent elements. 
4. Finally, let us make any two of the preceding assumptions. The third as-

sumption follows automatically, so that there are equal numbers of morphologies 
in orientations (a), (b), (c), and (d). The resulting average scattering matrix is 

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
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FF
FF

FF
FF

 (15.11) 

and has eight nonzero elements, of which only six are independent. 

15.2  Statistically isotropic and mirror-symmetric random particle 

Now we are ready to consider the probability density function (15.1) with the 
uniform orientation distribution given by Eq. (15.5). In this case the assumptions 
of example 1 from the previous section are satisfied, and the average scattering 
matrix is given by Eq. (15.8). Furthermore, if each morphology is accompanied 
by its mirror counterpart then the assumptions of example 4 are satisfied, and the 
resulting average scattering matrix is given by Eq. (15.11).  

As a consequence of the uniform orientation distribution, the random particle 
is statistically isotropic (i.e., there is no preferred propagation direction and no 
preferred plane through the incidence direction). Therefore, the average scatter-
ing matrix becomes independent of the incidence direction and the orientation of 
the scattering plane and depends only on the angle between the incidence and 
scattering directions, that is, the scattering angle 

 ].,0[    ),ˆˆ(arccos scainc πΘΘ ∈= nn ⋅  (15.12) 

Furthermore, the assumptions of example 4 ensure that the particle is statistically 
mirror-symmetric with respect to any plane and make the structure of the scatter-
ing matrix especially simple. We can thus rewrite Eq. (15.11) for the ISRP as  

.

);();(00
);();(00

00);();(
00);();(

);(
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⎥
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⎢
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FF

FF
FF

F  (15.13) 
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As a direct consequence of Eqs. (13.50) and (13.51), we have the inequalities 

                                        ,011 ≥〉〈 ξF   (15.14) 
 .4,,1,    ,|| 11 …=〉〈≤〉〈 jiFFij ξξ  (15.15) 

Additional general inequalities for the elements of the scattering matrix (15.13) 
are as follows: 

 ,][4][][4][ 2
12

2
2211

2
34

2
4433 ξξξξξξ 〉〈−〉〈+〉〈≤〉〈+〉〈+〉〈 FFFFFF  (15.16) 

              ,|| 22114433 ξξξξ 〉〈−〉〈≤〉〈−〉〈 FFFF  (15.17) 

              ,|| 12111222 ξξξξ 〉〈−〉〈≤〉〈−〉〈 FFFF  (15.18) 

              .|| 12111222 ξξξξ 〉〈+〉〈≤〉〈+〉〈 FFFF  (15.19) 

The proof of these and other useful inequalities is given in Hovenier et al. (1986). 

15.3  Phase matrix 

Knowledge of the matrix ξξΘ 〉〈 );(F  can be used to calculate the average Stokes 
phase matrix for an ISRP. Assume that πϕϕ <−< incsca0  and consider the 
phase matrices ξξϕθϕθ 〉〈 );,;,( incincscascaZ  and .);,;,( scaincincsca

ξξϕθϕθ 〉〈Z  The 
second matrix involves the same polar angles of the incidence and scattering di-
rections as the first, but the azimuth angles are switched, as indicated in their  
respective scattering geometries depicted in Figs. 15.4a and 15.4b. The phase 
matrix links the Stokes column vectors of the incident and scattered waves, 
specified relative to their respective meridional planes. Therefore, to compute the 
Stokes column vector of the scattered field with respect to the meridional plane 
of the scattering direction, we must: 
● Calculate the Stokes column vector of the incident field with respect to the 

scattering plane.  
● Multiply it by the scattering matrix, thereby obtaining the Stokes column 

vector of the scattered field with respect to the scattering plane. 
● Compute the Stokes column vector of the scattered field with respect to the 

meridional plane of the scattering direction (Chandrasekhar 1950). 
This procedure involves two rotations of the reference plane, as shown in Figs. 
15.4a and 15.4b, and yields (Problem 15.1)  

)();()();,;,( 12
incincscasca σπξΘσξϕθϕθ ξξ −〉〈−=〉〈 LFLZ  
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Fig. 15.4.  Derivation of the relationship between the phase and scattering ma-
trices. 
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)();()();,;,( 12
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 (15.21) 

where  
 ,2 ,1    ,2sin    ,2cos === iSC iiii σσ  (15.22) 

and the rotation matrix L is defined by Eq. (7.8).1 The scattering angle Θ  and the 
angles 1σ  and 2σ  can be calculated from ,scaθ ,incθ ,scaϕ  and incϕ  using spher-
ical trigonometry: 

 ),(cossinsincoscoscos incscaincscaincsca ϕϕθθθθΘ −+=  (15.23)  

                   ,
sinsin

coscoscoscos inc

incsca

1 Θθ
Θθθ

σ
−=  (15.24) 

                   .
sinsin

coscoscoscos sca

scainc

2 Θθ
Θθθ

σ
−=  (15.25) 

Equations (15.20)–(15.25) demonstrate the obvious fact that the phase mat-
rix of an ISRP depends only on the difference between the azimuthal angles of 
the scattering and incidence directions rather than on their specific values. In part-
icular, 
      ξξ ξϕθϕθξϕπθϕπθ 〉〈=〉−−〈 );,;,( );2,;2,( incincscascascaincincsca ZZ      (15.26) 

or, formally allowing negative azimuth-angle values, 

 .);,;,( );,;,( incincscascascaincincsca
ξξ ξϕθϕθξϕθϕθ 〉〈=〉−−〈 ZZ  (15.27) 

Comparison of Eqs. (15.20) and (15.21) yields the following symmetry relation 
(Hovenier 1969): 

       ξξ ξϕθϕθξϕθϕθ 〉−−〈=〉〈 );,;,( );,;,( incincscascascaincincsca ZZ   

                                                   ,);,;,( 34
incincscasca

34 ΔZΔ ξξϕθϕθ 〉〈=  (15.28) 
where the 4 × 4 diagonal matrix 34Δ  is given by 

–––––––––– 
1  Recall that a rotation angle is positive if the rotation is performed in the clockwise di-

rection when one is looking in the direction of propagation; see Section 7.2. 
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 .]1,1,1,1[diag1
34

T
3434 −−=== −ΔΔΔ  (15.29) 

Obviously, Eq. (15.28) is a manifestation of mirror symmetry with respect to the 
meridional plane of the incidence direction (cf. Fig. 15.4) or, equivalently, with 
respect to the xz-half-plane with .0≥x  It is also easy to see from either Eq. 
(15.20) or Eq. (15.21) that  

34
incincscasca

34
incincscasca );,;,();,;,( ΔZΔZ ξξ ξϕθϕθξϕθπϕθπ 〉〈=〉−−〈  (15.30) 

(Hovenier 1969), which is a manifestation of mirror symmetry with respect to the 
xy-plane. Finally, we can verify that 

 ξξπϕθππϕθπ 〉+−+−〈 );,;,( scascaincincZ  

                                  ξξϕθπϕθπ 〉−−〈= );,;,( scascaincincZ  

                                  ,]);,;,([ 3
Tincincscasca

3 ΔZΔ ξξϕθϕθ 〉〈=    (15.31) 

where the matrix 3Δ  is given by Eq. (13.53). Obviously, this is the reciprocity 
relation (13.52). Other symmetry relations can be derived by forming combina-
tions of Eqs. (15.28), (15.30), and (15.31). For example, combining Eqs. (15.28) 
and (15.30) yields 

       .);,;,( );,;,( incincscascascaincincsca
ξξ ξϕθϕθξϕθπϕθπ 〉〈=〉−−〈 ZZ  (15.32) 

Although Eq. (15.20) is valid only for ,0 incsca πϕϕ <−<  combining it with 
Eq. (15.28) yields the phase matrix for all possible incidence and scattering direc-
tions. The symmetry relations (15.30) and (15.31) further reduce the range of 
independent scattering geometries and can be very helpful in theoretical calcula-
tions or consistency checks on measurements.  

15.4  Exact forward-scattering direction and extinction matrix 

By virtue of spatial isotropy, the extinction matrix ξξ 〉〈 );ˆ( incnK  characterizing an 
ISRP is independent of the direction of incidence and the orientation of the refer-
ence plane used to define the Stokes parameters. It also follows from Eqs. 
(13.64)–(13.67) and (15.7a)–(15.7d) that  

                             ξξξξ ΚΚΚΚ 〉〈=〉〈=〉〈=〉〈 24231413  

                             042413231 =〉〈=〉〈=〉〈=〉〈= ξξξξ ΚΚΚΚ  (15.33) 

(Problem 15.2). Furthermore, we are about to show that the remaining off-diag- 
onal elements of the average extinction matrix also vanish.  

We will assume for simplicity that the incidence direction is parallel to the 
positive direction of the z-axis of the laboratory reference frame and will use the 
xz-half-plane with 0≥x  as the meridional plane of the incident field. We will 
also assume that the initial orientation of the particle reference frame affixed to 
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the particle coincides with the laboratory reference frame. The forward-scattering 
amplitude matrix computed in the laboratory reference frame for this initial or-
ientation is thus equal to the forward-scattering amplitude matrix computed in the 
particle reference frame. We will denote the latter as SP.  

Let us now rotate the particle reference frame through a Euler angle α  about 
the z-axis in the clockwise direction, as viewed in the positive z-direction (Figs. 
C.1 and 15.5) and denote the new forward-scattering amplitude matrix with re-
spect to the laboratory reference frame as .L

αS  This matrix relates the column of 
the electric field vector components of the incident field to that of the field scat-
tered in the exact forward direction: 

 ,
inc
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inc
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Lsca
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⎥
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⎥
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E
E

E
E

S∝  (15.34) 

where the subscript L indicates that all field components are computed in the 
laboratory reference frame. Figure 15.5 shows the respective unit θ- and ϕ -vec-
tors for the incidence and forward-scattering directions. Simple trigonometry  
allows us to express the column of the electric vector components in the particle 
reference frame in terms of that in the laboratory reference frame by means of a 
trivial matrix multiplication: 
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 (15.35) 

where αcos=C  and .sinα=S  The reader can easily verify that the inverse 
relationship reads 
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 (15.36) 

x′

y′

α

scainc ˆ,ˆ
PP ϕϕ

scainc ˆ,ˆ
LL ϕϕ

scainc ˆ,ˆ
LL

x

y

α

θ θ

scainc ˆ,ˆ
PP

θ θ

 
Fig. 15.5.  Rotation of the laboratory reference frame L{x, y, z} through an Euler 
angle α  about the z-axis transforms it into the particle reference frame P{x′, 
y′, z′}. Since both the incident and the scattered waves propagate in the posi-
tive z-direction, their respective unit -θ  and vectors-ϕ  are the same. 
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Rewriting Eq. (15.34) in the particle reference frame, 
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S∝  (15.37) 

and using Eqs. (15.35) and (15.36), we finally derive  

     ⎥⎦
⎤

⎢⎣
⎡
−⎥⎦

⎤
⎢⎣
⎡ −

=
CS
SC

CS
SC

PL SSα  

             ⎢⎣

⎡
−+−
+−−

=
P22P21

2
P12

2
P11

P22
2

P21P12P11
2

SCSSCSSSCS
SSSCSSCSSC

    

                                                 .
P22

2
P21P12P11

2
P22P21

2
P12

2
P11

⎥⎦

⎤
+++
−−+

SCSCSSCSSS
SCSSSSCSCS

 (15.38) 

For 0=α  and ,2πα =   

                                  ,
P22P21

P12P110
L ⎥⎦

⎤
⎢⎣
⎡=

SS
SS

S  (15.39) 

 .
P11P12

P21P222
L ⎥⎦

⎤
⎢⎣
⎡
−

−
=

SS
SSπS  (15.40) 

Because we are assuming random orientations of the particle reference frame, for 
each morphology in the initial orientation, ,0=α  there is always a morphology 
of the same type but in the orientation corresponding to .2πα =  It therefore 
follows from Eqs. (13.63), (13.68), (15.39), and (15.40) that  

 043342112 =〉〈=〉〈=〉〈=〉〈 ξξξξ ΚΚΚΚ  (15.41) 

(Problem 15.3). Finally, recalling Eq. (13.84), we conclude that the extinction 
matrix characterizing an ISRP is diagonal and has only one independent element: 

 ,)()();ˆ( ext
inc ΔKK ξξξ ξξξ 〉〈=〉〈≡〉〈 Cn  (15.42) 

where 
 1]1,1,[1,diag=Δ  (15.43) 

is the 4 ×4 unit matrix and ξξ 〉〈 )(extC  is the average extinction cross section, 
which is now independent of the direction of incidence and the polarization state 
of the incident field. This dramatic simplification is useful in many practical cir-
cumstances. 

The scattering matrix also becomes simpler when .0=Θ  From Eqs. (13.35), 
(13.38), (13.45), (13.48), (15.39), and (15.40), we find that 

 .0);0();0();0();0( 43342112 =〉〈=〉〈=〉〈=〉〈 ξξξξ ξξξξ FFFF  (15.44) 

Equation (15.38) gives for :4πα =  
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SSSSSSSS
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Equations (13.39), (13.44), (15.39), and (15.45), as well as a considerable 
amount of algebra yield (Problem 15.5) 

 .);0();0( 3322 ξξ ξξ 〉〈=〉〈 FF  (15.46) 

Thus, recalling Eq. (15.13), we find that the Stokes forward-scattering matrix is 
diagonal and has only three independent elements: 
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(van de Hulst 1957). 
A rotationally symmetric particle is obviously mirror-symmetric with respect 

to the plane through the direction of propagation and the axis of symmetry. 
Choosing this plane as the plane-zx ′′  of the particle reference frame, we see from 
Eqs. (15.7a) and (15.7c) that .0P21P12 == SS  This simplifies the amplitude scat-
tering matrices (15.39) and (15.45) and ultimately yields 

 ,);0();0(2);0( 112244 ξξξ ξξξ 〉〈−〉〈=〉〈 FFF  (15.48) 

 .);0();0(0 1122 ξξ ξξ 〉〈≤〉〈≤ FF  (15.49) 

15.5  Exact backward scattering 

Equation (15.6) provides an unambiguous definition of the scattering matrix in 
terms of the phase matrix, except for the exact backscattering direction. Indeed, 
the backscattering direction for an incidence direction },{ incinc ϕθ  is given by 

,{ incθπ − }.inc πϕ +  Therefore, the complete definition of the scattering matrix 
should be as follows: 
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which seems to be different from Eq. (15.6). It is easy to see, however, that  

 );0,0;,();0,0;,()();0,0;0,( ξππξπππξπ ZZLZ ≡=  

(cf. Eq. (7.7)), which demonstrates the equivalence of the two definitions. 
We are ready now to consider the case of scattering in the exact backward di-

rection, using the complete definition of the scattering matrix and the backscat-
tering theorem derived in Section 5.4. Let us assume that the incidence direction 
is parallel to the positive z-axis of the laboratory coordinate system and use the 
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xz-half-plane with 0≥x  as the meridional plane of the incidence direction. As in 
the previous section, we consider two orientations of the particle reference frame 
relative to the laboratory reference frame:  
● the initial orientation, when },,{P zyx ′′  coincides with L{x, y, z}, and  
● the orientation obtained by rotating },,{P zyx ′′  about the z-axis through a 

positive Euler angle .α   
Figure 15.6 shows the respective unit -θ  and vectors-ϕ  for the incidence and 
backscattering directions. Denote the backscattering amplitude matrix in the part-
icle reference frame as PS  and the backscattering amplitude matrix in the labora-
tory reference frame for the rotated particle reference frame as .L

αS  A derivation 
similar to that in the previous section gives 
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This formula can be simplified, because the backscattering theorem (5.32) yields 
.P12P21 SS −=  Assuming the random orientation distribution and considering the 

cases 0=α  and ,2πα =  we find that  
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Fig. 15.6.  As in Fig. 15.5, but for the case of scattering in the exact backward 
direction. 
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Similarly, considering the cases 0=α  and 4πα =  yields  

 .);();( 2233 ξξ ξπξπ 〉〈−=〉〈 FF  

Finally, recalling Eqs. (13.54) and (15.13), we conclude that the Stokes backscat-
tering matrix is diagonal and has only two independent elements:  
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                                    (15.51) 

(Mishchenko and Hovenier 1995). According to Eq. (15.15), ,1144 ξξ 〉〈≤〉〈 FF  so 
we always have 
 .0);(22 ≥〉〈 ξξπF  (15.52) 

15.6  Scattering cross section and asymmetry parameter 

Like all other scattering characteristics, the average scattering cross section char-
acterizing an ISRP is independent of the direction of incidence. Therefore, we 
will evaluate the integral on the right-hand side of Eq. (13.85), assuming that the 
incidence direction is parallel to the positive z-axis of the laboratory reference 
frame and that the xz-half-plane with 0≥x  is the corresponding meridional 
plane. Figure 15.7 shows that in order to compute the Stokes column vector of 
the scattered field with respect to its own meridional plane, we must rotate the 
reference frame of the incidence direction by the angle ,ϕ  thereby modifying the 
Stokes column vector of the incident field according to Eq. (7.7), with ,ϕη =  
and then multiply the new Stokes column vector of the incident field by the scat-
tering matrix. Therefore, the average phase matrix is simply 
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  (15.53) 

Substituting this formula in Eq. (13.85), we find that the average scattering cross 
section is independent of the polarization state of the incident field and is given by 
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The corresponding asymmetry parameter must also be independent of ,ˆ incn  
and Eqs. (13.90), (13.94), and (15.53) yield  
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Obviously, g is polarization-independent. The average absorption cross section,  
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and the single-scattering albedo,  

 ,
)(
)(

ext

sca

ξ

ξ

ξ
ξ

ϖ
〉〈
〉〈

=
C
C

 (15.57) 

are also independent of the direction and polarization state of the incident field. 
The same, of course, is true of the extinction, scattering, and absorption effi-
ciency factors defined, respectively, as 
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where ξξ 〉〈 )(G  is the average area of the particle’s geometrical projection. 
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Fig. 15.7.  Illustration of the relationship between the phase and scattering mat-
rices when the incidence direction is along the positive z-axis. 
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15.7  Spherically symmetric particle 

The structure of the scattering matrix simplifies further if the ISRP is spherically 
symmetric, i.e., is a homogeneous or radially inhomogeneous spherical particle 
composed of optically isotropic materials. Then the internal relative refractive 
index is a function of only the distance from the center of the particle. Irrespec-
tive of its “orientation” relative to the laboratory reference frame, the spherically 
symmetric particle is mirror-symmetric with respect to the xz-plane. Assuming 
that the incidence direction is parallel to the positive z-axis, restricting the scat-
tering direction to the xz-half-plane with ,0≥x  and using this plane for refer-
ence, we find from Eqs. (15.7a) and (15.7c) that the amplitude scattering matrix 
is always diagonal: .02112 ≡≡ SS  Therefore, Eqs. (13.34), (13.39), (13.44), 
(13.49), and (15.13) yield  
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A scattering matrix of this type appears in the Lorenz–Mie theory (LMT) of light 
scattering by a homogeneous isotropic sphere (Section 16.1.1). The results of the 
previous sections on forward and backward scattering further imply that 

 ,);();(,);0();0( 11331133 ξξξξ ξπξπξξ 〉〈−=〉〈〉〈=〉〈 FFFF  (15.60) 

 .0);();0( 1212 =〉〈=〉〈 ξξ ξπξ FF  (15.61) 

15.8  Effects of morphology and orientation 

The preceding discussion of symmetries enables us to summarize the most fun-
damental effects of morphology and orientation on the average optical character-
istics of a random scattering particle. If the particle is not an ISRP then, in general: 
● the average 44×  extinction matrix does not degenerate to a direction- and 

polarization-independent scalar extinction cross section;  
● the average extinction, scattering, and absorption cross sections, the single-

scattering albedo, and the asymmetry parameter depend on the direction and 
polarization state of the incident field; 

● the average scattering matrix ξ〉〈F  does not have the simple block-diagonal 
structure of Eq. (15.13): all 16 elements of the scattering matrix can be non-
zero as well as dependent on the incidence direction and the orientation of 
the scattering plane, rather than only on the scattering angle; 

● the average phase matrix depends on the specific values of the azimuthal an-
gles of the incidence and scattering directions, rather than on their differ-
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ence; cannot be represented in the form of Eqs. (15.20) and (15.21); and 
does not obey the symmetry relations (15.26) and (15.28). 

Any of these effects can directly indicate the presence of oriented particles lacking 
spherical symmetry.  

If the random particle is an ISRP then: 
● the average extinction matrix reduces to the scalar extinction cross section 

according to Eq. (15.42);  
● all average optical cross sections, the single-scattering albedo, and the asym-

metry parameter become orientation- and polarization-independent;  
● the average scattering matrix becomes block-diagonal, Eq. (15.13), depends 

only on the scattering angle, and possesses almost the same structure as the 
Lorenz–Mie scattering matrix (15.59); and 

● the average phase matrix depends only on the difference between the azi-
muthal angles of the incidence and scattering directions rather than on their 
specific values; has the structure specified by Eqs. (15.20) and (15.21); and 
obeys the symmetry relations (15.26) and (15.28).  
Despite the similarity of the matrices (15.13) and (15.59), the Lorenz–Mie 

identities ξξ ξΘξΘ 〉〈≡〉〈 );();( 1122 FF and ,);();( 3344 ξξ ξΘξΘ 〉〈≡〉〈 FF as well as 
Eq. (15.60) do not hold, in general, for a nonspherical ISRP. As a consequence, 
measurements of the so-called linear backscattering depolarization ratio  
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and the closely related (Problem 15.6) circular backscattering depolarization ratio 
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are often used as a means of detecting nonsphericity.  

15.9  Normalized scattering and phase matrices 

It is often convenient to use the so-called normalized scattering matrix 
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with dimensionless elements. Similarly, the normalized phase matrix can be de-
fined as 
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The (1, 1) element of the normalized scattering matrix, ),(1 Θa  is traditionally 
called the phase function and, as follows from Eqs. (15.54) and (15.64), satisfies 
the following normalization condition: 
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Remember that we have already used the term “phase function” to name the 
quantity p defined by Eq. (13.92). It can be seen easily from Eqs. (13.90), 
(13.92), and (15.64) that the differential scattering cross section Ωdd scaC  re-
duces to ,11 ξ〉〈F  and so p reduces to a1, when unpolarized incident light propa-
gates along the positive z-axis and is scattered in the xz-half-plane with .0≥x  
Equations (15.55) and (15.64) yield 
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The normalized scattering matrix possesses many properties of the regular 
scattering matrix, e.g.,  
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Also,  
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for a rotationally symmetric particle and   
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for a spherically symmetric particle. Similarly, for πϕϕ <−< incsca0  the norm-
alized phase matrix is given by  
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(cf. Eq. (15.20)) and has the same symmetry properties as the regular phase mat-
rix: 
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15.10  Expansion in Wigner d-functions 

A traditional way of specifying the elements of the normalized scattering matrix 
is to tabulate their numerical values for a representative grid of scattering angles 
(e.g., Deirmendjian 1969). However, a more mathematically appealing and pract-
ically efficient way is to expand the scattering matrix elements in so-called 
Wigner d-functions )(Θs

nmd  or, equivalently, in generalized spherical functions  
)(i)(cos ΘΘ s

nm
nms

nm dP −=  (see Appendix F): 
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(Hovenier et al. 2004). The angular behavior of several d-functions entering Eqs. 
(15.86)–(15.91) is illustrated in Fig. F.1. According to Appendix F, these expan-
sions always exist in the sense of Eq. (F.16) provided that 
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In view of the inequalities (15.69) and (15.70), it is sufficient to require that 
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There are no reasons to expect that the latter condition can be violated for real 
particles occurring in nature. According to Eqs. (F.5) and (F.7),  

 ,0)0()0( 022,2 ==−
ss dd  (15.95) 

                                              .0)()( 0222 == ππ ss dd  (15.96) 

Therefore, Eqs. (15.87), (15.88), (15.90), and (15.91) identically reproduce the 
specific structure of the normalized scattering matrix for the exact forward and 
backward directions, as given by Eqs. (15.75) and (15.76). The form of the ex-
pansions (15.86)–(15.89) also becomes simpler in the case of the exact forward 
or exact backward direction (Problem 15.8). 

The number of nonzero terms in the expansions (15.86)–(15.91) is in prin-
ciple infinite. In practice, however, the expansions are truncated at ,maxss =  the 
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upper summation limit smax being chosen such that the corresponding finite sums 
differ from the respective scattering matrix elements on the entire interval 

],0[ πΘ ∈  of scattering angles within the requisite numerical accuracy. Since 
0)( ≡Θs

nmd  for s < |),||,max(| nm  the coefficients ,0
2α ,1

2α ,0
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3α ,0
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1β ,0
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and 1
2β  are not, strictly speaking, defined. However, it is often convenient to   

formally equate them to zero: 
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The analytical properties of the d-functions are summarized in Appendix F. 
For given m and n, the )(Θs

nmd  with |),||,max(| nms >  when multiplied by 
,21)( 2

1+s  form a complete orthonormal set of functions of ].,0[ πΘ ∈  There-
fore, using the orthogonality relation (F.13), we obtain from Eqs. (15.86)–
(15.91): 
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(cf. Eq. (F.17)). These formulas suggest a simple, albeit not always the most ele-
gant and efficient way to compute the expansion coefficients by evaluating the 
integrals numerically using a suitable quadrature formula. Of course, this proc-
edure assumes the knowledge of the normalized scattering matrix elements at the 
quadrature division points.  

Because the d-functions possess well-known and convenient mathematical 
properties and can be efficiently computed by using the simple and numerically 
stable recurrence relation (F.8), the expansions (15.86)–(15.91) offer substantial 
practical advantages. For example, if the expansion coefficients appearing in these 
expansions are known, then the elements of the normalized scattering matrix can be 
calculated easily for essentially any number of scattering angles and with a minimal 
expenditure of computer time. Hence, instead of tabulating the elements of the scat-
tering matrix for a large number of scattering angles (see, e.g., Deirmendjian 1969) 
and resorting to interpolation in order to find the scattering matrix at intermediate 
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points, one can provide a complete and accurate specification of the scattering mat-
rix by tabulating a limited (and usually small) number of numerically significant 
expansion coefficients. This also explains why the expansion coefficients are espe-
cially convenient in averaging over orientations: instead of computing the scattering 
matrix elements for a large number of orientations, one can average a (much) 
smaller set of expansion coefficients. 

Another advantage of expanding the scattering matrix elements in d-functions is 
that the latter obey an addition theorem and thereby provide an elegant analytical 
way of calculating the coefficients in a Fourier azimuthal decomposition of the 
normalized phase matrix (Kuščer and Ribarič 1959; Hovenier et al. 2004; MTL2).  

An important additional advantage offered by the expansions (15.86)–(15.91) 
is that using the T-matrix or the superposition T-matrix method (see Section 16.1.8), 
the expansion coefficients for certain types of nonspherical particle can be calcu-
lated analytically without computing the normalized scattering matrix itself.    

The expansion coefficients obey the general inequalities 
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These and other useful inequalities were derived by van der Mee and Hovenier 
(1990). Since, for each s, )(00 Θsd  is also a Legendre polynomial ),(cosΘsP  Eq. 
(15.86) is the well-known expansion of the phase function in Legendre poly-
nomials (Chandrasekhar 1950; Sobolev 1975; van de Hulst 1980). Equation 
(F.11) implies that .1)(0

00 ≡Θd  Therefore, Eq. (15.98) and the normalization 
condition (15.66) yield the identity 
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while the orthogonality property of the d-functions and Eq. (15.67) imply that 
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To illustrate the typical traits of the expansion coefficients s
iα  and ,s

iβ  Fig. 
15.8 depicts them as a function of s for two polydisperse models of a random 
homogeneous spherical particle, each described by a gamma distribution of radii 
given by 
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The constant is chosen such that the size distribution satisfies the standard norm-
alization (13.152). It is assumed for both models that the relative refractive index 
is ,5.1=m  ,0min =r  ,max ∞=r  and the so-called effective variance, defined by  
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Fig. 15.8.  Expansion coefficients for two models of a random homogeneous 
spherical particle characterized by effective size parameters xeff = 5 and 30 (see 
text). 
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is equal to 0.2. In Eq. (15.109),   
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=  (15.110) 

is the so-called effective radius of the size distribution and  
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r
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is the average area of the particle’s geometrical projection. The effective size par-
ameter eff1eff rkx =  is equal to 5 for the first model and to 30 for the second 
model. Figure 15.9 visualizes the four independent elements of the normalized 
Lorenz–Mie scattering matrix for both models. The computations were per-
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Fig. 15.9.  Elements of the normalized scattering matrix for two models of a ran-
dom homogeneous spherical particle characterized by effective size parame-
ters xeff = 5 and 30 (see text). 
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formed using the Lorenz–Mie computer code described in Section 5.10 of 
MTL1. 

Figure 15.8 reveals the typical behavior of the expansion coefficients s
iα  

with increasing index s: they first grow in magnitude and then decay to absolute 
values below a reasonable numerical threshold. The greater the effective size par-
ameter, the larger the maximal absolute value of the expansion coefficients and 
the slower their decay. This trend is largely explained by the rapid growth of the 
height of the forward-scattering peak in the elements )(1 Θa  and )(3 Θa  with in-
creasing size parameter (see Fig. 15.9 and Eqs. (H.41)–(H.43)). The || s

iβ  remain 
significantly smaller than the || s

iα  and exhibit more pronounced oscillations. The 
former trait is obviously explained by the fact that the elements )(1 Θb  and )(2 Θb  
vanish at 0=Θ  instead of having a strong peak typical of the elements )(1 Θa  
and ).(3 Θa  

Problems 

15.1:   Derive Eqs. (15.20) and (15.21).  

15.2:   Verify Eq. (15.33).  

15.3:   Verify Eq. (15.41).  

15.4:   What is the general structure of the extinction matrix for a statistically iso-
tropic but not mirror-symmetric random particle? 

15.5:   Verify Eq. (15.46). 

15.6:   Derive the following relationship between the linear and circular backscat-
tering depolarization ratios for an ISRP:  

 
L

L
C 1

2
δ

δ
δ

−
=  (15.112) 

(Mishchenko and Hovenier 1995). Prove that 

 ,10 L ≤≤ δ     ,0C ≥δ     and    .LC δδ ≥  (15.113) 

15.7:   Consider the case of an incident quasi-monochromatic beam of light polar-
ized linearly in the scattering plane. The scattered intensity component po-
larized in the scattering plane is called the co-polarized intensity, whereas 
that polarized perpendicularly to the scattering plane is called the cross-
polarized intensity. The linear polarization ratio (LPR) )(L Θμ  is defined 
as the ratio of the cross-polarized and co-polarized scattered intensities as a 
function of the scattering angle Θ. Derive an explicit formula for )(L Θμ  in 
terms of the elements of the normalized scattering matrix. Verify that 

 ).(LL πμδ =  (15.114) 
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 Show that the LPR vanishes identically in the case of a spherically sym-
metric scatterer. 

15.8:   Simplify the expansions (15.86)–(15.89) in the cases of the exact forward 
and exact backward direction. 

15.9:   The term “Rayleigh scattering” traditionally refers to the case of FFS by an 
object with a size much smaller than the wavelength. For a nonspherical 
Rayleigh particle, the normalized scattering matrix obtained by averaging 
over the uniform orientation distribution (15.5) under the assumption 
(15.4) is given by  
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(van de Hulst 1957; Bohren and Huffman 1983). Depending on the particle 
shape, the parameter y can range from 1 to 13, the former value corre-
sponding to a spherically symmetric particle. Verify that the (1,1) element 
of the Rayleigh scattering matrix is appropriately normalized. Derive the 
expansion coefficients entering the expansions (15.86)–(15.90) of the ele-
ments of the matrix )(R

~ ΘF  in Wigner d-functions. 

15.10: Show that in the case of unpolarized incident light, the ratio )()( 11 ΘΘ ab−  
for an ISRP gives the signed degree of linear polarization PQ of the scat-
tered light.  

15.11: Plot and discuss the phase function ),(1 Θa  the signed degree of linear po-
larization for unpolarized incident light PQ , and the ratio )()( 13 ΘΘ aa  for 
a spherically symmetric Rayleigh particle. 

15.12: Derive an explicit formula for the LPR )(LR Θμ  in the Rayleigh limit. Plot 
this quantity for several values of the parameter y and discuss the evolution 
of its angular profile in the limit of vanishing particle nonsphericity.  

15.13: The assumption ∞=maxr  made in plotting Figs. 15.8 and 15.9 may seem 
to be unrealistic, since particles with infinite radii do not exist and actual 
scattering computations for such particles are impossible. Discuss the pract-
ical meaning of this assumption. Derive the normalization constant enter-
ing Eq. (15.108) by assuming that 0min =r  and ;max ∞=r  express reff and 
veff in terms of a and b. 

15.14: In the old literature, the reader can encounter an artificial so-called Hen-
yey–Greenstein phase function used as a simple “analytical” proxy to the 
(1,1) element of the normalized scattering matrix of real spherical and non-
spherical particles. This phase function is given by  
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and is conveniently characterized by only one free model parameter g such 
that .1|| <g  Verify that this phase function is properly normalized and plot 
it versus the scattering angle for several values of g. Show that a1,HG has a 
backscattering peak for negative g, is isotropic for g = 0, and is forward-
scattering for g > 0. Derive the corresponding expansion coefficients enter-
ing the expansion (15.86). Express the respective asymmetry parameter 
gHG in terms of g. 
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Numerical computations and laboratory                      
measurements of electromagnetic scattering 

Solving the energy-budget and optical characterization problems formulated in 
Section 1.4 relies on one’s ability to:  
● compute the time-averaged Poynting vector and/or  
● model theoretically the net signal recorded by a (polarimetric) WCR.  

To accomplish either task one usually needs a direct computer solver of the 
MMEs. This solver may be required, for example, to calculate the spatial distri-
bution of the Poynting vector inside a densely packed particulate medium, or to 
compute the extinction and phase matrices needed to analyze the reading of a far-
field WCR.  

Depending on the complexity and size of the scattering object (cf. Plate 1.1), 
direct computer solvers of the MMEs can become inefficient and may need to be 
replaced with a well-characterized and manageable approximate solution. For 
example, we will see in Chapter 19 that certain observable manifestations of scat-
tering by a large random group of sparsely distributed particles, as well as its 
electromagnetic energy budget can be quantified by solving the so-called radia-
tive transfer equation. However, two key quantities entering this equation, the 
single-particle extinction and phase matrices averaged over all particle micro-
physical states ξ , must still be calculated by using a numerical solver of the 
MMEs. We have seen that the same is true of the FOSA derived in Chapter 14 
for a small group of randomly and sparsely distributed particles observed from a 
sufficiently large distance.  

In some cases even the computation of the matrices ξξ 〉〈 );ˆ(sΚ  and 
ξξ 〉′〈 );ˆ,ˆ( qqZ  can become problematic. Then helpful quantitative information 

may be obtained by performing controlled laboratory measurements of electro-
magnetic scattering by well-characterized targets.  

Given the vastness of the subject, the goal of this chapter is to provide only a 
brief summary of existing computer solvers of the MMEs, as well as advanced 
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laboratory techniques intended for measurements of electromagnetic scattering 
by individual particles and small groups of particles. We will primarily focus on 
numerically exact theoretical approaches (according to the definition given in the 
footnote on page 3) and on controlled laboratory methodologies based on meas-
urements for scattering targets with fully (or almost fully) characterized micro-
physical characteristics. More detailed and systematic information, as well as 
numerous further references can be found in MTL1, in the book edited by 
Mishchenko et al. (2000), and in the review by Kahnert (2003).     

16.1  Numerically exact theoretical techniques 

The majority of existing numerically exact theoretical approaches belong to one 
of two broad categories. Differential equation methods yield the scattered field 
via the solution to the MMEs or the vector wave equation in the frequency or in 
the time domain, whereas integral equation methods are based on the volume or 
surface integral counterparts of the MMEs. 

16.1.1  The Lorenz – Mie theory 

The prime example of a differential equation method is the LMT derived for a 
homogeneous spherical object (van de Hulst 1957; Bohren and Huffman 1983; 
MTL1). This solution is based on the expansion of the incident, internal, and 
scattered fields in suitable sets of vector spherical wave functions (VSWFs). The 
expansion coefficients of the incident plane wave are given by closed-form anal-
ytical expressions, whereas those of the internal and scattered fields are deter-
mined by satisfying the boundary conditions (Section 2.2) on the sphere surface. 
Owing to the orthogonality of the VSWFs, each expansion coefficient of either 
the internal or the scattered field is determined separately. This makes the LMT 
numerically exact and extremely efficient.  

Since detailed accounts of the LMT are available in several books, including 
MTL1, here we provide only a brief summary of the main results. The LMT amp-
litude scattering matrix for a homogeneous spherical object with a radius r and a 
relative refractive index m becomes especially simple when the incident plane 
electromagnetic wave propagates along the positive direction of the z-axis of the 
laboratory reference frame and  :incsca ϕϕ =  
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The angular functions πn and τn are given by  
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while the Lorenz–Mie coefficients an and bn are functions of the relative refrac-
tive index and size parameter x = k1r: 
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In Eqs. (16.6) and (16.7),  

 ),()(    ),()( )1( zhzzzjzz nnnn == ξψ  (16.8) 

where jn are spherical Bessel functions of the first kind and )1(
nh  are spherical 

Hankel functions of the first kind.   
Owing to Eq. (16.2), it can easily be shown that the normalized Stokes scat-

tering matrix for a spherically symmetric object is given by Eq. (15.64) with 
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The extinction and scattering cross sections are given by 
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All special functions entering the LMT can efficiently be computed using appro-
priate recurrence relations. 

Several software implementations of the LMT are available on the World 
Wide Web. Section 5.10 of MTL1 is a user guide to the LMT program posted at 
http://www.giss.nasa.gov/staff/mmishchenko (assessed November 2013). 
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By implementing a recursive procedure, one can generalize the Lorenz–Mie 
solution and treat concentric multi-layer spheres. This procedure is summarized 
in the monograph by Babenko et al. (2003), which also describes the extension of 
the LMT to radially inhomogeneous and anisotropic spherical particles and pro-
vides further references. 

16.1.2  Separation of variables method 

The separation of variables method (SVM) for spheroids parallels the LMT in 
that is provides the solution of the electromagnetic scattering problem in the 
spheroidal coordinate system by means of expanding the incident, internal, and 
scattered fields in vector spheroidal wave functions (Oguchi 1973; Asano and 
Yamamoto 1975). The expansion coefficients of the incident field are computed 
analytically, whereas the unknown expansion coefficients of the internal and 
scattered fields are determined by applying the boundary conditions. Because the 
vector spheroidal wave functions are not orthogonal on the spheroid surface, this 
procedure yields an infinite set of linear algebraic equations for the unknown 
coefficients that must be truncated and solved numerically. The obvious limit-
ation of the SVM is that it applies only to spheroidal scatterers, whereas its main 
advantages are the ability to yield very accurate results and the applicability to 
spheroids with extreme aspect ratios. This technique was significantly improved 
by Voshchinnikov and Farafonov (1993) and extended to core–mantle spheroids 
by Onaka (1980), Cooray and Ciric (1992), and Farafonov et al. (1996). Further 
references can be found in the review by Ciric and Cooray (2000) and the mono-
graph by Li et al. (2002). 

16.1.3  Multi-sphere and superposition T-matrix methods 

The LMT can also be extended to a cluster of N spheres by using the translation 
addition theorem for the VSWFs (Fikioris and Waterman 1963; Bruning and Lo 
1971a,b). The FEs allow one to express the total field scattered by a multi-sphere 
cluster as a superposition of N partial fields contributed by the N spheres. The 
external (incident) electric field and the partial fields generated by the component 
spheres are expanded in sets of VSWFs with origins at the individual sphere cen-
ters. The orthogonality of the VSWFs in the sphere boundary conditions is ex-
ploited by applying the translation addition theorem (Cruzan 1962), in which a 
VSWF centered at one sphere origin is re-expanded about another sphere origin. 
This procedure results in a cluster matrix equation for the scattered-field expan-
sion coefficients of each sphere. Numerical solution of this equation for the 
specific incident field yields the partial scattered fields and thereby the total scat-
tered field. This technique is called the multi-sphere method (MSM). 

Alternatively, inversion of the cluster matrix equation gives sphere-centered 
transition matrices (or T matrices) that transform the expansion coefficients of the 
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incident field into the expansion coefficients of the individual scattered fields. In 
the far-field region, the individual scattered-field expansions can be transformed 
into a single expansion centered at a single origin inside the cluster. This proce-
dure yields the T matrix that transforms the incident-field expansion coefficients 
into the single-origin expansion coefficients of the total scattered field (Mack-
owski 1994) and can be used in the analytical averaging of far-field observables 
over cluster orientations (Mackowski and Mishchenko 1996). This technique is 
known as the superposition T-matrix method (STMM).  

Because of the analyticity of their mathematical formulation, the MSM and 
STMM are capable of producing very accurate numerical results. An efficient 
software implementation of the STMM was developed by Mackowski and 
Mishchenko (2011). The MSM has been extended to spheres with one or more 
eccentrically positioned spherical inclusions (Fuller 1995; Videen et al. 1995; 
Borghese et al. 2007) and to clusters of dielectric spheroids in an arbitrary 
configuration (Ciric and Cooray 2000). Mackowski et al. (2011) and Mackowski 
(2014) have extended the MSM and STMM to the general case of externally ag-
gregated and/or nested spherical components potentially made of optically active 
materials. 

Detailed reviews of the MSM and STMM can be found in Fuller and Mack-
owski (2000), Borghese et al. (2007), Quinten (2011), and Mackowski (2012).  

16.1.4  Finite element method 

The finite element method (FEM) is a differential equation technique that yields 
the scattered field by means of solving numerically the vector Helmholtz equa-
tions (4.8) and (4.9) subject to the standard boundary conditions. The particle is 
imbedded in a finite computational domain discretized into many cells, with 
about 10 to 20 cells per wavelength. The electric field values are specified at the 
nodes of the cells and are initially unknown. Using the boundary conditions, the 
differential equations are converted into matrix equations for the unknown node 
field values. The latter are solved using the standard Gaussian elimination or pre-
conditioned iterative techniques such as the conjugate gradient method. Although 
scattering in the far zone is an open-space problem, the FEM is always imple-
mented in a finite computational domain in order to limit the number of un-
knowns. Therefore, artificial absorbing boundary conditions must be imposed at 
the outer boundary of the computational domain in order to suppress wave re-
flections back into the domain and permit the numerical analogs of the outward-
propagating wave to exit the domain, almost as if the latter were infinite.  

The FEM can be applied to arbitrarily shaped and inhomogeneous particles, 
and is simple in concept and software implementation. However, FEM computa-
tions are spread over the entire computational domain rather than confined to the 
scatterer itself, thereby making the technique slow and limited to size parameters 
smaller than about 20. The finite spatial discretization and the artificial absorbing 
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boundary condition limit the accuracy of the method. Further information about 
the FEM can be found in the monographs by Silvester and Ferrari (1996), 
Volakis et al. (1998), and Jin (2002).    

16.1.5  Finite difference time domain method 

Unlike the FEM, the finite difference time domain method (FDTDM) yields the 
solution of the electromagnetic scattering problem in the time domain by directly 
solving the Maxwell time-dependent curl equations (2.2) and (2.4) (Yee 1966). 
The space and time derivatives of the electric and magnetic fields are approx-     
imated using a finite difference scheme with space and time discretizations se-
lected so that they constrain computational errors and ensure numerical stability 
of the algorithm. Since the scattering object is imbedded in a finite computational 
domain, absorbing boundary conditions are employed to model scattering in the 
open space. Modeling scattering objects with curved boundaries using rectang-  
ular grid cells causes a staircasing effect and increases numerical errors, espec-
ially for objects with large relative refractive indices. Since FDTDM yields the 
near field in the time domain, a special near-zone to far-zone transformation must 
be invoked in order to compute the scattered far field in the frequency domain.  

The FDTDM shares the advantages of the FEM, as well as its limitations in 
terms of accuracy and size parameter range. Additional information on the 
FDTDM and its applications can be found in the books by Kunz and Luebbers 
(1993), Taflove and Hagness (2005), and Inan and Marshall (2011), as well as in 
the review by Yang and Liou (2000). A promising variant of the FDTDM, called 
the pseudo-spectral time domain method, is described in Panetta et al. (2013) and 
references therein.     

16.1.6  Point-matching method 

The point-matching method (PMM) is a differential equation technique based on 
expanding the incident and internal fields in VSWFs regular at the origin of the 
object-centered coordinate system and expanding the scattered field outside the 
object in outgoing VSWFs. The expansion coefficients of the incident field are 
computed analytically, whereas the coefficients of the internal and scattered 
fields are found by truncating the expansions to a finite size and matching the 
fields at the surface of the object via the application of the boundary conditions. 
In the simple PMM, the fields are matched at as many points on the surface as 
there exist unknown expansion coefficients (Oguchi 1973). The simple PMM 
often produces poorly converging and unstable results, which some attribute to 
the fact that it explicitly relies on the so-called Rayleigh hypothesis. The latter 
states that the scattered field can be expanded in the outgoing VSWFs even in the 
volume bounded by the surface of the object and the smallest circumscribing 
sphere (Kahnert 2003; Rother and Kahnert 2014).  
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The convergence problem of the simple PMM appears to be partly amelio-
rated in the generalized PMM (GPMM) by creating an overdetermined system of 
equations for the unknown coefficients by means of matching the fields in the 
least squares sense at a number of surface points significantly greater than the 
number of unknowns (Morrison and Cross 1974). The performance of the 
GPMM is further improved by employing multiple spherical expansions to de-
scribe the fields both inside and outside the scattering object. This multiple-     
expansion GPMM (ME-GPMM) does not rely on the Rayleigh hypothesis and is 
otherwise known as the generalized multipole technique, discrete sources 
method, and Yasuura method (Wriedt 1999; Doicu et al. 2000).    

16.1.7  Volume integral equation methods 

As we have seen in Section 4.3, the interaction of the electromagnetic field with 
an object of volume INTV  is fully described by the VIE (4.23). The calculation of 
the total and scattered fields using Eqs. (4.22) and (4.23) would be straightfor-
ward except that the internal electric field is unknown. Therefore, this equation 
must first be solved for the internal field. The integral in Eq. (4.23) is approxi-
mated by discretizing the interior region into N cubic cells of a volume ΔV, with 
about 10 to 20 cells per wavelength and assuming that the electric field and the 
refractive index within each cell are constant: 
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where INTVi ∈r  is the central point of the ith cell. Equations (16.15) form a sys-
tem of N linear algebraic equations for the N unknown internal fields )( irE  and 
are solved numerically. Once all internal fields )( irE  are found, the scattered 
field is determined from 
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This version of the volume integral equation method (VIEM) is known as the 
method of moments (MOM). Since the free space dyadic Green’s function be-
comes singular as ,0  || →′− rr  special techniques must be used to handle the 
self-interaction term ( j = i) in the sum on the right-hand side of Eq. (16.15). The 
straightforward approach to solving the MOM matrix equation using the standard 
Gaussian elimination is not practical for size parameters exceeding unity. The 
conjugate gradient method, together with the fast Fourier transform (Peterson et 
al. 1998), can be applied to significantly larger size parameters and substantially 
reduces computer memory requirements. The standard drawback of using a pre-
conditioned iterative technique is that computations must be fully repeated for 
each new incidence direction.  
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Another version of the VIEM is the so-called discrete dipole approximation 
(DDA). Whereas the MOM deals with the actual electric fields in the central 
points of the cells, the DDA exploits the concept of exciting fields and is based 
on partitioning the particle into a number N of elementary polarizable units called 
dipoles. The electromagnetic response of the dipoles to the local electric field is 
assumed to be known. The field exciting a dipole is a superposition of the exter-
nal field and the fields scattered by all the other dipoles. This allows one to write 
a system of N linear equations for N fields exciting the N dipoles. The numerical 
solution of the DDA matrix equation is then used to compute the N partial fields 
scattered by the dipoles and thus the total scattered field. Although the original 
derivation of the DDA by Purcell and Pennypacker (1973) was heuristic, Lak-
htakia and Mulholland (1993) showed that the DDA can be derived from Eq. 
(4.23) and is closely related to the MOM.  

The major advantages of the MOM and the DDA are that they automatically 
satisfy the radiation condition (4.7) at infinity, are confined to the scatterer itself, 
thereby resulting in fewer unknowns than the differential equation methods, and 
can be applied to inhomogeneous, anisotropic, and optically active scatterers. 
However, the numerical accuracy of the methods is relatively low and improves 
slowly with increasing N, whereas the computer time grows rapidly with increas-
ing particle size relative to the wavelength. Another disadvantage of these tech-
niques is the need to repeat the entire calculation for each new direction of inci-
dence. Further information on the MOM and DDA, as well as on their software 
implementations and applications, can be found in Miller et al. (1991), Draine 
and Flatau (1994, 2012), and Yurkin and Hoekstra (2007, 2011).  

Equation (4.23) is a Fredholm-type integral equation with a singular kernel at 
. rr =′  Holt et al. (1978) removed the singularity by applying the Fourier trans-

form to the internal field and converting the volume integral into an integral in 
the wave number coordinate space. Discretization of the latter integral results in a 
matrix equation that is solved numerically and gives the scattered field. A limit-
ation of this Fredholm integral equation method (FIEM) is that the matrix ele-
ments must be evaluated analytically, thereby requiring different programs for 
each shape and restricting computations to only a few models, such as spheroids, 
triaxial ellipsoids, and finite circular cylinders. The majority of reported FIEM 
computations pertain to size parameters smaller than five and tend to be rather 
time consuming (Holt 1982).  

16.1.8  T-matrix method 

The T-matrix method (TMM) was proposed by Waterman (1971) and in some 
sense is a direct generalization of the LMT. Consider the scattering of a plane 
electromagnetic wave 
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by an arbitrary finite scattering object in the form of a single particle or a fixed 
aggregate. The incident and scattered fields are expanded in VSWFs as follows: 
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where >r  is the radius of the smallest circumscribing sphere of the scatterer, as 
shown in  Fig. 16.1. The mathematical properties of the VSWFs appearing in 
Eqs. (16.18) and (16.19) are well known. The functions mnMRg  and mnNRg  are 
regular (finite) at the origin, while the use of the outgoing functions mnM  and 

mnN  in Eq. (16.19) is consistent with the radiation condition (4.7) in that it en-
sures that the transverse component of the scattered electric field decays as ,1 r  
whereas the radial component decays faster than ,1 r  with →r ∞.  

The expansion coefficients of the incident plane wave are given by simple 
analytical expressions. Owing to the linearity of the MMEs and constitutive rela-
tions, the relation between the scattered-field expansion coefficients pmn and qmn 
on the one hand and the incident-field expansion coefficients amn and bmn on the 
other hand must be linear and is given by the transition matrix T as follows: 
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In compact matrix notation,  

>  
r

O

 
Fig. 16.1.  Cross section of an arbitrarily shaped, finite scattering object. r> is the 
radius of the smallest circumscribing sphere centered at the origin O of the 
laboratory coordinate system.  
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which means that the column vector of the expansion coefficients of the scattered 
field is obtained by multiplying the T matrix and the column vector of the expan-
sion coefficients of the incident field. 

Equation (16.22) is the cornerstone of the TMM. Indeed, if the T matrix is 
known then one can find the scattered field everywhere outside the smallest cir-
cumscribing sphere of the object, including the far zone. A fundamental feature 
of the TMM is that the T matrix depends only on the physical and geometrical 
characteristics of the scattering particle (such as particle size relative to the wave-
length, morphology, relative refractive index, and orientation with respect to the 
laboratory reference frame) and is completely independent of the propagation 
directions and polarization states of the incident and scattered fields. This means 
that the T matrix need be computed only once and then can be used in calcula-
tions for any directions of incidence and scattering and for any polarization state 
of the incident field. 

The TMM was initially developed by Waterman (1971) for a single homo-
geneous object and was generalized to a multi-layered scatterer and an arbitrary 
cluster of nonspherical particles by Peterson and Ström (1973, 1974) and Litvi-
nov and Ziegler (2008). For a spherically symmetric object, all TMM formulas 
reduce to those of the LMT owing to the fact that the T matrix becomes diagonal 
according to the identities 

 ,0    ,0 2112 ≡≡ ′′′′ nmmnnmmn TT  (16.23) 

                                            ,11
nnnmmnmmn bT ′′′′ −= δδ  (16.24) 

                                            ,22
nnnmmnmmn aT ′′′′ −= δδ  (16.25) 

where mnδ  is the Kronecker delta (F.6). For a cluster composed of spherical 
components, the TMM reduces to the STMM described in Section 16.1.3.  

The decisive advantage of the TMM is the use of special functions, with well 
known and convenient mathematical properties. As a consequence, the T matrix 
possesses a number of general analytical properties, the most important of which 
being the rotation and translation transformation rules. 

Let us first consider a fixed laboratory coordinate system L and a coordinate 
system P affixed to the object. Both coordinate systems have a common origin 
inside the object. Let the Euler angles γβα and,, (see Appendix C) transform 
the coordinate system L into the coordinate system P. Then it can be shown 
(Tsang et al. 1985) that 
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n
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where )iexp()()iexp(),,( ββαγβα mdmD n
mm

n
mm ′−−= ′′  are Wigner D functions.  
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Analogously, consider the same scattering problem in two coordinate sys-
tems that have identical spatial orientations but different origins. Let the vector 
r21 connect the origin of coordinate system 1 and that of coordinate system 2. 
Then the respective Т matrices are expressed in terms of one another by the fol-
lowing linear relationship: 
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(MTL1). The matrices on both sides of the Т matrix on the right-hand side of Eq. 
(16.27) consist of coefficients that afford an efficient numerical computation.   

The relation (16.26) allows one to drastically simplify the averaging of far-
field observables over orientations of the scattering object (Section 13.9) by do-
ing most of the work analytically (Mishchenko 1991a; Khlebtsov 1992). For ex-
ample, the extinction cross section averaged over the uniform orientation distri-
bution of a nonspherical particle having a plane of symmetry is given by the fol-
lowing remarkably simple formula (MTL1): 

 .)]P()P([Re2 2211
2
1

oext ∑ +−=〉〈
mn

mnmnmnmn TT
k

C π  (16.28) 

The corresponding formula for the orientation average of the scattering cross sec-
tion is hardly more complicated: 
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where, again, the orientation distribution function is assumed to be given by Eq. 
(15.5). Analytical averaging of the phase matrix over orientations is also possible 
(MTL1, Mackowski and Mishchenko 1996). This approach has been found to be 
much more efficient than the direct numerical integration over the Euler angles 
according to Eq. (13.122), and helps reduce the requisite computer time by a fac-
tor of 50–200.  

The computation of the Т matrix for a scattering object in the form of a sim-
ple single-body particle is usually based on the so-called extended boundary con-
dition method (EBCM) which was developed by Waterman (1971) and explicitly 
avoids the use of the Rayleigh hypothesis. The Т matrix )P(T  is expressed as      
– , )Rg( 1−QQ  where the elements of the matrices Q  and QRg  are obtained    
numerically by integrating vector products of VSWFs over the object’s surface 
using an appropriate quadrature formula (see Appendix E).  

EBCM imposes no fundamental restrictions on particle shape, although com-
putations become simpler and more efficient for bodies of revolution. Recent 
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Plate 1.1.  (a) A 60-μm-radius glycerol droplet levitated in a quadrupole meso-trap and 
illuminated by a 488-nm-wavelength laser beam (after Arnold et al. 1995).  (b) A liquid-
water cloud.  (c) A jet-engine condensation trail cloud (after E. Wiebe, http://climate. 
uvic.ca, assessed November 2013).  (d) A suspension of  ~10-μm-radius polymethyl 
methacrylate spherical particles in a hydrophobic liquid (after Snabre and Pouligny 
2008).  (e) A fresh snow surface (after Peltoniemi et al. 2009).  (f) A powder surface com-
posed of feldspar particles (after Shkuratov et al. 2006).      
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Plate 1.2.  Current quantitative understanding of the energy budget of the terrestrial at-
mosphere–surface system. 
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Plate 1.3.  Electromagnetic spectrum in the order of increasing frequency πων 2=  or 
increasing wavelength ,νλ c=  where c is the speed of ligh in a vacuum.    
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Plate 11.1.  (a) Hypothetical directional meter of electromagnetic energy flow.  (b) Basic 
optical scheme of a well-collimated radiometer.  (c) The conventional WCR does not re-
spond to the Poynting vector directed along the optical axis of the instrument.  (d) En-
trance pupil.  (e) A lens focuses an incident plane wave by introducing a phase shift that 
varies quadratically with radial distance from the optical axis.  (f ) Basic optical scheme of 
a panoramic (imaging) radiometer. 



 Color plates 

 
 
 

  
 

 

0 60 120 180
0

10

20

30

40

  −100 −50 0 50 100     

Scattering angle (deg)

Si
ze

 p
ar

am
et

er

− b1 a1 (%)  
Plate 17.1.  Low-resolution color image of the ratio 11 ab−  for a homogeneous spherical 
particle with a relative refractive index m = 1.4.      
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Plate 17.2.  (a) As in Plate 17.1, but using a finer sampling resolution.  (b) High-resolution 
color images of the ratio 11 ab−  in the neighborhood of the super-narrow resonance cen-
tered at x 38.9983 for mR = 1.4. The panels from left to right correspond to four in-
creasing values of the imaginary part of the relative refractive index: mI = 0, 10–6, 10–5, 
and 10–4. 
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Plate 17.3.  The signed degree of linear polarization PQ of scattered light for unpolarized 
incident light computed for monodisperse and polydisperse spheres and spheroids in 
fixed and random orientations (see text).  
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Plate 17.4.  Color images of the ratio 11 ab−  for homogeneous spherical particles with 
m = 1.44 and veff = 0 (the value for a monodisperse sphere), 0.01, 0.7, and 0.02.  
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Plate 17.5.  (a) Full-color numerical simulation for 400-μm-radius water drops superim-
posed on a photograph of the primary and secondary rainbows.  (b) A beautiful glory pho-
tographed from San Francisco’s Golden Gate Bridge and caused by swirling fog above 
cold water.  (c) Full-color numerical simulation of scattering of sunlight by 4.8-μm-radius 
water drops superimposed on a photograph of a glory taken from a commercial aircraft. 
(After Mishchenko and Travis (2008); images courtesy of P. Laven (a,c) and L. Zinkova 
(b)).  
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Plate 17.6.  (a) Normalized extinction versus volume-equivalent-sphere size parameter for a 
monodisperse sphere and monodisperse randomly oriented prolate spheroids with differ-
ent semi-axis ratios a/b and a fixed relative refractive index of 1.4.  (b, c) Demonstration of 
the statistical approach (see text). 
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Plate 17.7.  (a) Linear depolarization ratio versus effective surface-equivalent-sphere size 
parameter for polydisperse, randomly oriented ice spheroids with aspect ratios ranging 
from 1.05 to 2.6 and circular cylinders with various length-to-diameter (L/D) or diameter-
to-length (D/L) ratios (see text).  (b) Fit of theoretical computations to the results of labo-
ratory measurements of the backscattering linear depolarization ratio (see text).  
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Plate 18.1.  (a) Imaginary spherical scattering volume V filled with N randomly positioned 
particles.  (b) Interference origin of speckle.  (c) Two random realizations of the N = 80 
particulate volume.  (d) Forward-scattering interference.  (e) Interference origin of weak 
localization.  (f) Interference origin of the diffuse background.  (g) A pair of particle se-
quences contributing to the time-averaged diffuse background.  (h) A pair of particle se-
quences contributing to time-averaged weak localization.      
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Plate 18.2.  Elements of the normalized Stokes scattering matrix computed for a k1R = 40 
spherical volume of discrete random medium uniformly populated by N = 1, …, 240 part-
icles with k1r = 4 and m = 1.32.   
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Plate 18.3.  Scattering properties of a spherical volume of discrete random medium (see 
text).  (a, b) k1R = 40, k1r = 4, and m = 1.32. N varies from 1 to 240.  (c, d) N = 8, k1r = 4, 
and m = 1.32. k1R varies from 12 to 72.  (e, f) k1R = 40, N = 240, k1r = 4, and m = 1.32.   
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Plate 18.4.  Polarization characteristics of backscattered light computed for a k1R = 40 
spherical volume of discrete random medium uniformly populated by N = 1, …, 240 part-
icles with k1r = 4 and m = 1.32. 
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Plate 20.1.  Left-hand column: reflected specific intensity (in )srmW 12 −−  versus μ  and ϕ  
for a semi-infinite slab composed of model 1 spherical particles. The four values of minus 
the cosine of the illumination zenith angle ,9.00 =μ 0.7, 0.4, and 0.1 are indicated by the 
yellow stars in the right-hand column. The azimuth angle of the unpolarized incident 
beam is zero and its intensity is .Wm 2

0
−= πI  Central column: as in the left-hand col-

umn, but for the asymmetry-parameter-equivalent HG phase function. Right-hand col-
umn: the ratio of the specific intensities shown in the central and left-hand columns. 
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Plate 21.1.  Backscattering enhancement factor Iζ  versus 0μ  and effective size parameter 
xeff for a homogeneous semi-infinite slab populated by polydisperse spherical particles 
with mR = 1.2, 1.4, 1.6, 1.8, and 2 and mI = 0, 0.002, 0.01, and 0.3. 
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Plate 21.2.  As in Plate 21.1, but for the percentage error .ζδ  The values of ζδ  for mI = 
0.3 (not shown) do not exceed 6%.
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work has demonstrated the applicability of the EBCM to particles without axial 
symmetry (e.g., Kahnert 2013a,b). The computation of the T matrix for a cluster 
assumes that the T matrices of all components are known and is based on the use 
of the translation addition theorem for the VSWFs (Peterson and Ström 1973).    

The numerical computation of the Т matrix using the EBCM becomes prob-
lematic if the vector products of VSWFs vary over the particle surface by orders 
of magnitude, thereby resulting in loss of numerical accuracy. The numerical in-
version of the matrix Q  is an ill-posed problem and can also be unstable. How-
ever, as described in MTL1, efficient ways of improving the convergence of 
EBCM calculations are the following:  
● the computation of the elements of the matrix Q  and its inverse using ex-

tended-precision FORTRAN variables (real variables of the type REAL*16 
and complex variables of the type COMPLEX*32);  

● the inversion of the matrix Q  using a special version of the so-called LU 
factorization procedure.  

Despite their simplicity, these recipes have helped increase the range of applica-
tions of the EBCM quite dramatically. Furthermore, a simple procedure de-
scribed in MTL1 allows one to control automatically the convergence of compu-
tations upon increasing the size of the T matrix in unit steps, which makes EBCM 
computer calculations even more efficient. Other ways of improving the num-
erical stability of TMM computations have recently been proposed by Bi et al. 
(2013a), Somerville et al. (2013), and Volkov et al. (2013).  

Figure 16.2 gives examples of particle morphologies that can be treated using 
various implementations of the TMM (including the STMM). The loss of 
efficiency for particles with large aspect ratios or with shapes lacking axial sym-
metry is the main drawback of the EBCM. The main advantages of the TMM are 
high accuracy and speed coupled with applicability to particles with equivalent-
sphere size parameters exceeding 100 (see, e.g., MTL1 and Bi et al. (2013a,b)). 
Further information on the TMM, STMM, and EBCM, as well as on their 
modifications, generalizations, and applications can be found in the comprehen-
sive T-matrix reference database maintained by the author and his colleagues (see 
Mishchenko et al. (2013a) and references therein). 

A representative collection of public-domain T-matrix computer programs is 
available at http://www.giss.nasa.gov/staff/mmishchenko (assessed November 
2013). These programs can be used in computations for axially symmetric ob-
jects and clusters of spherical monomers and have been thoroughly tested against 
SVM and independent MSM results. Very high numerical accuracy of the Т-
matrix codes has been used to generate benchmark results with five and more 
accurate decimals that can be used for testing other numerically exact and ap-
proximate approaches (MTL1). Extensive timing tests have shown that the num-
erical efficiency of these codes is unparalleled, especially in computations for 
randomly oriented particles. 
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16.1.9  Pros and cons of numerically exact computer solvers of the MMEs 

The only methods yielding benchmark accuracy for objects comparable to and 
larger than a wavelength are the SVM, MSM, STMM, and TMM. The SVM, 
TMM, MSM, STMM, and ME-GPMM have been used extensively in computa-
tions for objects with size parameters exceeding ∼50. The first four techniques 
appear to be the most efficient in application to bodies of revolution. The analyt-
ical averaging procedure makes the TMM the most efficient technique for non-
spherical objects with a uniform distribution of orientations. Objects with ex-
treme aspect ratios can be treated with the SVM, the so-called iterative EBCM, 
otherwise known as the null-field method with discrete sources (Doicu et al. 
2006), the invariant-imbedding TMM (Bi et al. 2013a), and the ME-GPMM. 
Computations for anisotropic objects and homogeneous and inhomogeneous ob-
jects lacking rotational symmetry often have to rely on more flexible techniques, 
such as the FEM, FDTDM, MOM, and DDA. These techniques are simple in 
concept and computer implementation and have comparable performance charac-
teristics, although their simplicity and flexibility are often accompanied by lower 
efficiency and accuracy and by stronger practical limitations on the maximal size 
parameter. A comprehensive collection of computer programs based on a variety 
of numerically exact computer solvers of the MMEs is posted at http://www. 
scattport.org (assessed December 2013). 
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Fig. 16.2.  Examples of object morphologies that can be treated with the TMM 
and the STMM (after Wriedt (2002), Penttilä and Lumme (2004), and Kahnert 
(2013a)).  



 Computations and measurements of electromagnetic scattering 225 

16.2  Geometrical optics approximation 

The practical importance of approximate approaches to electromagnetic scatter-
ing diminishes as various numerically exact techniques mature and become ap-
plicable to a wider range of problems, while computers become ever more pow-
erful. However, it is likely that at least one approximation, the so-called geomet-
rical optics method (GOM), will not become obsolete in the foreseeable future 
because in many cases its accuracy only improves as the object’s size parameter 
grows, whereas all numerically exact techniques cease to be practical when the 
size parameter of a nonspherical object exceeds a certain threshold.  

The GOM is a purely phenomenological methodology for computing far-
field scattering by an arbitrarily shaped object with a size much larger than the 
wavelength (Liou et al. 2000; Yang and Liou 2006). The GOM is sometimes 
characterized as an asymptotic solution of the MMEs in the limit k1Dmin →∞, 
where Dmin is the smallest dimension of the object, although this characterization 
is generally incorrect. In the case of scattering by a perfect homogeneous sphere, 
many features of the GOM can be justified, at least partially, by studying the be-
havior of the Lorenz–Mie solution in the limit k1r →∞, where r is the sphere 
radius (see, e.g., Grandy (2000), Adam (2002), and references therein). However, 
the availability and great numerical efficiency of the numerically exact LMT 
limit the practical usefulness of the GOM in the particular case of a spherically 
symmetric object, thereby making the GOM most useful in application to non-
spherical objects. In this general case, however, the GOM has never been derived 
directly from the MMEs by evaluating the limit k1Dmin →∞. Instead, it remains a 
motley collection of intuitively appealing concepts, formulas, and recipes just-   
ified only by “simple physical considerations.” Given the mathematical complex-
ity of the general scattering problem, this situation is unlikely to change any time 
soon. 

In the framework of the GOM, it is assumed that the incident plane electro-
magnetic wave can be represented as a “collection of independent parallel rays.” 
The history of each ray impinging on the object’s surface is traced separately us-
ing Snell’s law and Fresnel’s formulas (see Fig. 16.3). Each incident ray is part-
ially reflected and partially refracted into the particle. The refracted ray may 
emerge after another refraction, possibly after one or more internal reflections, 
and may be attenuated by absorption inside the object. Each internal ray is traced 
until its intensity decreases below a prescribed cutoff value. Varying the polar-   
ization state of the incident rays, sampling all escaping rays into predefined nar-
row angular bins, and adding “incoherently” the respective Stokes parameters 
yields a quantitative representation of the object’s scattering properties in terms 
of the ray-tracing phase matrix ZRT. Because all rays impinging on the object’s 
surface are either scattered or absorbed irrespective of their polarization state, the 
ray-tracing extinction matrix is always diagonal and is given by ,    RT

ext
RT ΔK C=  

where, as before, Δ is the 4×4 unit matrix. The corresponding ray-tracing ex-
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tinction cross section RT
extC  does not depend on the polarization state of the inci-

dent wave and is equal to the geometrical area G of the object’s projection on the 
plane perpendicular to the incidence direction. Since the presence of the object 
modifies the incident plane wave front by eliminating a part that has the shape 
and size of the geometrical projection of the object, the ray-tracing scattering pat-
tern is supplemented by the computation of Fraunhofer diffraction of the incident 
wave on the object’s projection. The diffraction component of the phase matrix 
ZD is confined to a narrow angular cone centered at the exact forward-scattering 
direction and is usually computed in the Kirchhoff approximation (Jackson 
1998), thereby contributing only to the diagonal elements of the total phase mat-
rix. The diffraction component KD of the total extinction matrix is equal to KRT. 
We thus have 

 ,     D
11

RTDRTGO ΔZZZZ Z+=+=  (16.30) 

                                      , GO
ext

DRTGO ΔKKK C=+=  (16.31) 
where  
 .2  D

ext
RT
ext

GO
ext GCCC =+=  (16.32) 

The total scattering cross section is the sum of the ray-tracing and diffraction 
components:  
 . D

sca
RT
sca

GO
sca CCC +=  (16.33) 
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Fig. 16.3.  Ray-tracing diagram. 
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Since the diffracted energy is not absorbed, the diffraction scattering cross sec-
tion is equal to the diffraction extinction cross section: 

 .  D
ext

D
sca GCC ==  (16.34) 

The ray-tracing scattering cross section RT
scaC  is found from ZRT and Eq. (13.85).  

GOM calculations are particularly straightforward for spheres because the 
ray paths always remain in a plane, thereby simplifying the ray-tracing part of the 
computation, while the diffraction component of the phase matrix is given by a 
closed-form analytical formula  
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where x = k1r is the size parameter, )ˆˆ(arccos incsca nn ⋅=Θ  is the scattering angle, 
and )(1 zJ  is the Bessel function of order unity. Figure 16.4 shows the quantity 

2
1 ])sin()sin(2[ ΘΘ xxJ  as a function of .sinΘx  It is seen that for x 1 essent-

ially all the diffracted light is confined within an angular cone of half-width 
Θ ≈ .7 x  

The main advantage of the GOM is that it can be applied to essentially any 
shape. However, this technique is heuristic by design, and its range of applicabil-
ity in terms of the smallest size parameter must be thoroughly checked by com-
paring GOM results with numerically exact solutions of the MMEs. As an exam-
ple, Fig. 16.5 depicts the results of GOM and Lorenz–Mie computations of the 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x  sin

[2
 J

1
(x

 si
n

)  
 (

x
 si

n
)  ]

2

Θ

Θ
Θ

 
Fig. 16.4.  Angular distribution of diffracted intensity. 
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phase function )(1 Θa  for nonabsorbing homogeneous spheres with relative re-
fractive indices m = 1.33 and 1.53 and size parameters x = 40, 160, and 600. The 
computations were performed using the ray-tracing code described by Macke and 
Mishchenko (1996) and the Lorenz–Mie code described in Section 5.10 of 
MTL1. The Lorenz–Mie results were averaged over a narrow size distribution 
given by Eq. (15.108), with b = 0.07, so that x represents the effective size pa-
rameter k1reff , where reff is the effective radius defined by Eq. (15.110). The ray-
tracing and diffraction components of the GOM phase functions were averaged 
over 1°-wide angular bins. It is clear that the GOM phase-function results for 
spheres become reasonably accurate only at size parameters exceeding several 
hundred. Furthermore, the GOM fails to reproduce the strong backscattering peak 
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Fig. 16.5.  Phase function a1(Θ ) versus scattering angle Θ computed with the 
GOM and the LMT for homogeneous spheres with relative refractive indices 
m = 1.33 and 1.53 and size parameters x = 40, 160, and 600.  The vertical axis 
scale applies to the curves with x = 600, the other curves being successively 
displaced upward by a factor of 100. (After Hansen and Travis 1974.) 
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observed for spheres with m = 1.33 and usually associated with so-called “sur-
face waves” (see Section 17.2).  

Shown in Fig. 16.6 are the results of GOM and T-matrix computations of the 
phase function for monodisperse, randomly oriented circular cylinders with a 
diameter-to-length ratio of unity, relative refractive index m = 1.311, and surface-
equivalent-sphere size parameters xs varying from 40 to 180; Fig. 16.7 depicts all  
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Fig. 16.6.  GOM and T-matrix phase functions for monodisperse, randomly or-
iented circular cylinders with surface-equivalent-sphere size parameters xs = 
40, 80, 120, and 180. 
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elements of the normalized Stokes scattering matrix for xs = 180. The small-
amplitude ripple in the T-matrix curves is caused by interference effects charact-
eristic of monodisperse particles and can be eliminated by averaging over a nar-
row size distribution (cf. Fig. 16.5). The curves in Figs. 16.6 and 16.7 seem to 
suggest that GOM results for a nonspherical particle in random orientation may 
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Fig. 16.7.  Elements of the normalized Stokes scattering matrix for monodis-
perse, randomly oriented circular cylinders with a surface-equivalent-sphere 
size parameter xs = 180. 
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be somewhat more accurate for a given size parameter than those for a surface-
equivalent sphere. However, it is clear that although the main geometrical optics 
features can be qualitatively reproduced by particles with size parameters less 
than 100, obtaining good quantitative accuracy in GOM computations of the scat-
tering matrix for nonspherical particles still requires size parameters exceeding a 
few hundred. 

Besides the simple version of the GOM based on the combination of the 
Snell–Fresnel ray tracing with diffraction on the object’s projection, several 
more sophisticated versions of the GOM have been proposed, such as the geo-
metrical theory of diffraction (e.g., Borovikov and Kinber 1994; James 2007) and 
the so-called physical optics approximation (e.g., Muinonen 1989; Mazeron and 
Muller 1996; Yang and Liou 1996, 2006; Borovoi 2013). In particular, the latter 
is based on expressing the far-zone scattered field in terms of the electric and 
magnetic fields on the exterior side of the object’s surface, computed approxi-
mately using Fresnel’s formulas and the standard ray-tracing procedure. Both 
approaches partially preserve the phase information and account for some physi-
cal optics effects completely ignored by the standard GOM. Like with any heu-
ristic approach, the range of applicability of these and similar techniques is not 
well defined, and their accuracy should be thoroughly evaluated by comparing 
approximate results with those obtained by running numerically exact computer 
solvers of the MMEs. Further details can be found in the recent review by Bi and 
Yang (2013).   

16.3  Controlled laboratory measurements 

The majority of existing laboratory techniques are implementations of the general 
measurement strategy depicted in Figs. 13.1 and 14.3. Usually they fall into one 
of two broad categories:  
● Scattering of visible or infrared light by particles with sizes ranging from 

tens of nanometers to several hundred micrometers. The particles can be 
electrostatically or optically levitated or are streaming through the measure-
ment volume.  

● Microwave scattering by fixed millimeter- and centimeter-sized objects.   
Measurements in the visible and infrared spectral ranges benefit from the avail-
ability of sensitive detectors, intense sources of radiation, and high-quality opt-
ical elements. They involve cheaper and more portable instrumentation (e.g., Fig. 
1.6c) and can be performed in the field, as well as in the laboratory. However, 
they become problematic when experimental data for a fixed scattering object are 
needed and may be difficult to interpret because of lack of independent informa-
tion on sample microphysics and composition. Microwave scattering experiments 
require more cumbersome and expensive instrumentation and large measurement 
facilities (e.g., Fig. 1.6d), but allow full control over the scattering object. 
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16.3.1  Measurements in the visible and infrared 

In order to measure all 16 elements of the scattering matrix, one must use various 
optical elements that can alter the polarization state of light before and after scat-
tering in a controllable way (see Chapter 12). Figure 16.8 (adapted from Hove-
nier (2000)) depicts the scheme of an advanced laboratory setup used to measure 
scattering matrix elements for small random groups of natural and artificial part-
icles at visible or infrared wavelengths. The light beam generated by a laser 
passes through a linear polarizer and a polarization modulator and then illum-
inates particles contained in the scattering chamber. The modulator is intended to 
introduce a sinusoidal modulation in time of the polarization of light before scat-
tering. Light scattered by the particles at an angle Θ relative to the incidence di-
rection passes a quarter-wave plate (i.e., a retarder increasing the phase of one 
linear-polarization component by 2π  relative to the other) and another polarizer 
(called a polarization analyzer), after which its intensity is measured by a detect-
or. Assuming that the scattering volume satisfies the criteria of applicability of 
the FOSA discussed in Chapter 14, we can write for the Stokes column vector of 
the beam reaching the detector the following expression:  

 I′  ∝ ,);( IPMFQA ξξΘ 〉〈N  (16.36) 

where I is the Stokes column vector of the beam leaving the light source, A, Q, 
M, and P are 44 ×  Mueller matrices of the analyzer, quarter-wave plate, modula-
tor, and polarizer, respectively, N is the number of particles contributing to the 
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Fig. 16.8.  Schematic view of a polarimetric nephelometer using visible light. 
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scattered field, and ξξΘ 〉〈 );(F  is the scattering matrix of the virtual FOSA part-
icle averaged over particle microphysical states. It is assumed in Eq. (16.36) that 
the plane through the incidence and scattering directions serves as the reference 
plane for defining the Stokes parameters. The Mueller matrices of the polarizer, 
modulator, quarter-wave plate, and analyzer depend on their orientation with re-
spect to the scattering plane and can be precisely varied. Because the detector 
measures only the first element of the Stokes column vector ,I′  several measure-
ments with different orientations of the optical components with respect to the 
scattering plane are required for the full determination of the scattering matrix. 
This procedure is repeated at different scattering angles to determine the angular 
profile of the scattering matrix. 

The technique of the high-frequency sinusoidal modulation in time of the po-
larization of light before scattering, combined with intensity normalization, was 
developed by Hunt and Huffman (1973). When followed by lock-in detection, 
this technique can be used to increase the experimental accuracy by enabling di-
rect measurements of the scattering matrix elements normalized by the (1, 1) 
element and provides the capability to determine several elements from only one 
detected signal. 

A major advantage of measurements at visible and infrared wavelengths is 
that they can deal with real (natural or artificial) particle ensembles. However, 
they may suffer from the lack of detailed independent characterization of the part-
icle size and shape distributions and relative refractive index, thereby potentially 
making comparisons of experimental and theoretical results problematic. The 
number of particles N contributing to the scattering signal is also seldom known 
and can, in fact, fluctuate, which precludes the absolute measurement of the (1, 1) 
element of the matrix ξξΘ 〉〈 );(F  (measurements of elements other than the (1, 1) 
element are usually reported in the form of N-independent ratios of the elements 
to the (1, 1) element).  

Another drawback is that the arrangement of the source of light and the de-
tector usually precludes measurements at scattering angles Θ close to 0° and 
180°. For example, the setup described by Hovenier (2000) has the range of scat-
tering angles [5°, 175°], while the angular range of the more recent instrument 
developed by Muñoz et al. (2010) is [3°, 177°]. As a consequence, experimental 
values of the (1, 1) element are often normalized to the value at a fixed scattering 
angle (e.g., 30°).  

Muñoz et al. (2012) describe an extensive light scattering database created 
over the past two decades with similar polarimetric nephelometers built in Am-
sterdam and Granada.   

16.3.2  Measurements at microwave frequencies 

In accordance with the scale invariance rule discussed in Sections 5.5 and 13.2, 
the main idea of the microwave analog technique is to manufacture a centimeter-
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sized scattering object with desired shape and refractive index, measure the scat-
tering of a microwave beam by this object, and finally extrapolate the measured 
phase matrix elements to other wavelengths (e.g., visible or infrared) by keeping 
the ratio size/wavelength fixed. In a modern microwave scattering setup (see Fig. 
16.9), radiation from a transmitting conical horn antenna passes through a col-
limating lens and a polarizer. The lens produces a nearly flat wavefront, which is 
scattered by an analog particle model target. The scattered spherical wave passes 
through another polarizer and lens and is measured by a receiving horn antenna. 
The receiver end of the setup can be positioned at any scattering angle from 0° to 
Θmax≈ 170°, thereby providing measurements of the angular distribution of the 
scattered radiation. By varying the orientations of the two polarizers, one can 
measure all elements of the scattering matrix. 

Microwave measurements allow coverage of a wide range of scattering an-
gles, including the exact forward direction, and a much greater degree of control 
over the target size, shape, and orientation than measurements at visible or infra-
red wavelengths. Using special techniques, even the extinction matrix can be 
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Fig. 16.9.  Layout of a modern microwave analog scattering facility (after Gus-
tafson 2000).  
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measured.  Measurements at angles close to the backscattering direction are usu-
ally problematic because the transmitting and receiving antennas would overlap.  
It is possible, however, to add a backscattering measurement capability Θ( = 
180°) by using the transmitting antenna as a receiver. Because the size of the 
scattering object is typically of the order of millimeters or centimeters, high-
precision target manufacturing is easy and can involve computer-controlled mill-
ing or stereo lithography. Therefore, the results of controlled laboratory meas-
urements of far-field electromagnetic scattering at microwave frequencies can 
readily be compared with theory.  

A disadvantage of microwave measurements is that they can be performed 
only for one particle size, shape, and orientation at a time. As a consequence, 
averaging over particle states becomes a time-consuming procedure.  

Updated overviews of the microwave analog technique and further references 
can be found in Gustafson (2009) and Vaillon et al. (2011).  

Problem 

16.1: Verify that the Lorenz–Mie formulas (16.13) and (16.14) follow from the 
TMM formulas (16.28) and (16.29), if the latter are applied to a spherically 
symmetric scattering object.  

Notes and further reading 

The theory of electromagnetic scattering by particles was pioneered by John Wil-
liam Strutt, Lord Rayleigh (1842–1919). He derived the so-called Rayleigh law 
describing the scattering of a plane electromagnetic wave by a spherical or ellip-
soidal particle much smaller than the wavelength (Rayleigh 1871a,b, 1897) and 
developed a numerically exact theory of electromagnetic scattering by an infinite 
circular cylinder (Rayleigh 1881). He also introduced a conceptually important 
ansatz, called the Rayleigh hypothesis (Rayleigh 1907), which has found numer-
ous applications, but still appears to cause controversy (see, e.g., Tishchenko 
(2010), Rother and Kahnert (2014), and references therein).   

Arnold Sommerfeld (1868–1951) was the first to realize that the uniqueness 
of the solution of an open-space scattering problem depends on the explicit form-
ulation of the radiation condition at infinity (Sommerfeld 1912). The history of 
Sommerfeld’s radiation condition, as well as its extensions and modifications are 
described by Schot (1992). In the case of three-dimensional electromagnetic scat-
tering by finite objects, the radiation condition takes the form of Eq. (4.7) and is 
traditionally called the Silver–Müller radiation condition.  

The paper by Gustav Mie (1868–1957) on electromagnetic plane-wave scat-
tering by a homogeneous spherical particle (Mie 1908) has become one of the 
most frequently cited papers in physics. The history of this publication in the 
general context of Mie’s research is discussed by Mishchenko and Travis (2008) 
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and Hergert (2012). In its mathematical part, Mie’s theory had largely been an-
ticipated by Ludvig Valentin Lorenz (1829–91) in a 1890 paper written in Dan-
ish (Lorenz 1890). This paper appears to have been unknown to Mie, but has 
been acknowledged in the scientific literature in the recent decades by referring 
to the “Lorenz–Mie theory” (Logan 1965). A seminal theoretical development 
was the reformulation of the LMT by Stratton (1941) in terms of VSWFs intro-
duced by the founder of microwave technology William Webster Hansen (1909–
49) (Hansen 1935). An important role in the subsequent dissemination of the 
LMT has been played by the monographs by van de Hulst (1957), Born and Wolf 
(1999; first published in 1959), and Bohren and Huffman (1983). 

Edward Mills Purcell (1912–97) (in co-authorship with C. R. Pennypacker) 
and Peter Cary Waterman (1928–2012) further advanced the theory of electro-
magnetic scattering by developing the widely used DDA and TMM. Waterman 
(in co-authorship with John Fikioris) pioneered the MSM in a report published in 
1963 (Fikioris and Waterman 1963). The corresponding journal paper was 
finalized in 1964, but published nearly half a century later (Fikioris and Water-
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man 2013). The history of this paper and its place in the general context of 
Waterman’s contributions to the theory of wave scattering is summarized by 
Mishchenko and Martin (2013). 

A plentiful source of information on advanced numerically exact computer 
solvers of the frequency- and time-domain MMEs and on modern controlled 
laboratory techniques is the growing collection of topical issues of the Journal of 
Quantitative Spectroscopy and Radiative Transfer (see Borghese et al. (2012) 
and references therein).  
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Far-field observables: qualitative                                           
and quantitative traits 

In Chapters 13 and 15 we have introduced a number of important far-field char-
acteristics and discussed their general mathematical properties. In Chapter 14, we 
have seen that the same quantities enter the FOSA for a small group of randomly 
and sparsely distributed particles observed from a sufficiently remote location. In 
Chapter 19, we will see that the same far-field characteristics enter the RTE for a 
very large random group of sparsely distributed particles observed from a point 
located in the near zone of the group. Given the ubiquity and great practical im-
portance of these quantities, it would be essential to discuss their typical qualita-
tive and quantitative traits. We will do this mostly with the help of the numeri-
cally exact LMT, TMM, and STMM described in the preceding chapter.  

We have seen in Chapter 14 that, in the framework of the FOSA, the actual 
particles forming a random N-particle group are effectively replaced by N statis-
tically identical copies of the virtual FOSA particle. We will see later that the 
same happens in the RTT. As a consequence, the far-field characteristics serve a 
triple purpose of representing: (i) the whole object in the framework of the FFS 
formalism, (ii) the virtual FOSA particle, and (iii) the virtual RTT particle. In this 
chapter we will not make a distinction between these three scenarios and will use 
the term “particle” in application to the whole FFS object, the virtual FOSA part-
icle, or the virtual RTT particle.     

17.1  Deterministic particle 

We begin the discussion by considering far-field scattering by a “deterministic” 
particle, that is, a particle whose morphology and orientation do not change in 
time. The solid curve in Fig. 17.1 shows the extinction efficiency factor Qext as a 
function of the size parameter x = k1r for a homogeneous spherical particle with a 
relative refractive index m = 1.4, while the dotted curve depicts the asymmetry 



 Far-field observables: qualitative and quantitative traits  239 

parameter g.1 According to Section 15.6, both quantities are independent of the 
polarization state and propagation direction of the incident field. Since the imag-
inary part of the relative refractive index is here set at zero, the scattering effi-
ciency factor is equal to the extinction efficiency factor, the absorption efficiency 
factor is equal to zero, and the single-scattering albedo is equal to unity. It is seen 
that both Qext and g rapidly vanish as x approaches zero (the so-called Rayleigh 
limit), while Qext tends to the asymptotic GOM value 2 as x →∞ (cf. Eq. 
(16.32)). In the intermediate (so-called resonance) region of size-parameter val-
ues, the extinction efficiency factor can significantly exceed the value 2, espe-
cially as the real part of the relative refractive index is increasing (cf. Fig. 17.2).     

–––––––––– 
1  The extinction efficiency factor is often used for demonstration purposes in lieu of the 

extinction cross section since the range of variability of the ratio Cext/G is limited, 
whereas that of Cext is not. It is important to remember, however, that only Cext has 
physical significance. From reading some publications on electromagnetic scattering, 
the reader may get the wrong impression that Qext is a primordial quantity, whereas Cext 
is a derivative one. However, it is easy to verify by inspecting those publications that 
Qext never appears in formulas describing actual optical observables or quantifying  
electromagnetic energy budget without being multiplied by the area of the particle’s 
geometrical projection. This makes one to question the wisdom of using Qext in such 
formulas in the first place. 
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Fig. 17.1.  Extinction efficiency factor Qext (solid curve) and asymmetry parame-
ter g multiplied by a factor of 4 (dotted curve) versus size parameter x for a 
homogeneous spherical particle with a relative refractive index m = 1.4. 
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Both curves in Fig. 17.1 are characterized by a succession of major low-
frequency maxima and minima with superimposed high-frequency ripples com-
posed of sharp, irregularly spaced extrema, some of which are super-narrow 
spike-like features. The major maxima and minima are called the “interference 
structure” since they are qualitatively attributed to the interference of the light 
diffracted and transmitted by the particle (van de Hulst 1957). A light ray passing 
through the center of a sphere acquires a phase shift ),1(2 R −= mxρ  where, as 
before, mR is the real part of the relative refractive index. Therefore, constructive 
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Fig. 17.2.  Extinction efficiency factor Qext  versus size parameter x for homoge-
neous spherical particles with relative refractive indices m = 1.3, 2, and 4. 
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and destructive interference and, thus, maxima and minima in the extinction effi-
ciency curve, occur successively at intervals 2π in ρ (see Fig. 17.3, which 
shows Qext as a function of ρ for monodisperse spheres with various real relative 
refractive indices). With mR →∞, the central transmitted rays are increasingly 
attenuated by the external reflection, and the interference structure becomes less 
pronounced (cf. Fig. 17.2) and ultimately disappears (Chýlek and Zhan 1989). 

Unlike the interference structure, the ripple is caused by the resonance be-
havior of the Lorenz–Mie coefficients an and bn (see, e.g., the review by Hill and 
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Fig. 17.3.  Extinction efficiency factor versus phase shift for homogeneous 
spherical particles with relative refractive indices m = 1.05, 1.15, 1.4, and 2.  
The vertical scale applies to the curve for m = 1.05, the other curves being 
successively displaced upward by 2. 
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Benner (1988) and references therein). The resonances in lower-order coeffi-
cients are rather broad and often overlap. As n increases, the resonance features 
become narrower, and starting with n∼ 20 (for m = 1.4) each feature in the ripple 
structure can be identified with an individual resonance in the corresponding part-
ial coefficient an or bn. As the size parameter approaches a resonant value, the 
denominator in Eq. (16.6) or (16.7) approaches a local minimum, thereby causing 
a local extremum (maximum or minimum) in the curve for a specific scattering 
characteristic. Accordingly, the numbers of spike-like extrema in the two curves 
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Fig. 17.4.  (a) Ripple structure of the extinction efficiency factor for a spherical 
water droplet (m = 1.33 + i ×10–8) on the interval [50, 51] of size parameters.  
(b) High-resolution profile of the resonance .1

61b
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in Fig. 17.1 are identical, and a sharp local maximum in the extinction curve al-
ways corresponds to a sharp local minimum in the asymmetry parameter curve.  

For a fixed m and each index n, there is a sequence of resonance x-values for 
either ),( mxan  or .),( mxbn  Hence it is convenient to label each local extremum 
with the type of mode causing the resonance (a or b), the subscript n, and a sup-
erscript l indicating the sequential order of x (Chýlek 1976; Chýlek et al. 1978).  
This labeling convention is illustrated in Fig. 17.4a, which shows the resonance 
extinction features for a water droplet within the interval ].51 ,50[∈x  The main 
traits of the resonance features are that their width decreases as n increases for a 
given l and their width increases as l increases for a given n.  For n greater than 
about 50, the l = 1 resonance can become extremely narrow, as demonstrated in 
Fig. 17.4b.   

Figure 17.5 shows the behavior of the super-narrow resonance centered at 
x 38.9983 (for mR = 1.4) with increasing imaginary part of the relative refrac-
tive index mI. It is seen that raising mI from 0 to a very small value 10–5 almost 
completely destroys this spike-like feature, while causing no change whatsoever 
in the background Qext and g values. It takes significantly greater mI values to 
eliminate the broader resonances and still greater values (of order 0.1) to elim-
inate the interference structure (Fig. 17.6). Therefore, measurements within super-
narrow resonances can be far more sensitive to weak absorption than measure-
ments in the “continuum” or within broader ripple features.     

6105 − 6102 − 6101 −5101 −× 0Im(m) = 

Asymmetry parameter    3×
Extinction efficiency factor
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Fig. 17.5.  Profile of the resonance centered at x 38.9983 for mR = 1.4 and five 
values of mI. The dots show the sampling resolution used in Fig. 17.1. 
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Manifestations of the ripple structure can be even more spectacular in the 
elements of the scattering matrix than in the optical cross sections and the asym-
metry parameter. Since the normalized Stokes scattering matrix (15.79) for a 
fixed relative refractive index depends on two variables, i.e., the size parameter x 
and the scattering angle Θ, it is convenient to use two-dimensional color images 
plotted with fine angular and size-parameter sampling resolutions. Plate 17.1 
shows the ratio 11 ab−  (in percent) as a function of Θ and x for a homogeneous 
sphere with a relative refractive index m = 1.4. This image was created using 
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Fig. 17.6.  The set of curves (bottom to top) shows the effect of increasing ab-
sorption on the interference and ripple structure of the extinction efficiency 
factor for a homogeneous spherical particle with the real part of the relative re-
fractive index mR = 1.4. The vertical axis scale applies to the curve with mI = 0, 
the other curves being successively displaced upward by 2. 
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sampling resolutions °= 31ΔΘ  and .05.0Δ =x  With the exception of the re-
gion of Rayleigh scattering (x 2; see Fig. H.2), the entire image is a field of 
sharp, alternating maxima and minima. The frequencies of the maxima and min-
ima over both Θ and x increase with increasing size parameter. This very com-
plex “butterfly” structure appears both to be chaotic and to reveal a slightly per-
ceptible order. 

Plate 17.2a provides a zoomed image of a small part of the field covered by 
Plate 17.1 and reveals with much greater detail the enormous complexity of the 
scattering pattern.  Now the sampling resolution °= 1.0(ΔΘ  and )007.0Δ =x  is 
fine enough to exhibit horizontal “dislocations” or “anomalous strips,” which are 
first indicators of super-narrow resonances. One of these is centered at 
x 38.9983 and is shown with even greater sampling resolution Θ(Δ = 0.05° and 
Δx = 0.00001) in the left-hand panel of Plate 17.2b. This latter image demon-
strates an immense degree of variability within the resonance, including drastic 
changes of sign and strong dependence on scattering angle.  

The other three panels of Plate 17.2b are analogous to the left-hand panel, but 
show the results of computations for three increasing values of the imaginary part 
of the relative refractive index. Although many features within the resonance 
gradually weaken and ultimately disappear, the super-narrow minimum located at 
Θ 177° and x 38.99828 for mI = 0 becomes much more pronounced and shifts 
toward larger Θ  and x before it finally disappears at mI = 10–4. This behavior is 
quite different from that exhibited by Qext and g in Fig. 17.5. 

The angular widths of the more prominent details of the “butterfly structure” 
in Plate 17.1 are consistent with the discussion preceding Eq. (13.22). It is obvi-
ous, however, that to fully resolve the super-narrow resonance features such as 
those seen in Plate 17.2, the distance from the particle to the WCR must be much 
greater than the criterion (13.22) suggests.  

As discussed in Section 15.8, the extinction cross section for a nonspherical 
particle depends on the incidence direction. This is illustrated in Fig. 17.7 which 
depicts the results of TMM computations of the dimensionless normalized      
extinction )(~ 2

evextext rCC π=  for a prolate spheroid with a semi-axis ratio of 
=ba 0.9, where rev is the radius of the equal-volume sphere, b is the spheroid 

semi-axis along the axis of revolution, and a is the semi-axis in the perpendicular 
direction. ext

~C  is plotted as a function of the size parameter ev1ev rkx =  and the 
angle β between the spheroid axis of revolution and the incidence direction. The 
relative refractive index of the spheroid is 1.4, while the incident light is assumed 
to be unpolarized. The significant overall increase of the extinction cross section 
Cext with increasing β can be explained qualitatively by the growing area of the 
spheroid geometrical projection on the plane perpendicular to the incidence di-
rection. The numerous local maxima in the surface plot of the normalized extinc-
tion reveal the added complexity of the ripple structure caused by nonsphericity.  

Panels (a)–(c) of Plate 17.3 illustrate the shape and orientation dependence 
of the ratio 1112 FF−  of the elements of the scattering matrix (15.6). The 
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1112 FF−  for a sphere or a spheroids is plotted as a function of the scattering an-
gle scaθΘ =  and the surface-equivalent-sphere size parameter ,se1se rkx =  where 
rse is the radius of the surface-equivalent sphere. The rotation axis of the spher-
oids is oriented along the incidence direction (panel b) or perpendicularly to the 
scattering plane (panel c). With the exception of the region of Rayleigh scatter-
ing,  the three panels are vastly different. In particular, the polarization patterns 
for the same spheroids, but in two different orientations, resemble each other no 
more than either pattern resembles that for the surface-equivalent spheres. The 
results shown in panel (c) obviously violate the equalities (15.61) and thus cannot 
be attributed mistakenly to spherically symmetric particles. However, the specific 
spheroid orientation used to create panel (b) does not cause a violation of Eq. 
(15.61), which shows that Eq. (15.61) alone may not be used to distinguish un-
ambiguously between a spherically symmetric particle and a nonspherical part-
icle in a fixed orientation. 
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Fig. 17.7.  Normalized extinction versus volume-equivalent-sphere size parame-
ter and orientation angle β  for a monodisperse prolate spheroid with a relative 
refractive index of 1.4 and a semi-axis ratio of 9.0=ba  (after Mishchenko 
and Lacis 2003).  
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17.2  Random spherical particle 

The majority of natural and artificial ensembles of spherical particles do not ex-
hibit the spike-like resonances described in the preceding section because even a 
narrow polydispersion washes out features that strongly depend on particle size. 
Figure 17.8 illustrates the effect of increasing width of the size distribution on the 
extinction efficiency factor for the gamma size distribution (15.108) of radii for a 
homogeneous spherical particle with a relative refractive index m = 1.4. The fig-
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Fig. 17.8.  The effect of increasing width of the size distribution on the interfer-
ence and ripple structures in Qext for nonabsorbing spherical particles with 
relative refractive index 1.4. The vertical axis scale applies to the curve with 
veff = 0, the other curves being successively displaced upward by 2.  
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ure depicts extQ = 〉〈〉〈 GCext  versus effective size parameter eff1eff rkx =  for five 
increasing values of the effective variance ,effv  where 〉〈 extC  and 〉〈G  are the 
size-averaged extinction and geometrical cross sections, respectively. The effect-
ive radius effr  and the effective variance effv  are defined by Eqs. (15.110) and 
(15.109) and, for the gamma distribution with 0min =r  and ,max ∞=r  coincide, 
respectively, with the parameters a and b of Eq. (15.108) (Problem 15.13). Figure 
17.9 demonstrates the broadening of the size distribution with increasing veff , 
while the effective radius is kept constant. Note that the size distribution with 
veff = 0 corresponds to a monodisperse particle with the radius ,effrr =  while the 
effective variance values in the range [0.05, 0.1] are characteristic of sulfuric acid 
particles forming the clouds on Venus (Hansen and Hovenier 1974). 

Similar to the case of increasing absorption, increasing the width of the size 
distribution first extinguishes the ripple and then eliminates the interference 
structure in .extQ  It is in fact remarkable that as narrow a dispersion of sizes as 
that corresponding to 01.0eff =v  completely washes out the ripple structure. The 
first major maximum of the interference structure persists to larger values of ,effv  
but eventually fades away too. For distributions with 0.2 ,effv  the only surviv-
ing features are the typical behavior in the Rayleigh limit discussed in Section 
17.1 and the asymptotic geometrical optics trend 2ext →Q  with ,∞→x  as dis-
cussed in Section 16.2.    
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Fig. 17.9.  Gamma distribution (15.108) with ,0min =r  ,max ∞=r  =effr 1 (in 
arbitrary units of length), and =effv 0, 0.01, 0.05, 0.1, and 0.2.  
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The presence of the first maximum of the interference structure for relatively 
narrow size distributions creates the possibility of an infrequent phenomenon for 
which aerosol particles of just the right size have a lower extinction cross section 
in the blue than that at longer wavelengths in the red. Thus, in contrast to the fam-
iliar reddening of the setting sun owing to rapidly decreasing Rayleigh extinction 
with increasing wavelength, a sufficiently narrow size distribution of aerosol part-
icles in the atmosphere, with an average size such that 4 )1(2 Reff −mx 7 for 
visible wavelengths (cf. Fig. 17.3), can produce a blue cast to the sun or moon 
and is perhaps responsible for the implied rarity associated with the phrase, “once 
in a blue moon” (cf. Chapter 4 of Bohren and Huffman (1983)). 

Plate 17.4 shows the evolution of the ratio 11 ab−  with increasing width of 
the size distribution. The case veff = 0.01 demonstrates again that even a very nar-
row polydispersion is sufficient to extinguish most of the interference and reso-
nance effects. With increasing veff, the maxima are smoothed out, the minima are 
filled in, and the polarization becomes more neutral. Additional effects of in-
creasing veff are the depression to smaller size parameters of the region of max-
imal polarization corresponding to Rayleigh scattering and the erosion of the 
bridge of positive polarization connecting the Rayleigh region and the area of 
positive polarization at scattering angles around 160°. The island of positive po-
larization at xeff∼10 and Θ∼25° for veff = 0.01 is usually explained as being an 
anomalous diffraction feature produced by the interference of diffracted light and 
light reflected and refracted by the particles in the near-forward direction (Han-
sen and Travis 1974). The magnitude of this feature strongly depends on the 
width of the size distribution: the feature significantly weakens as veff increases 
from 0.01 to 0.07 and has completely disappeared for veff = 0.2. All these effects 
of broadening the size distribution are easy to understand qualitatively in terms of 
taking weighted averages along vertical lines of increasing length in the polariza-
tion diagram for a monodisperse particle. 

Some phase-function features for a spherical particle larger than the wave-
length (Fig. 16.5) can be explained through the concepts of geometrical optics, 
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Fig. 17.10.  Geometrical optics representation of scattering by a large sphere 
with mR > 1 (after Hansen and Travis 1974). 
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using the terminology introduced in Fig. 17.10. Specifically, the concentration of 
light near °= 0Θ  is caused by diffraction (i = 0 in Fig. 17.10).  The external re-
flection (i = 1) does not generate any distinctive feature, whereas the twice-
refracted rays (i = 2) cause a broad enhancement of the phase function in the for-
ward-scattering hemisphere. 

The features in Fig. 16.5 at °137≈Θ  and 130° for m = 1.33 (160° and 88° 
for m = 1.53) are the primary and secondary rainbows generated by i = 3 and i = 
4 rays, respectively. To explain the origin of the rainbows, one needs to express 
the scattering angle Θ  of the emerging ray as a function of the local angle of in-
cidence ]90 ,0[ °°∈α  (Fig. 17.10) for i = 3, 4 , … . This is always possible be-
cause the entire ray path remains in the plane containing the incident ray and the 
center of the sphere. When the derivative ααΘ d)(d i  vanishes, the scattering 
angle becomes nearly constant for a range of incidence angles, thereby causing 
an increased concentration of emerging rays. The respective scattering angle is 
called the rainbow angle. The condition 0d)(d =ααΘi  implies that the rainbow 
angles correspond to extrema of the functions ).(αΘi  Whether the extremum is a 
minimum or a maximum depends on i. The primary rainbow angle 137° for m = 
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Fig. 17.11.  Ray-tracing diagram explaining the origin of the primary rainbow 
for a large spherical particle with m = 1.33. The diagram shows that incident 
rays corresponding to a finite range of incidence angles α  emerge at almost 
the same scattering angle, thereby creating a localized enhancement of inten-
sity. The respective scattering angle °137≈Θ  is the angle of minimum devia-
tion for i = 3.  
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1.33 (160° for m = 1.53) corresponds to a minimum in )(3 αΘ  (ray 7 in Fig. 
17.11), whereas the angle 130° for m = 1.33 (88° for m = 1.53) corresponds to a 
maximum of ).(4 αΘ  As a consequence, there is a low-intensity zone (about 7° 
wide for m = 1.33 and 72° wide for m = 1.53) between the primary and secondary 
rainbows (the so-called Alexander’s dark band), where the phase function is 
mostly determined by the externally reflected rays (i = 1). Note, however, that 
both rainbow angles correspond to rays that experience the least cumulative de-
viation from the initial incidence direction and hence are angles of minimum de-
viation. The maxima in Fig. 16.5 at °=119Θ  and 141° for m = 1.53 are the i = 6 
and 7 rainbows, respectively. 

The slight change of the rainbow angle with wavelength caused by dispersion 
(change of the relative refractive index with wavelength) gives rise to the spect-
acular colorful rainbows often observed during showers illuminated by the sun at 
an altitude lower than about 40°. Examples of beautiful rainbows are shown on 
the cover of this book as well as in Plate 17.5a. In the latter case, a full-color  
numerical Lorenz–Mie simulation (Laven 2003) is superimposed on a photo-
graph of the primary and secondary rainbows, and illustrates the remarkable abil-
ity of the LMT to reproduce actual scattering phenomena.   

The enhancement of intensity in the backscattering direction )180( °≈Θ  is 
called the “glory” and can be seen for objects such as fog (Plate 17.5b) or clouds 
(Plate 17.5c) as a series of colored rings around the shadow cast by the photogra-
pher or the airplane. Obvious but relatively weak contributors to the glory are the 
central rays )90( °=α  externally (i = 1) and internally (i = 3, 5, …) reflected in 
the backscattering direction. Snell’s law predicts that for real relative refractive 
indices in the range ,22 21 ≤≤ m  a non-central incident ray (0° < α < 90° in Fig. 
17.10) may emerge at °=180Θ  after just one internal reflection (i = 3). How-
ever, this ray-optics mechanism does not explain the equally pronounced glory 
generated by water droplets with )2( 33.1 21<=m  and xeff = 600 in Fig. 16.5. 
Therefore, it is often claimed that a major contributor to the glory is that of the 
edge rays α( 0°), which set up so-called surface waves on the sphere. The lat-
ter are not included in the geometrical optics formulation and are discussed by 
van de Hulst (1957) and Nussenzveig (1992). 

17.3  Random morphologically complex particle 

In the case of a random nonspherical particle, far-field scattering patterns can be 
affected by averaging over particle orientations and/or morphologies, as well as 
sizes. We begin by discussing the effects of nonsphericity and random orientation 
on scattering resonances. Plate 17.6a summarizes the results of LMT and TMM 
computations for a monodisperse sphere and volume-equivalent, randomly or-
iented spheroids with a relative refractive index of 1.4 in the range of size par-
ameters affected by three super-narrow Lorenz–Mie resonances ,1

38b  ,1
38a  and 

,1
39b  as well as three broader resonance features. Now the direction-independent 
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normalized extinction is defined as the ratio ),()(~ 2
evextext rCC πξ ξ〉〈=  where 

ξξ 〉〈 )(extC  is the orientation-averaged extinction cross section. It is seen that in-
creasing the aspect ratio ε of the spheroids (i.e., the ratio of the largest to the 
smallest particle dimensions) drastically reduces the height of the normalized 
extinction peaks. It is in fact remarkable that the deformation of a sphere by as 
little as one hundredth of a wavelength essentially annihilates the super-narrow 
resonances. A secondary effect of increasing asphericity is to shift the resonances 
toward smaller size parameters. Obviously, it takes significantly larger aspheric-
ities to suppress the broader resonances. An interesting feature of the curve for 

9.0=ba  is the minute high-frequency ripple superposed on a slowly and 
weakly varying background. This ripple is absent in the curves for the nearly 
spherical spheroids and is the contribution of additional natural frequencies of 
oscillation of distinctly aspherical spheroids with specific orientations relative to 
the incident beam. This effect is well seen in Fig. 17.7.  

The smoothing effect of averaging over orientations of a nonspherical part-
icle on resonances is also well seen from the comparison of Plates 17.3b, 17.3c, 
and 17.3d. Averaging over sizes reinforces this effect. This is demonstrated by 
Plates 17.3e and 17.3f, which parallel plates 17.3a and 17.3d, respectively, and 
show the ratio ξξ ξΘξΘ 〉〈〉〈− );();( 1112 FF  computed for a polydisperse sphere 
and a randomly oriented surface-equivalent spheroid, assuming a modified power-
law size distribution defined by 
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with 3−=α  and veff = 0.1. The resulting polarization patterns are now smooth 
enough to derive conclusions regarding the likely qualitative and quantitative 
effects of nonsphericity of natural polydisperse particles. Among such effects are 
the bridge of positive polarization at side-scattering angles and a negative polar-
ization branch at backscattering angles in Plate 17.3f, which are quite analogous 
to those measured previously for narrow size distributions of NaCl particles with 
mean size parameters ranging from 3.1 to 19.9 (Perry et al. 1978), as well as for 
other types of mineral particles (see Volten et al. (2001), Shkuratov et al. (2007), 
Muñoz and Hovenier (2011), Meland et al. (2012), and references therein).    

Due to the unique properties of the super-narrow resonances, the measure-
ment and analysis of their various manifestations turn out to be the most accurate 
means for the detection of even minute deviations of the particle shape from 
sphericity. The fact that even miniscule amounts of nonsphericity effectively ex-
tinguish the super-narrow resonances (Mishchenko and Lacis 2003) is likely to 
simplify numerical computations for polydisperse particle ensembles such as 
natural cloud droplets. Indeed, it has been hypothesized that not fully resolving 
the resonances owing to the use of a numerical size-integration quadrature form-
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ula with insufficiently narrow separations between the quadrature nodes may  
result in significant errors in broadband absorption computations (Zender and 
Talamantes 2006). The analysis by Zender and Talamantes was based on the as-
sumption that cloud droplets are perfect spheres and support even the narrowest 
resonances, thereby seemingly necessitating the use in Eq. (13.141) of quadrature 
formulas with extreme numbers of closely spaced quadrature nods and making 
computer calculations very time-consuming. However, real cloud droplets hardly 
have a perfectly spherical shape, given many ambient factors that are likely to 
cause significant distortions of the droplet shape and thereby suppress the super-
narrow resonances.     

Despite the significant progress in our ability to model scattering by non-
spherical particles, accurate theoretical computations for many types of natural 
and artificial particles with sizes comparable to and greater than the wavelength 
(Fig. 1.1) remain problematic. Therefore, there have been several attempts to 
simulate the scattering and absorption properties of actual particles using simple 
model shapes. These attempts have been based on the realization that in addition 
to size and orientation averaging, as discussed above, averaging over shapes may 
also prove to be necessary in many cases. Indeed, quite often ensembles of nat-
ural and artificial particles exhibit a vast variety of shapes, which makes quest-
ionable the utility of a single model shape (however “irregular” it may look to the 
human eye) in the representation of scattering properties of an ensemble.  

To illustrate this point, Plate 17.6b shows the results of TMM computations 
of the phase function )(1 Θa  versus scattering angle for a polydisperse sphere and 
seven polydisperse surface-equivalent prolate spheroids in random orientation 
(Mishchenko et al. 1997). The size distribution is described by a truncated log 
normal law and has an effective radius of 1.163 μm and an effective variance of 
0.168. The relative refractive index is fixed at 1.53 + i0.008, assuming a visible 
wavelength of 443 nm; the former value is typical of terrestrial desert-dust aero-
sols at visible wavelengths. The spheroid aspect ratio varies from 1 (the value for 
the sphere) to 2.4. Plate 17.6b demonstrates that even after size and orientation 
averaging, each spheroidal shape produces a unique, shape-specific scattering 
pattern, whereas laboratory and in situ measurements for real nonspherical part-
icles usually show rather featureless patterns. Indeed, although the individual 
phase functions in Plate 17.6b are rather smooth they still reveal a systematic 
change with increasing aspect ratio that renders each phase-function curve unique 
and dissimilar to all other curves. However, Plate 17.6c shows that this unique-
ness is suppressed and ultimately removed by averaging over: (i) prolate sphe-
roids with aspect ratios ranging from 1.2 to 2.4 in steps of 0.1; (ii) oblate sphe-
roids with the same aspect ratios; and (iii) over all prolate and oblate spheroids. 
The final phase function (the red curve in Plate 17.6c) is very smooth and fea-
tureless and, in fact, almost perfectly coincides with the phase function exper-
imentally measured by Jaggard et al. (1981) for micrometer-sized, irregularly 
shaped soil particles.  
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This example leads to two important conclusions. First of all, it provides ev-
idence that the often observed smooth scattering-angle dependence of the elements 
of the scattering matrix for natural and artificial ensembles of nonspherical particles 
is largely caused by the diversity of particle shapes in the ensemble. Secondly, it 
suggests that at least some scattering properties of ensembles of irregular particles 
can be adequately modeled using polydisperse shape mixtures of simple particles 
such as spheroids. These two conclusions form the gist of the so-called statistical 
approach, according to which particles chosen for the purpose of ensemble averag-
ing need not be in one-to-one morphological correspondence with the actual particle 
ensemble and may have relatively simple shapes (Hill et al. 1984; Mishchenko et 
al. 1997). Needless to say, forming representative mixtures of less regular part-
icles than spheroids should be expected to eventually provide an even better 
model of electromagnetic scattering by many natural and artificial particle en-
sembles (see, e.g., the reviews by Nousiainen (2009) and Kahnert et al. (2014)).    

The statistical approach is further illustrated in Fig. 17.12, in which the dia-
monds depict the results of laboratory measurements of the ensemble-averaged 
scattering matrix for micrometer-sized feldspar particles at a wavelength of     
633 nm (Volten et al. 2001). The grey curves show that the measurement data 
can be accurately fitted with TMM results computed for a shape mixture of 
polydisperse, randomly oriented prolate and oblate spheroids (Dubovik et al. 
2006). The real and model particle shapes are contrasted in the inset.  

The black curves in Fig. 17.12 show the results of Lorenz–Mie computations 
for a volume-equivalent polydisperse spherical particle. Contrasting the grey and 
the corresponding black curves provides a good illustration of the typical non-
spherical–spherical differences in the elements of the scattering matrix discussed 
in detail in MTL1. For example, several theoretical and laboratory analyses of the 
phase-function patterns for volume- or surface-equivalent spherical and non-
spherical particles have revealed the following five distinct scattering-angle 
ranges:   

nonsphere  sphere  from °= 0Θ  to Θ ∼ ;2015 °−°  
nonsphere > sphere    from Θ ∼ °−° 2015  to Θ ∼ ;35°  
nonsphere < sphere    from Θ ∼ °35  to  Θ ∼ ;85°      (17.2) 
nonsphere  sphere    from Θ ∼ °85  to Θ ∼ ;150°  
nonsphere  sphere    from Θ ∼ °150  to Θ = .180°  

Although the specific boundaries of these regions can shift with particle mor-
phology and relative refractive index, the enhanced side-scattering and sup-
pressed backscattering appear to be rather universal characteristics of nonspher-
ical particles.  

The ratio ,)()( 11 ΘΘ ab−  which yields the signed degree of linear polariza-
tion for unpolarized incident light, tends to be positive at scattering angles around 

°−° 120100  for nonspherical particles. Equation (15.79) implies that )()( 12 ΘΘ aa  
≡ 1 for spherically symmetric scatterers, whereas the same ratio for nonspherical 
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Fig. 17.12.  Comparison of laboratory measurements and theoretical computa-
tions of the normalized scattering matrix obtained by averaging over particle 
states (see text).  
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particles deviates significantly from the value 1 and exhibits strong backscattering 
depolarization. Similarly, )()( 13 ΘΘ aa ≡ )()( 14 ΘΘ aa  for spherically symmetric 
particles, whereas the ratio )()( 14 ΘΘ aa  for nonspherical particles tends to be 
greater than the ratio )()( 13 ΘΘ aa  at most scattering angles and especially in the 
backscattering direction. The ratios )()( 12 ΘΘ ab  for spherical and nonspherical 
particles also reveal significant quantitative differences, especially at large scattering 
angles.  

Unlike a mixture of smooth-shaped spheroids with different aspect ratios, 
regular sharp-edged shapes may cause pronounced angular features in the ele-
ments of the scattering matrix, especially as the particle size starts to exceed the 
wavelength. This is well illustrated by Fig. 16.6, which shows the results of num-
erically exact TMM computations of the phase function for four randomly or-
iented compact circular cylinders with surface-equivalent-sphere size parameters 
ranging from 40 to 180. As the size parameter increases, the TMM phase func-
tion develops such typical geometrical-optics features – seen in the grey curves – 
as the 46° halo and the strong and narrow backscattering peak. The halo is pro-
duced by the same ray-tracing mechanism as the rainbows discussed in Section 
17.2 and corresponds to a minimum angle of deviation for the 90° prisms formed 
by the side and end faces (Fig. 17.13a), whereas the backscattering peak is 
caused by rays twice internally reflected by mutually perpendicular faces (Fig. 
17.13b). Such pronounced phase-function features caused by regular sharp-edged 
shapes are responsible for many spectacular atmospheric-optics displays (Lynch 
and Livingston 2001) and may affect the results of cirrus-cloud remote sensing 
(e.g., Mishchenko et al. 1996; Lynch et al. 2002). In many cases, however, var-
ious imperfections of the ice-crystal shape and/or multiple internal inclusions 
(e.g., in the form of air bubbles) destroy sharp geometrical-optics features and 
cause smooth and featureless phase functions similar to that depicted by dia-
monds in Fig. 17.12 (Macke 2000; Baran 2013). 

We have already mentioned that backscattering depolarization measurements 
are widely used for detecting and characterizing nonspherical particles (Sassen 

90°

46°

(a) (b)  
Fig. 17.13.  (a) Refraction by a circular ice cylinder showing the rays associated 
with the 46° halo.  (b) Double internal reflections causing the backscattering 
intensity peak.  
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2000). Plate 17.7a summarizes the results of TMM computations of the linear 
backscattering depolarization ratio (15.62) for polydisperse, randomly oriented 
ice spheroids with aspect ratios ranging from 1.05 to 2.6 and circular cylinders 
with various length-to-diameter or diameter-to-length ratios (after Mishchenko 
and Sassen 1998). The relative refractive index is fixed at 1.311, which is a value 
characteristic of water ice at visible wavelengths. The light-green bands show the 
range of highest depolarization ratios typically observed for anthropogenic cirrus 
clouds in the form of aircraft condensation trails (Freudenthaler et al. 1996). The 
size distribution is given by Eq. (17.1) with 3−=α  and a fixed effective var-
iance of 0.1. The upper horizontal axes convert effective size parameters into 
effective radii assuming the 532-nm wavelength. 

The results depicted in Plate 17.7a demonstrate indeed that wavelength-sized 
particles can produce large backscattering depolarization ratios approaching the 
theoretical upper limit of 1, Eq. (15.113). An interesting trait of essentially all the 
curves shown in this plate is a rapid increase in Lδ  as the effective size parame-
ter increases from 0 to about 10. Moreover, maximal Lδ  values for most shapes 
are observed at size parameters close to and sometimes slightly smaller than 10. 
Unfortunately, the TMM results show no obvious relationship between Lδ  and 
the particle aspect ratio. Even spheroids with aspect ratios as small as 1.05 (a 
2.5% deviation from the perfect spherical shape) produce strong depolarization. 
In fact, the largest Lδ  values are generated by prolate spheroids with aspect   
ratios as small as 1.2 (a 10% deviation from a sphere). Furthermore, the Lδ  for 
spheroids and, especially, cylinders tends to saturate with increasing aspect ratio. 
These results suggest that although a nonzero Lδ  value is an unequivocal indica-
tion of particle nonsphericity, it is not necessarily a measure of the degree of de-
viation of the particle shape from that of a perfect sphere.  

TMM results plotted in Figs. 17.14 and 17.15 show that with increasing 
imaginary part of the relative refractive index, nonspherical–spherical differ-
ences weaken and ultimately disappear. For these particle polydispersions with 
an effective size parameter of xeff =15, the scattering patterns corresponding to mI 
= 0.5 are dominated by diffraction and external reflections, and are essentially the 
same for a sphere and a surface-equivalent randomly oriented spheroid. This ex-
ample illustrates the general GOM theorem formulated by van de Hulst (1957, 
Section 8.42): the scattering pattern caused by external reflection from a very 
large convex particle in random orientation is identical to that caused by external 
reflection from a very large sphere composed of the same material. Similarly, 
increasing mI leads to reduced and ultimately vanishing backscattering depolar-
ization ratios, as TMM results depicted in Fig. 17.16 illustrate. This factor limits 
the usefulness of depolarization observations of cirrus clouds and contrails at  
infrared wavelengths, where water ice is strongly absorbing. It is interesting, 
however, that the change of Lδ  and Cδ  with increasing absorption is not entirely 
monotonous and reveals a maximum at mI  2 ×10– 2, which illustrates again the 
intrinsic complexity of these far-field observables. 
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In most cases nonspherical–spherical differences in the optical cross sections 
and the single-scattering albedo are not nearly as significant as those in the scat-
tering matrix elements. The same is true of the asymmetry parameter (15.67). 
This does not mean, however, that the effects of nonsphericity on the integral 
scattering and absorption characteristics are always negligible or unimportant. An 
instructive example of particles characterized by integral radiometric properties 
vastly different from those of volume-equivalent spheres are clusters composed 
of large numbers of small monomers such as soot aggregates (see Fig. 1.1e). The 
overall morphology of a dry soot aerosol is usually parameterized by the follow-
ing statistical scaling law (Sorensen 2001):  
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Fig. 17.14.  Phase function a1 versus scattering angle Θ for polydisperse, ran-
domly oriented oblate spheroids with an aspect ratio of 1.7 and for surface-
equivalent spheres. The results are shown for two values of the real part of the 
relative refractive index (mR = 1.31 and 1.53) and three values of the imagi-
nary part (mI = 0, 0.05, and 0.5). The size distribution is given by Eq. (17.1) 
with 3−=α  and veff = 0.1. The effective size parameter is xeff =15. The  
vertical axis scale applies to the curves with mI = 0.5, the other curves being 
successively displaced upward by a factor of 100.  
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where NS is the number of spherical monomers in the cluster, a is the monomer 
mean radius, k0 is the prefactor, Df is the fractal dimension, and Rg, called the 
radius of gyration, is a measure of the overall cluster radius. The fractal dimen-
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Fig. 17.15.  As in Fig. 17.14, but for the ratio .11 ab−  
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sion is especially important for the quantitative characterization of the aggregate 
morphology. Compact densely packed aggregates have Df values close to 3, 
whereas the fractal dimension of chain-like branched clusters can be significantly 
smaller. The other important structural coefficient, k0, is also related to the state 
of compactness of a fractal aggregate. Examples of computer-generated fractal 
clusters are given in Fig. 17.17. Obviously, the aggregates become more compact 
as Df increases.  

Figure 17.18 depicts the ratios of ,)(ext ξξ 〉〈C ,)(sca ξξ 〉〈C ,)(abs ξξ 〉〈C ,ϖ and g 
computed, at a wavelength of 870 nm, for randomly oriented fractal soot aggre-
gates with refractive indices 1.75 + i0.5 and 2 + i, monomer radii 15 and 25 nm, 
and numbers of monomers 200, 400, 600, and 800 to those for the corresponding 
volume-equivalent homogeneous spheres (Liu et al. 2008). These numerically 
exact STMM results demonstrate that the integral radiometric properties of the 
soot clusters are complex functions of the monomer size and refractive index and 
can often be profoundly different from those of the equal-volume spheres. The 
latter is especially true of the scattering cross section, single-scattering albedo, 
and asymmetry parameter. Not surprisingly, the overall differences in the integral 
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Fig. 17.16.  Linear and circular backscattering depolarization ratios versus 
imaginary part of the relative refractive index for a polydisperse, randomly 
oriented oblate spheroid with an aspect ratio of 1.7. The size distribution is 
given by Eq. (17.1) with 3−=α  and veff = 0.1. The effective surface-
equivalent-sphere size parameter is xeff =15 and the real part of the relative re-
fractive index is 1.31. 
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optical characteristics between an aggregate and the corresponding equal-volume 
sphere become smaller as the fractal dimension approaches the value 3 and the 
cluster becomes increasingly compact. The likely explanation of the residual dif-
ferences between the STMM results for a cluster and the Lorenz–Mie results for 
the equivalent-volume sphere could be that the cluster still has empty spaces in it, 
even as Df → 3. 

Figure 17.19 shows the results of STMM computations of the scattering mat-
rix elements obtained by averaging over 20 soot-cluster realizations randomly 
computer-generated for the same values of the fractal parameters (Liu and 
Mishchenko 2007). In a rather peculiar way (West 1991), the angular scattering 
properties of the soot clusters appear to be a mix of those of wavelength-sized 
compact particles (the nearly isotropic Rayleigh phase function of the small in-
dividual spherules evolves into a forward-scattering phase function) and 
Rayleigh scatterers (i.e., )()( 11 ΘΘ ab−  is zero at the exact forward- and back-
scattering directions and reaches a nearly 100% maximum at Θ 90°, while the 
ratio )()( 12 ΘΘ ab  is very close to zero; see Fig. H.2). The deviation of the ratio 

 

(a)

(b)
(c)

(d)

(e) (f ) (g) (h)  
Fig. 17.17.  Fractal aggregates composed of 200 monomers and characterized by 
different values of the fractal parameters Df and k0. (a)–(g) Df = 1.25, 1.5, 1.75, 
2, 2.25, 2.5, and 2.75, respectively; k0 is fixed at 1.6.  (h) Df = 3 and k0 = 1.2.  
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)()( 12 ΘΘ aa  from unity is the only obvious manifestation of the overall non-
sphericity of the soot clusters.  

Also shown for comparison in Fig. 17.19 are two sets of approximate results. 
The first set includes the results obtained by applying the FOSA to the corres- 
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Fig. 17.18.  Ratios of integral optical characteristics of soot fractals to those 
computed for the respective volume-equivalent spheres. The wavelength is 
fixed at 870 nm.  
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Fig. 17.19.  Realization-averaged scattering matrix elements for randomly oriented fractal 
clusters with Df = 1.82, k0 = 1.19, NS = 400, and a = 0.02 µm. The soot refractive index is 
1.75 + i0.435 and the wavelength is 628 nm. Also shown are the results for the corres-
ponding homogeneous volume-equivalent sphere and the “equivalent” external mixture 
of soot monomers.  
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ponding external mixture of the constituent monomers (i.e., by assuming that all 
monomers are widely separated and randomly positioned rather than form a clust-
er with touching components). The second set of results was computed by apply-
ing the Lorenz–Mie theory to a homogeneous sphere with a volume equal to the 
combined volume of the cluster monomers. Clearly, the external-mixture model 
provides a poor representation of the cluster phase function, whereas the per-
formance of the equal-volume-sphere model is inadequate with respect to all 
scattering matrix elements.  

A far-field characteristic that strongly depends on the particle morphology is 
the LPR defined by Eq. (H.40). This quantity is identically equal to zero for a 
spherically symmetric particle, but, according to Eq. (H.47) and Fig. H.3, can 
reach 100% for a nonspherical Rayleigh particle in random orientation. Figure 
17.20 summarizes the results of STMM and TMM computations of )(L Θμ  for 
five nonspherical morphologies:  

(i)  a low-density fractal aggregate with a fractal dimension of Df = 1.82 and a 
prefactor of k0 = 1.19, composed of 422 identical soot spherules with a   
radius of 20 nm;  

(ii)  422 soot spherules with the same radius densely and randomly compacted 
inside an imaginary circumscribing sphere with a radius of 225 nm;  
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Fig. 17.20.  Linear polarization ratio for five particle morphologies (see text). 
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(iii)  422 soot spherules with the same radius randomly covering a larger non-
absorbing sulfate particle with a radius of 260 nm;  

(iv)  an equiprobable shape mixture of 10 prolate and oblate soot spheroids 
with aspect ratios 1.2, 1.4, 1.6 , 1.8, and 2; and  

(v)  an equiprobable shape mixture of 11 soot circular cylinders with diameter-
to-length ratios 1/2, 1/1.8, 1/1.6, 1/1.4, 1/1.2, 1, 1.2, 1.4, 1.6 , 1.8, and 2 

(Mishchenko et al. 2013b). The wavelength is fixed at 550 nm, the relative re-
fractive indices of the soot and sulfate particles are assumed to be 1.75 + i0.435 
and 1.44, respectively, and the equal-volume-sphere radius of the soot material in 
all five cases is 150 nm. The results for morphologies (i)–(iii) have been ensem-
ble-averaged over 10 random computer realizations of each morphological type 
in order to provide a more realistic modeling of natural particle mixtures and en-
sure smooth LPR curves. 

A remarkable feature of the grey curve in Fig. 17.20 is a sharp maximum at 
,90°≈Θ  which makes the central part of this curve very similar to that of the 

dashed curve in Fig. H.3 corresponding to the anisotropy parameter y∼ 1.01. We 
can thus conclude that, although the low-density soot fractal is not a Rayleigh 
scatterer, its LPR behaves analogously to that of a randomly oriented Rayleigh 
particle with a weakly anisotropic polarizability. This result is not surprising. In 
the framework of the FOSA, wherein each monomer is assumed to be excited 
only by the incident field, the LPR of a random soot cluster composed of spher-
ical monomers would be exactly zero. This implies that a nonzero LPR must re-
sult from electromagnetic interactions between the monomers. However, the 
strongly absorbing nature of the soot material acts to suppress multi-monomer 
interactions, which makes it reasonable to assume that for a fluffy aggregate the 
nonzero LPR is caused primarily by double-scattering interactions between pairs 
of contacting monomers, the size parameter of such monomer doublets still being 
in the Rayleigh domain. It is thus the shape-induced anisotropic polarizability of 
these Rayleigh doublets that causes the sharp side-scattering peak in the angular 
profile of the LPR for fluffy soot fractals.  

The multi-monomer interactions can be expected to be much stronger in the 
case of a densely packed soot aggregate, owing to the fact that almost every 
monomer is now surrounded by many closely positioned monomers rather than 
being quasi-isolated. As a consequence, the resulting LPR must be affected by 
the overall shape of the cluster. It is seen indeed from Fig. 17.20 that densely 
packing the same number of soot monomers into a compact, nearly spherical 
cluster reduces the magnitude of the LPR maximum by almost two orders of 
magnitude. The maximum LPR value for habit (iii) is even smaller, owing to the 
scattering dominance of the large spherical host. The LPR curves for the ensem-
ble-averaged spheroid and cylinder are rather close to each other, exhibit a near-
monotonous increase with scattering angle by about an order of magnitude, and 
show the highest Lδ  values.  
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17.4  Optical characterization 

As we have mentioned in Section 1.4, there are two general classes of problems 
involving electromagnetic scattering by particles: the direct problem and the in-
verse problem. Thus far, we have dealt primarily with the direct problem of calc-
ulating or measuring the scattering by a known, well-defined object. By solving 
the inverse problem, one can attempt to characterize an object of interest using 
scattering data collected from laboratory or in situ measurements or remote-
sensing observations.   

The potentially strong dependence of the scattering properties of particles on 
their size parameter, morphology, and relative refractive index makes measure-
ments of electromagnetic scattering a powerful noninvasive means of particle 
characterization. In fact, there are so many applications of optical particle charact-
erization in laboratory and remote-sensing research that even listing them is im-
practicable. Therefore, we will describe only three selected examples, directing 
the reader to the literature cited at the end of this chapter for more details. 

The bottom curve in Fig. 17.21 depicts measurements of the intensity of the 
light scattered by a slowly evaporating glycerol droplet at a scattering angle of 
approximately 90°. The droplet was illuminated by a linearly polarized laser 
beam at a wavelength of λ1 = 0.5145 μm, the same beam being used to levitate 
the particle. The upper curve shows the results of Lorenz–Mie computations for 
a spherical droplet with a radius ranging from 4.38 to 4.67 μm and a relative re-
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Fig. 17.21.  Measurements and computations of the intensity (in arbitrary units) 
scattered by a glycerol droplet at a scattering angle of approximately 90° ver-
sus droplet radius (after Chýlek et al. 1992). 
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fractive index of 1.4746, corresponding to that of glycerol at the visible wave-
length. Comparison of the two curves demonstrates that by identifying the loca-
tions of the narrow resonance features in the experimental data, the radii of 
spherical droplets can be determined with extreme precision. Chýlek et al. (1983) 
developed a technique for determining the relative refractive index as well as the 
size of an optically levitated spherical particle illuminated by a tunable dye laser.  
The technique is based on analyzing both the wavelengths of the resonance peaks 
and the line profiles in the curve of the backscattered intensity as a function of 
laser wavelength. More recent developments have been described by Huckaby et 
al. (1994), Ray and Nandakumar (1995), and Tu and Ray (2001). 

Muñoz et al. (2010) described the use of the polarimetric nephelometer 
shown in Fig. 1.6c for the characterization of polydisperse microscopic water 
droplets generated by a nebulizer. The specific conditions of the experiment just-
ified the use of the simple FOSA to simulate theoretically the measurement re-
sults. Muñoz et al. measured the entire normalized scattering matrix and verified 
experimentally its expected block diagonal structure summarized by Eq. (15.79). 
The measurements were performed at wavelengths 488, 520, and 647 nm. Some 
of the data at the 488- and 647-nm wavelengths are depicted in Fig. 17.22. As the 
first step, Muñoz et al. fitted the measured values of the ratios )30()( 11 °aa Θ  and 

)()( 11 ΘΘ ab−  at each wavelength by assuming a wavelength-independent rela-
tive refractive index of 1.33 and by parameterizing the polydispersion of droplet 
radii in terms of the following log-normal distribution: 
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The method to find the best-fit values of rg and gσln  was based on the so-called 
downhill simplex method and yielded the following average results: rg = 0.80 ± 
0.07 μm and gσln  = 1.50 ± 0.04. These values were then used to calculate all 
elements of the Lorenz–Mie scattering matrix. The resulting curves showed an 
excellent quantitative agreement with the experimental data over the entire scat-
tering-angle range and at all three wavelengths, as exemplified by Fig. 17.22. 
This result confirmed the high fidelity of laboratory measurements as well as 
demonstrated the power of polarimetric nephelometry as a particle characteriza-
tion tool.     

Finally, Plate 17.7b illustrates the use of laboratory measurements of the 
backscattering linear depolarization ratio Lδ  for characterization of nonspherical 
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particles (after Schnaiter et al. 2012). The blue symbols show the results of 
measurements performed at the Aerosol Interactions and Dynamics in the At-
mosphere facility of the Forschungszentrum Karlsruhe (Wagner et al. 2009) at 
the laser wavelength 488 nm. This ice cloud experiment was started at an initial 
temperature of 192 K and in ice saturated conditions. Nano-sized meteoric smoke 
analog particles were used as ice seeds. Expansion cooling of the chamber gas 
was initiated at t = 0 and resulted in a gradual increase of the ice saturation ratio. 
After the ice supersaturation ratio was increased to about 35% (at t = 500 s), ice 
crystals started to nucleate heterogeneously on the surfaces of the aerosol part-
icles, as indicated by the steep increase of the measured depolarization ratio. The 
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Fig. 17.22.  The results of laboratory measurements (symbols) and theoretical 
Lorenz–Mie computations (curves) of scattering matrix elements for polydis-
perse microscopic water droplets at 488- and 647-nm wavelengths (see text). 
The vertical bars indicate estimated measurement uncertainties.  
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expansion cooling lasted until t = 2000 s, resulting in the growth of the ice crystals 
to a median equal-volume diameter of about 3 μm. The time-dependent ice cryst-
al size distribution was retrieved from simultaneous infrared extinction meas-
urements using theoretical computations based on the TMM. After the expansion 
cooling was stopped, the ice cloud started to evaporate due to the heat flux from 
the warmer chamber walls. The best theoretical fit to the measured infrared ex-
tinction spectra was achieved by assuming oblate ice cylinders with a diameter-
to-length ratio of 1.25. The use of this aspect ratio and the retrieved temporal 
evolution of the size distribution in subsequent TMM calculations of the back-
scattering linear depolarization ratio resulted in a close quantitative agreement 
with the corresponding laboratory data, as Plate 17.7b beautifully demonstrates.  

Problems 

17.1:   Use the Lorenz–Mie program described in Section 5.10 of MTL1 and 
available at http://www.giss.nasa.gov/staff/mmishchenko/ftpcode/spher.f 
(assessed November 2013) to compute the extinction cross section and 
asymmetry parameter for polydisperse spheres with real-valued relative  
refractive indices varying from 1.3 to 1.7 in steps of 0.05 and effective size 
parameters varying from 0.2 to 15 in steps of 0.2. Use the gamma distribu-
tion (15.108) with rmin = 0, rmax = ∞ (in the sense of Problem 5.13), and a 
fixed effective variance of 0.2. Normalize the results by those for the cent-
ral refractive index 1.45 and plot them as functions of the effective size  
parameter. Analyze the variability of 〉〈 extC  and g with wavelength for the 
various effective size parameters.  

17.2:   Use the same computer program to calculate the elements of the normal-
ized scattering matrix for monodisperse spherical particles with relative re-
fractive indices 1.05, 1.1, 1.3, and 1.8 and size parameters 0.5, 1, 1.5, 2, 3, 
4, and 5. Plot the results in the format similar to that of Fig. H.2. Analyze 
the size-parameter extent of the Rayleigh domain as a function of relative 
refractive index.   

Further reading 

An extensive source of specific information on far-field observable properties of 
spherical and nonspherical particles and on optical particle characterization are 
MTL1, the collective monograph edited by Mishchenko et al. (2000), and the 
expanding collection of special issues of the Journal of Quantitative Spectros-
copy and Radiative Transfer (see Borghese et al. (2012) and references therein). 
A comprehensive review of applications of the TMM in plasmonics was recently 
published by Khlebtsov (2013). 
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1188 

Electromagnetic scattering by discrete                              
random media: far field 

By definition, a discrete random medium (DRM) is a scattering object in the form 
of an imaginary volume V populated by a large number N of particles in such a 
way that the spatial distribution of the particles throughout the volume is statist-
ically uniform or quasi-uniform. Over time, particle positions and states change 
randomly, thereby resulting in random changes of the state ψ  of the entire object 
(Section 10.4). Classical examples of a DRM are clouds and particle suspensions 
(Plates 1.1b–1.1d). In many cases a particulate surface (Plates 1.1e and 1.1f ) can 
also be modeled as a DRM, since even minute changes of the source-of-
light→object→detector configuration during the measurement are equivalent to 
multi-wavelength shifts in particle positions and, in essence, result in a stochastic 
scattering object. The volume packing density of a DRM can vary from almost 
zero for a cloud to more than 50% for a particulate surface.   

Given their specific morphological traits and ubiquitous presence, scattering 
objects in the form of a DRM deserve a detailed study. As always, the desirable 
way to model electromagnetic scattering by an ergodic DRM is to solve the 
MMEs numerically for a representative set of realizable states ψ  of the object 
and then average the relevant optical observables or energy-budget characteris-
tics using an appropriate probability density function )(ψp  (Section 10.4). This 
approach has no restrictions on the volume packing density of a DRM and has 
been gaining popularity over the past several years, although it remains quite lim-
ited in terms of the number of constituent particles N and the overall size of the 
object relative to the wavelength. The case of a very large number of particles 
coupled with a large overall size of a DRM can be handled analytically by using 
the far-field FEs (Section 6.3), but this approach implies that the packing density 
is extremely small. 

In this chapter we will exploit the availability of the highly efficient STMM 
solver of the MMEs to compute and analyze far-zone scattering characteristics of 
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ergodic random particulate volumes with moderate numbers of constituent parti-
cles and with volume packing densities ranging from essentially zero to several 
dozen percent. The main purpose of this analysis is to illustrate speckle patterns 
caused by a fixed scattering object and demonstrate the main effects of averaging 
over varying states of a stochastic object.    

18.1  Is there multiple scattering? 

It is instructive to begin this chapter by dispelling one more time the intuitively 
appealing, but inherently deceptive, notion of multiple scattering. Throughout 
scientific literature, one can encounter various definitions of “multiple scattering,” 
all of them stemming from a heuristic idea of successive scattering events caused 
by a sequence of particles in a multi-particle group. However, the characterization 
of a morphologically complex object, such as a cloud, as being composed of 
separate particles is based solely on the human visual perception and is immate-
rial in the framework of the frequency-domain MMEs. Indeed, the same VIE 
(4.23) describes electromagnetic scattering by a “multi-particle system” shown in 
Fig. 1.2 as well as by a “single isolated particle,” even though the interior volume 
VINT in the former case is the union of the nonoverlapping “constituent-particle 
volumes” rather than one connected volume. In other words, an object remains a 
single, unified scatterer irrespective of the complexity of its morphology.    

To illustrate this point, let us consider FFS of a parallel quasi-monochromatic 
beam of light by three fixed objects shown in Fig. 18.1: an oblate spheroid with 
an aspect ratio of two, a circular cylinder with a diameter-to-length ratio of one, 
and a cluster of 80 identical small spherical particles distributed throughout an 
imaginary spherical volume V with a radius R. The volume-equivalent-sphere 
size parameters of the spheroid and the cylinder are the same and are equal to 
that of the imaginary spherical volume: k1R = 40. The size parameter of the con-
stituent spherical particles is k1r = 4. The relative refractive indices of the spher-
oid, the cylinder, and the constituent spherical particles are the same and are 
equal to 1.32. The coordinates of the constituent spheres populating the volume V 
were selected using a random number generator, but otherwise they are fixed.     

The laboratory spherical coordinate system used to describe far-field elect-
romagnetic scattering by each object is shown in Fig. 18.2, in which the unit vec-
tors incn̂  and scan̂  specify the directions of incidence and scattering, respectively. 

(a) (b) (c)
V

 
Fig. 18.1.  Three scattering objects. 
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The orientation of a scattering object with respect to the laboratory frame is 
specified by the Euler angles of rotation, as described in Section 13.9 and Ap-
pendix C, assuming that the z-axis of the particle reference frame is directed    
along the symmetry axis of the spheroids or the cylinder. The corresponding sets 
of the Euler angles },,{ γβα  are given by {145°, 52°, 0°} for the spheroid and 
the cylinder and by {0°, 0°, 0°} for the spherical particulate volume.      

The zenith and azimuth angles of the incidence direction are assumed to be 
°= 0incθ  and ,0inc °=ϕ  respectively. The incident beam is taken to be circularly 

polarized in the counter-clockwise sense when looking in the direction of propa-
gation, which implies that 〉〉〈〈 incV = 〉〉〈〈 incI  and .0incinc =〉〉〈〈=〉〉〈〈 UQ  

The left-hand panels of Fig. 18.3 show the far-field angular distributions of 
the intensity 〉〉〈〈 scaI  scattered in the backward hemisphere by the three fixed ob-
jects. These intensity distributions were calculated using numerically exact TMM 
and STMM computer programs and demonstrate typical speckle patterns of com-
parable complexity. The speckle patterns in Figs. 18.3a and 18.3b appear to be 
somewhat less irregular than that in Fig. 18.3c. This can be explained qualita-
tively by the greater morphological complexity of the random multi-sphere 
group, the less regular spatial distribution of the elementary volume elements 
contributing to the integral on the right-hand side of Eq. (5.9), and the fact that 
empty spaces between the constituent spheres do not contribute to the scattered 
field.  

The right-hand panels of Fig. 18.3 show the results obtained by averaging the 
scattered intensity over the uniform orientation distribution of the respective ob-
jects. Not surprisingly, the average intensity distributions are rotationally sym-
metric with respect to the incidence direction. The scattering patterns for the ran-
domly oriented spheroid and cylinder show residual interference effects, whereas 
that for the randomly oriented multi-particle group is rather featureless, the 
strong and narrow backscattering peak being the only notable exception.  
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Fig. 18.2.  (a) Explanation of the scattering geometry.  (b) Angular coordinates 
used in Figs. 18.3 and 18.4. 
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Figure 18.3 demonstrates that there can be vast differences between instant-
aneous or statistically averaged scattering patterns generated by different objects. 
However, these differences result from differences in the objects’ characteristics 
(such as the overall size relative to the wavelength, morphology, and relative re-
fractive index) rather than from differences in fundamental physical laws describ-
ing electromagnetic scattering. The physics of electromagnetic scattering, as em-
bodied by the frequency-domain MMEs or the mathematically equivalent VIE, 
remains the same, irrespective of the nature of the scattering object. To the extent 
that analytical or numerically exact solutions of these primordial equations are 

(a)

(b)

(c)

 
Fig. 18.3.  Scattered intensity for the spheroid (a), the cylinder (b), and the 
spherical particulate volume (c) in fixed (left-hand panels) and random (right-
hand panels) orientations. The grey scale is individually adjusted in order to 
maximally reveal the fine structure of each scattering pattern. Fig. 18.2b shows 
the angular coordinates used for all six panels. 
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possible in practice, they incorporate and represent all the physics of the scatter-
ing problem.  

Despite this irrefutable fact, there has been a tendency to believe that the 
“multi-particle” morphology shown in Fig. 18.1c somehow results in a multiple-
scattering object, whereas the “single-particle” morphologies shown in Figs. 
18.1a and 18.1b result in single-scattering objects. However, as we have men-
tioned in Section 6.2, multiple frequency-domain electromagnetic scattering is 
not a real physical phenomenon, albeit it can be a useful mathematical abstrac-
tion. Indeed, all three left-hand panels in Fig. 18.3 are the result of solving the 
same MMEs and describe single electromagnetic scattering by three morpholog-
ically different objects. In particular, the computation of the left-hand panel in 
Fig. 18.3c did not involve any new fundamental equations and, thus, any new 
physical phenomena.  

18.2  Speckle 

Let us discuss in more detail the properties of the far-field speckle generated by a 
random particulate volume. As before, we assume that N identical spherical part-
icles are distributed randomly and quasi-uniformly throughout an imaginary 
spherical volume V with a radius R much greater than the particle radius r, as 
shown in Plate 18.1a. The size parameters of the particles and the spherical vol-
ume are fixed at k1r = 4 and k1R = 40, respectively. The refractive index of the 
particles relative to that of the homogeneous surrounding medium is 1.32. The 
spherical volume V is illuminated by a parallel quasi-monochromatic beam of 
light propagating in the positive direction of the z-axis of the laboratory reference 
frame, according to Fig. 18.2a. The beam is circularly polarized such that 

〉〉〈〈 incV = 〉〉〈〈 incI  and .0incinc =〉〉〈〈=〉〉〈〈 UQ  Figures 18.4a–18.4e show the far-
field angular distributions of the intensity 〉〉〈〈 scaI  scattered in the backward 
hemisphere by the spherical volumes filled with N = 1, 5, 20, 40, and 80 particles. 
The individual particle positions within V were again chosen using a random co-
ordinate generator, but otherwise they are fixed. The scattering pattern for N = 1 
is rather smooth and perfectly azimuthally symmetric, as it should be for a single 
wavelength-sized spherical particle. However, Figs. 18.4b–18.4e demonstrate 
typical speckle patterns of increasing complexity.  

To discuss and interpret the results of these and forthcoming STMM compu-
tations, we will extensively use the mathematical concept of ordered multi-
particle sequences representing the various terms on the right-hand side of Eq. 
(6.20). Plate 18.1b shows schematically two such sequences depicted using the 
blue and yellow colors. To make the interpretation even more specific, we will 
assign a cumulative phase to each multi-particle sequence by assuming that each 
subsequent particle is in the far zone of the preceding particle. For example, part-
icle 4 of the blue sequence in Plate 18.1b is assumed to be in the far zone of part-
icle 3, particle 3 is assumed to be in the far zone of particle 2, etc. This implies 
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that now we are dealing with the approximate Neumann expansion (6.48) in lieu 
of the exact expansion (6.20), and so the expression for the partial electric field 
contributed by this four-particle sequence at the observation point includes the 
complex exponential factor 

 ,)ˆ(iexp ][ 1
inc

21324341 Rn ⋅++++ RRRrk  (18.1) 

where we use the notation of Fig. 6.1. Thus the corresponding cumulative phase 
of the blue four-particle sequence is  

(a) (b) (c)

(e)(d)

(g) (h) (i)

(f )

 
Fig. 18.4.  Angular distribution of scattered intensity in the far zone of the imagi-
nary spherical volume V filled with N particles.  (a) N = 1 and m = 1.32.  (b) N 
= 5 and m = 1.32.  (c) N = 20 and m = 1.32.   (d) N = 40 and m = 1.32.  (e) N = 
80 and m = 1.32.  (f )  N = 80 and m = 1.32.  (g) N = 80 and m = 1.5.  (h) N = 80 
and m = 1.32, random orientation.  (i) N = 80 and m = 1.5, random orientation. 
The gray scale is individually adjusted in order to maximally reveal the details 
of each scattering pattern. Figure 18.2b shows the angular coordinates used for 
all panels. 
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 ).ˆ( 1
inc

21324341blue Rn ⋅++++= RRRrkδ  (18.2) 

The cumulative phases of other multi-particle sequences are determined sim-
ilarly. For example, for the yellow three-particle sequence it is given by  

 ).ˆ( 1
inc

122331yellow ′′′′′′ +++= Rn ⋅RRrkδ  (18.3) 

It should be kept in mind that the very notion of the cumulative phase be-
comes questionable if at least one particle of a sequence is located in the near 
zone of the preceding particle. This often happens in a densely packed particulate 
volume, thereby making the expansion (6.48) inapplicable in the strict math-
ematical sense. We will see later, however, that qualitative interpretations of 
STMM results using the concept of the cumulative phase may remain meaning-
ful, even in the case of random particulate volumes with relatively large packing 
densities.    

Now the origin of the far-field speckle can be explained as follows. Equation 
(6.48) suggests that at a distant observation point, the partial field due to any part-
icle sequence is an outgoing transverse spherical wavelet centered at the origin of 
the last particle of the sequence.1 Since the distance to the far-field observation 
point is much greater than the radius R of the volume V, all such partial wavelets 
at the observation point propagate in essentially the same direction given by the 
unit vector scan̂  (Plate 18.1b). The Stokes parameters of the scattered field at the 
observation point (Eq. (13.25)) can be directly expressed in terms of the elements 
of the scattering coherency dyad 〉〉⊗〈〈=〉〉〈〈 ∗)( scascasca EEρ  according to 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

〉〉〈〈−〉〉〈〈
〉〉〈〈−〉〉〈〈−
〉〉〈〈−〉〉〈〈
〉〉〈〈+〉〉〈〈

=〉〉〈〈

)ˆˆˆˆ(i

ˆˆˆˆ
ˆˆˆˆ
ˆˆˆˆ

  
2
1   

scascascascascasca

scascascascascasca

scascascascascasca

scascascascascasca

0

1sca

φθθφ
θφφθ
φφθθ
φφθθ

⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅
⋅⋅⋅⋅

ρρ
ρρ

ρρ
ρρ

μ
,I  (18.4) 

(Problem 18.2), where scaθ̂  and scaφ̂  are the polar-angle and azimuth-angle unit 
vectors of the scattering direction such that .ˆˆˆ scascasca φθn ×=  It can be easily 
seen that the dyadic product of the right-hand side of Eq. (6.48) and its complex-
conjugate counterpart is the sum of an infinite number of terms, each describing 
the result of interference of two spherical wavelets centered at the end particles 
of a pair of particle sequences.  

One such pair is exemplified by the blue and yellow sequences shown in 
Plate 18.1b. If the interference of the corresponding pair of spherical wavelets at 
the observation point is constructive (destructive) then it serves to increase (de-
crease) the total intensity scattered in the direction .ˆ scan  According to Eqs. (18.2) 
and (18.3), the result of the interference depends largely on the phase difference 

yellowblue δδ∆ −=  given by 
–––––––––– 
1  This, in fact, is true, irrespective of whether the particles in the sequence are densely 

packed or sparsely distributed (Problem 18.1). 
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        ).ˆˆ( 1
inc

122331
inc

21324341 ′′′′′′ −−−−++++= RnRn ⋅⋅ RRrRRRrk∆  (18.5) 

The total scattered intensity is the sum of the interference results contributed by 
all possible pairs of particle sequences. The minimal angular width of such inter-
ference maxima and minima is proportional to ,1 1Rk  whereas their number 
grows swiftly with increasing N. These two factors explain the increasingly 
spotty appearance of the scattering patterns in Figs. 18.4b–18.4e.  

Equation (18.5) suggests that the speckle pattern must depend not only on the 
number of particles N, but also on the specific way they are arranged with respect 
to the laboratory coordinate system. This is illustrated indeed by Figs. 18.4e and 
18.4f computed for two different random 80-particle configurations shown in 
Plate 18.1c. Owing to the refractive-index dependence of the scattering dyadics 

iA  entering the expansion (6.48), the speckle pattern must also depend on the 
particle refractive index. This is exemplified by Figs. 18.4e and 18.4g computed 
for the same 80-particle configuration – shown in the left-hand panel of Plate 
18.1c – but for different relative refractive indices 1.32 and 1.5, respectively. 

Sometimes it is claimed in the scientific literature that a speckle pattern can 
only be caused by monochromatic incident light such a continuous laser beam. 
Our STMM results and discussion show that all one needs to observe a speckle is 
a fixed object illuminated by a parallel quasi-monochromatic beam of light.  

18.3  Dynamic and static scattering 

Figures 18.4e and 18.4f are indicative of the range of variability of the speckle 
pattern that can be expected upon temporal changes in a multi-particle configura-
tion. After such patterns have been computed or measured for a representative set 
of states of a random particulate volume, one has a choice of:  

● analyzing the statistical information content of differences in the individual 
speckle patterns; or  

● assuming ergodicity and applying an averaging procedure, thereby isolating 
the static component of the speckle patterns.   

These two approaches are known as dynamic and static light scattering (Berne 
and Pecora 1976; Brown 1993; MTL2). In what follows, we will discuss only 
static scattering. In particular, we will demonstrate in the subsequent chapters 
that the classical theories of radiative transfer and WL fall in the realm of static 
scattering and describe the result of averaging the relevant optical observables 
and energy-budget characteristics over a significant period of time or, equiva-
lently, over a significant range of random particle positions. 

18.4  Static scattering by a random particulate volume 

To compute and analyze the static far-field scattering pattern, one needs an effi-
cient way of averaging relevant optical observables over very many random re-
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alizations of an N-particle group. A brute-force solution would be to use a ran-
dom coordinate generator repeatedly to create a large number of different N-
particle configurations and then average numerically over the corresponding in-
dividual results. The more effective approach used here is to create only one ran-
dom N-particle configuration and then average over all possible orientations of 
this configuration with respect to the laboratory coordinate system. This proce-
dure yields an infinite continuous set of random realizations of the N-particle 
group and takes full advantage of the highly efficient orientation averaging pro-
cedure afforded by the STMM. The robustness of this approach will be discussed 
at the end of this section. 

Figures 18.4h and 18.4i show the result of averaging the speckle pattern over 
the uniform orientation distribution of the 80-particle configuration shown in the 
left-hand panel of Plate 18.1c for m = 1.32 and 1.5, respectively. One can see that 
with the exception of notable backscattering peaks, the speckle structure is essen-
tially gone. This is not surprising. Indeed, according to the above discussion, 
each far-field speckle element can be thought of as being the result of construc-
tive or destructive interference of two wavelets contributed by specific multi-
particle sequences, such as those shown in Plate 18.1b. The difference (18.5) be-
tween the cumulative phases of the wavelets at the observation point changes 
randomly as the particles move, so that the average result of the interference is 
zero. However, there are certain pairs of wavelets that interfere constructively, 
irrespective of particle positions, and thereby are responsible for the residual 
static scattering pattern. We will demonstrate below that the backscattering inten-
sity peaks seen in Figures 18.4h and 18.4i, as well as the smooth intensity back-
grounds are in fact caused by special classes of pairs of multi-particle sequences.  

In what follows, we employ the concept of the cumulative phase of a multi-
particle sequence to interpret various effects of increasing the number of particles 
filling the scattering volume on the static scattering patterns obtained by averag-
ing over all orientations of a random N-particle configuration with respect to the 
laboratory reference frame. We make a simplifying assumption that 0sca =ϕ  and 
define the scattering direction in terms of the scattering angle .scaθΘ =  Then the 
far-field scattering pattern can be conveniently described in terms of the normal-
ized Stokes scattering matrix (15.64). The block-diagonal structure of this matrix 
was confirmed by the numerically exact STMM results and is largely caused by 
averaging over the uniform orientation distribution of a multi-particle group cou-
pled with sufficient uniformity of particle positions throughout the scattering vol-
ume. Each scattering matrix element denoted in Eq. (15.64) by a zero has been 
found to be at least an order of magnitude smaller than the smallest nonzero      
element (in the absolute-value sense).  

The upper left-hand panel of Plate 18.2 vividly demonstrates several fund-
amental consequences of increasing the number of particles in the scattering vol-
ume. First, the constructive interference of light singly scattered by the compo-
nent particles in the exact forward direction causes a strong and narrow forward-



 Electromagnetic scattering by discrete random media: far field 279 

scattering enhancement discussed in Section 14.6. This feature is further detailed 
in Plate 18.3a and explained in Plate 18.1d. It can be called forward-scattering 
localization of electromagnetic waves. Indeed, the exact forward-scattering direc-
tion is unique in that the phases of the wavelets forward-scattered by all the indi-
vidual particles in the volume are exactly the same, irrespective of the specific 
particle positions (see the left-hand panel of Plate 18.1d). In the absence of multi-
particle sequences, the constructive interference of these single-particle wavelets 
would lead to an increase of the forward-scattering phase function )0(1 °a  by a 
factor of N. Indeed, the forward-scattering value of the (1,1) element of the ma-
trix R〉〈F  in Eq. (15.64) would grow by a factor of N 2, while the scattering cross 
section R〉〈 scaC  would grow by a factor of N, thereby implying an N-fold in-
crease in ).0(1 °a  This increase does occur for N = 2 and 5 (Plate 18.3a), but then 
it slows down, and by the time N reaches the value 160 the )0(1 °a  value satu-
rates. This behavior can be interpreted qualitatively in terms of a multi-particle 
interaction effect whereby particle 3 (see the right-hand panel of Plate 18.1d) 
“shades” particle 2 by attenuating the incident field exciting particle 2. In fact, we 
will see in the following chapter that it is this multi-particle interaction effect that 
leads to the exponential extinction law in the framework of the RTT.  

Second, the phase functions at scattering angles Θ > 170° start to develop a 
backscattering maximum which becomes quite pronounced for N ≥160 (see Plate 
18.3b). This feature is a typical manifestation of WL of electromagnetic waves in 
the backscattering direction (also known as coherent backscattering).2 The quali-
tative explanation of WL is illustrated in Plate 18.1e. The conjugate wavelets 
caused by the same chain of n particles but sequenced in opposite order interfere 
in the far zone, the interference being constructive or destructive, depending on 
the respective phase difference between the blue and yellow sequences, 

 )ˆˆ()( scainc
11 nnRR +−= ⋅nk∆  (18.6) 

(Problem 18.3). If the observation direction scan̂  is far from the exact backscat-
tering direction given by incn̂−  then the average effect of interference of the con-
jugate wavelets caused by any chain of particles is zero, owing to randomness of 
particle positions. But at exactly the backscattering direction, ,ˆˆ incsca nn −=  the 
phase difference between the conjugate wavelets caused by any chain of particles 
is identically equal to zero. Therefore, the interference is always constructive and 
causes an intensity peak.   

The third consequence of increasing N is that the phase functions at scatter-
ing angles °≤≤° 17030 Θ  become progressively smooth and featureless, thereby 
causing the “diffuse” intensity background clearly identifiable in Fig. 18.4h. The 
major contributor to the background intensity is another class of wavelet pairs, as 

–––––––––– 
2  The term “weak localization of electromagnetic waves” was introduced by solid-state 

physicists in order to draw an analogy with the effect of weak localization of electrons 
in dirty metals (Sheng 2006; Akkermans and Montambaux 2007). 
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illustrated in Plate 18.1f. Now the wavelet caused by the blue sequence of n part-
icles is the same as that caused by the yellow sequence and thus “interferes with 
itself . ” Since the corresponding phase difference is exactly equal to zero irre-
spective of particle positions, the self-interference is always constructive for any 
chain of particles. Therefore, the contribution of this class of wavelet pairs sur-
vives the ensemble averaging for any incn̂  and .ˆ scan  The progressive smoothness 
of the background intensity with growing N in the upper left-hand panel of Plate 
18.2 can be explained by the effect of averaging over the contributions from the 
rapidly increasing number of multi-particle chains.  

As we have already mentioned, the degree of linear polarization of the scat-
tered light for unpolarized incident light is given by the ratio .11 ab−  The bottom 
left-hand panel of Plate 18.2 shows that the most obvious effect of increasing N 
is to smooth out the low-frequency oscillations in the polarization curve for the 
single wavelength-sized sphere and, on average, to make polarization more neu-
tral. This implies that the main contribution to the second Stokes parameter, 

,sca 〉〉〈〈 Q  comes from single-particle chains, whereas the contributions from 
many-particle chains are largely unpolarized.  

We have seen before that the ratio 12 aa  is identically equal to unity for 
scattering by a single sphere. Therefore, the rapidly growing deviation of this ra-
tio from 100% for 5≥N  in Plate 18.2 should again be attributed to multi-
particle chains. Similarly, )()( 43 ΘΘ aa ≡  and 1)180()180( 13 −=°° aa  for scat-
tering by a spherically symmetric particle, but contributions from multi-particle 
chains in particulate volumes with 5≥N  cause an increasingly significant viol-
ation of these equalities.   

If the incident light is polarized linearly in the xz-plane then, according to 
Eqs. (H.38) and (H.39), the angular distributions of the corresponding co-
polarized and cross-polarized scattered intensities are defined by the quantities 

)]()(2)([ 2112
1 ΘΘΘ aba ++  and )].()([ 212

1 ΘΘ aa −  These are plotted in Plate 
18.4. Also depicted are the quantities )]()([ 412

1 ΘΘ aa +  and )]()([ 412
1 ΘΘ aa −  

that define the same-helicity and opposite-helicity scattered intensities for the 
case of incident light polarized circularly in the counterclockwise direction when 
looking in the direction of propagation (Problem 18.4). All of these quantities 
exhibit WL in the form of backscattering peaks growing in amplitude with N.   

By far the most definitive demonstration of the onset of WL is provided by 
the 2)( 21 aa −  and 2)( 41 aa +  curves in Plate 18.4. Indeed, the corresponding 
single-particle curves show no backscattering enhancement whatsoever, so the 
backscattering peaks that develop with increasing N (and thus with increasing 
contributions from multi-particle chains) can be attributed unequivocally to WL. 
Plate 18.4 also depicts the angular profiles of the LPR and CPR given by Eqs. 
(H.40) and (H.54). Our results demonstrate that the contribution from multi-
particle chains causes an increasingly significant deviation of )180(L °μ  and 

)180(C °μ  from zero, while WL causes pronounced backscattering peaks in the 
LPR and CPR angular profiles.   
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The interference mechanism illustrated by Plates 18.1d and 18.1e implies 
that the angular widths of the forward-scattering and WL peaks must be propor-
tional to .1 1Rk  To verify this, we have performed computations assuming that 
the number of k1r = 4 particles is fixed at N = 8, while the size parameter of the 
volume is varied from k1R = 12 to 72 in steps of 6. The arrangement of the eight 
particles inside the k1R = 12 volume is random, but such that each particle is in 
contact with at least one other particle. The other ten particulate volumes with 
k1R = 18, 24, …, 72 are obtained by uniformly scaling all particle coordinates of 
the k1R = 12 volume, while keeping the particle size fixed. This procedure is illu-
strated in Fig. 18.5, showing the original k1R = 12 volume and the derivative k1R 
= 24 volume. The corresponding STMM results are depicted in Plates 18.3c and 
18.3d and demonstrate indeed that the widths of both peaks decrease with in-
creasing inter-particle separation, thus corroborating their interference nature. 
The nearly constant amplitude of the forward-scattering peak and the rapidly de-
creasing amplitude of the backscattering peak testify again that these features are 
caused by pairs of single-particle and multi-particle sequences, respectively. In-
deed, the single-particle term does not and the multi-particle terms do contain 

distance)particle-inter(1  factors in the far-field Neumann expansion (6.48).   
A more subtle manifestation of WL can be observed in the case of a random 

particulate volume populated by particles with sizes significantly smaller than the 
wavelength (Mishchenko et al. 2009b). Figure 18.6 depicts the ratio 11 ab−  for a 
particulate volume with k1R = 31 populated by N = 1, …, 1875 identical spherical 
particles with k1r = 2 and m = 1.31 (Mackowski and Mishchenko 2011). The 
reader can see that, unlike the 11 ab−  trend seen in Plate 18.2, the increase in the 
particle number first to 75 and then to 750 causes the onset and rapid growth of a 
new feature not exhibited by the N = 1 curve. It is this narrow asymmetric mini-
mum of polarization at backscattering angles that was called the polarization op-
position effect (Mishchenko 1993). Like other manifestations of WL, it is caused 
by pairs of multi-particle sequences exemplified by Plate 18.1e. A qualitative in-
terpretation of this WL feature can be found in the review by Shkuratov et al. 
(1994) as well as in Mishchenko et al. (2009b).      

k1R = 24k1R = 12
 

Fig. 18.5.  Imaginary spherical volumes populated by eight identical particles. 
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The effect of increasing the number of particles N in a random particulate 
volume can be expected to be twofold. On one hand, it serves to increase the 
number of multi-particle chains and thereby enhances such corollaries of the ex-
pansion (6.48) as the smoothness of the scattered intensity at side-scattering ang-
les and the various WL features at backscattering angles. On the other hand, it 
leads to increased packing density and can eventually cause features in the scat-
tering patterns not implied by the far-field Neumann expansion. One should, 
therefore, expect that the above interpretation of numerically exact STMM re-
sults must ultimately become inadequate when the particle packing density be-
comes exceedingly large (Dlugach et al. 2011; Tishkovets et al. 2011). Figure 
18.6 shows that this is indeed the case: unlike the other curves, the black solid 
curve exhibits a high-frequency ripple reminiscent of a homogeneous spherical 
particle with a size parameter of k1R = 31. Obviously, the corresponding packing 
density of 50% is so high that the expansion (6.48), as well as the assumption of 
randomness and uniformity of the particles’ spatial distribution become inapplic-
able.  

Nevertheless, the direct solutions of the MMEs discussed above do demon-
strate that the classical consequences of the low-density assumption can survive – 
at least in a semi-quantitative sense – volume packing densities reaching 24% 
(see the curves in Plates 18.2–18.4 corresponding to N = 240). Such values are 
typical of particle suspensions and even of some particulate surfaces.  

To conclude this section, let us examine whether it was appropriate to calc-
ulate each curve in Plates 18.2–18.4 and Fig. 18.6 by averaging over orientations 
of only one N-particle configuration. In the beginning of this section, we made a 
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Fig. 18.6.  Polarization opposition effect. 
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bold assumption that the results thus obtained would be statistically representa-
tive of all possible realizations of the N-particle group, at least for large N. The 
correctness of this assumption is well illustrated by Plates 18.3e and 18.3f com-
puted for two different realizations of a random 240-particle group populating a 
k1R = 40 spherical volume. Even though the two sets of initial coordinates of the 
240 particles were quite different, averaging over all orientations of each 
configuration yielded virtually indistinguishable results.  

18.5  Conditions of applicability of the single-scattering approximation 

Numerically exact STMM computations of far-field scattering by a random part-
iculate volume can be used to quantify the range of applicability of one of the 
main assumptions of the FOSA, i.e., the SSA (14.1)–(14.3). We have seen in the 
preceding section that if all multi-particle sequences in the far-field Neumann ex-
pansion (6.48) are neglected then the constructive forward-scattering interference 
of all partial wavelets at the far-zone observation point makes the total amplitude 
scattering matrix for 0=Θ  equal to N times the corresponding single-particle 
amplitude scattering matrix. As a consequence, 

 ).particle one() volumeeparticulat( extext CNC =〉〈 R  (18.7) 

Another corollary of the neglect of all multi-particle sequences is  

 ).particle one;0() volumeeparticulat;0( 11 °==°= ΘΘ aNa  (18.8) 

Finally, all manifestations of WL must also disappear. Therefore, a significant 
violation of the equalities (18.7) and (18.8) and/or a pronounced WL feature in 
the backscattered light indicate that the SSA does not hold. 

Figure 18.7 parallels Plates 18.3c and 18.3d, discussed in the preceding sec-
tion, and depicts the ratios  

 
)particle one(8

) volumeeparticulat(
ext

ext

C
C R〉〈  (18.9) 

and 

 
)particle one;0(8

) volumeeparticulat;0(
1

1

°=
°=

Θ
Θ

a
a  (18.10) 

as functions of the size parameter k1R of the random particulate volume pop-
ulated by eight identical spherical particles with k1r = 4 and m = 1.32. The upper 
horizontal axis translates the volume size parameter into the particle packing 
density ρ  and the quantity ,1 R〉〈dk  where R〉〈d  is the average distance between 
the sphere centers.  

The SSA implies that both ratios (18.9) and (18.10) must be equal to unity 
and )]()([ 212

1 ΘΘ aa −  must be equal to zero. However, Fig. 18.7 and Plate 18.3d 
demonstrate that as small a packing density as 1% already leads to significant de-



Chapter 18 284 

viations from the SSA predictions. They obviously indicate that one needs large 
inter-particle distances and very low packing densities in order to make the SSA 
sufficiently accurate.    

Problems 

18.1:   Show that at a sufficiently distant observation point, the partial electro-
magnetic field due to any particle sequence contributing to the right-hand 
side of Eq. (6.20) is an outgoing transverse spherical wavelet centered at 
the origin of the last particle of the sequence.   

18.2:   Derive Eq. (18.4).  

18.3:   Derive Eq. (18.6).  

18.4:   Consider the case of an incident quasi-monochromatic beam of light polar-
ized circularly in the counter-clockwise direction when looking in the di-
rection of propagation. The scattered intensity component circularly polar-
ized in the same sense is called the same-helicity intensity, whereas that 
polarized in the opposite sense is called the opposite-helicity intensity. The 
circular polarization ratio (CPR) )(C Θμ  is defined as the ratio of the same-
helicity and opposite-helicity scattered intensities as a function of the scat-
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Fig. 18.7.  Ratios defined by Eqs. (18.9) and (18.10) versus k1R. Also shown are 
the ρ  and R〉〈dk1  values corresponding to k1R = 12, 24, 36, 48, 60, and 72. 
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tering angle Θ. Derive an explicit formula for )(C Θμ  in terms of the ele-
ments of the normalized scattering matrix. Show that 

 ).(CC πμδ =  (18.11) 

Notes and further reading 

One can often encounter in the literature the notion of multiple electromagnetic 
scattering as a “random walk of photons” inside a particulate volume. However, 
this notion is never introduced in the proper QED framework and as such is thor-
oughly fallacious and misleading (Mishchenko 2009).   

Apparently, the first laboratory observation of WL, in the form of the polar-
ization opposition effect, was reported by a pioneer of 
polarimetric remote sensing Bernard Lyot (1897–
1952) (see Lyot 1929). Oetking (1966) observed WL 
in the form of a narrow intensity peak centered at the 
exact backscattering direction. However, neither Lyot 
nor Oetking offered a correct theoretical explanation 
of their experimental results. The first theoretical pre-
diction of WL was made by K. M. Watson with a ref-
erence to a private communication from R. Ruffine 
(Watson 1969). The first true laboratory demonstra-
tions of WL accompanied by a correct theoretical int-
erpretation should be credited to Kuga and Ishimaru 
(1984), Tsang and Ishimaru (1984), Van Albada and 
Lagendijk (1985), and Wolf and Maret (1985). 

A thorough discussion of speckle phenomena in optics can be found in the 
monograph by Goodman (2007). Speckle patterns such as those shown in the 
left-hand column of Fig. 18.3 are also called two-dimensional angle-resolved opt-
ical scattering (TAOS) patterns. Analyzing instantaneous TAOS patterns meas-
ured for individual aerosol particles is increasingly used as a tool by which the 
particles can be characterized, classified, and, in some cases, identified (see, e.g., 
the reviews by Kaye et al. (2007), Aptowicz et al. (2013), and Crosta et al. 
(2013)).   

Bernard Lyot
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Near-field scattering by a sparse discrete random     
medium: microphysical radiative transfer theory 

The discussion in the preceding chapter was limited to the far field of a random 
particulate volume comprising a moderate number of particles. However, one is 
often interested in the near field in order to compute the energy budget of a vol-
ume element of a DRM rather than of the entire DRM. Furthermore, in the ma-
jority of actual applications the detector of light is located in the near zone of the 
entire DRM, including the cases of being inside the particulate volume. Although 
numerically exact solvers of the MMEs such as the MSM (Section 16.1.3) can be 
used to compute the near field of a DRM (see, e.g., Mackowski and Mishchenko 
2013), the applicability of this direct approach is still limited in terms of the 
number of constituent particles and the overall size of the particulate volume 
relative to the wavelength. 

This implies that the near-field solution of the MMEs for stochastic multi-
particle objects such as those shown in Plates 1.1b–1.1f has to be based on a 
number of simplifying assumptions such as ergodicity, the sparsity and statistical 
uniformity of the particles’ spatial distribution, and the asymptotic limit N →∞, 
where N is the number of particles in a DRM. The main objective of the follow-
ing analysis is to show that this methodology can indeed be used to derive anal-
ytically a set of closed-form equations that can be solved numerically with rela-
tive ease. As a result, it becomes possible to address the energy-budget problem 
and quantify the response of near-field WCRs for a representative range of mod-
els of a DRM.  

Following the discussion in Chapter 8, the solution of the energy-budget 
problem will be based on the computation of the ensemble-averaged PST of the 
total field via Eqs. (8.4) and (8.5). The quantification of the reading of a near-
field WCR will require ensemble averaging of a “partial” PST contributed by 
particles residing in the conical acceptance volume q̂ΔV  of the instrument (Fig. 
11.8). We will see that addressing both problems can be reduced to solving the 
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same intermediate equation traditionally called the radiative transfer equation 
(RTE). As usual, we will first consider the case of purely monochromatic radia-
tion and then discuss the more general case of polychromatic scattering.   

19.1  The Twersky approximation 

Let us consider electromagnetic scattering by a large group of N particles imbed-
ded in an infinite, homogeneous, isotropic, and nonabsorbing medium. The part-
icles are sparsely distributed throughout a macroscopic volume V and are illum-
inated by a plane electromagnetic wave propagating in the direction of the unit 
vector ŝ  according to Eq. (6.27) (see Fig. 19.1). We will assume that: 
● the particles are separated widely enough that each of them is located in the 

far zones of all the other particles; and 
● the observation point is also located in the far zones of all the particles, al-

though in general it can be located in the near zone of the entire particulate 
volume V. 

These assumptions make applicable the far-field Neumann expansion of the total 
electric field (6.47)–(6.48). Each term on the right-hand side of Eq. (6.48) can be 
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Fig. 19.1.  Electromagnetic scattering by a large number of discrete particles 
sparsely distributed throughout an imaginary macroscopic volume V.  
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said to be contributed by a one- or multi-particle sequence. Figure 19.2 shows 
examples of one-, two-, and three-particle sequences. 

The terms with ij =  and jl =  in the triple summation on the right-hand side 
of Eq. (6.48) are excluded, but the terms with il =  are not. Therefore, we can 
decompose this summation as follows: 
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The triple summation on the right-hand side of Eq. (19.1) is illustrated in Fig. 
19.2d and includes multi-particle sequences involving a particle only once (so-
called self-avoiding sequences), whereas the double summation includes se-
quences involving a particle more than once, as shown schematically in Fig. 
19.2e. Higher-order summations in Eq. (6.48) can be decomposed similarly. 

Thus, the total field at an observation point r is composed of the incident 
field, one-particle contributions, and multi-particle contributions that can be di-
vided into two groups. The first one includes all the terms contributed by self-
avoiding multi-particle sequences (Fig. 19.3a), whereas the second group in-
cludes all the terms corresponding to multi-particle sequences that involve a part-
icle more than once (Figs. 19.3b–19.3e).   

The so-called Twersky approximation (Twersky 1964) neglects the terms be-
longing to the second group and retains only the terms from the first group:    
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Fig. 19.2.  (a) Incident field, (b) a one-particle sequence, (c) a two-particle se-
quence, (d) a self-avoiding three-particle sequence, and (e) a three-particle se-
quence involving particle i twice.  
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It is straightforward to show that for a large N, the Twersky approximation 
accounts for the majority of multi-particle sequences. Specifically, an L-fold 
summation with 2>L  on the right-hand side of the full expansion (6.48) con-
tains 1)1( −− LNN  terms, whereas that in the truncated expansion (19.2) contains 

)!(! LNN −  terms. The ratio of these two numbers indeed tends to unity as 
→N ∞, which suggests that one can expect the Twersky approximation to yield 

rather accurate results, provided that the number of particles is sufficiently large.   
It is convenient to represent Neumann expansions of the electric field using 

the diagram method. Figure 19.4a visualizes the full expansion (6.48), whereas 
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Fig. 19.3.  (a) Self-avoiding sequences and (b)–(e) four-particle sequences involv-
ing a particle more than once.  
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Fig. 19.4b illustrates the Twersky approximation (19.2). The arrows in these dia-
grams represent the incident field, the symbol ––● denotes the outcome of multi-
plying an “incoming” field by a B  dyadic, and a dashed curve indicates the re-
peated occurrence of the same particle in a multi-particle sequence. 

19.2  The Twersky expansion of the coherent field 

Let us now assume that the N particles filling the volume V are randomly moving 
and consider the total field E(r) at an internal point .V∈r  In general, E(r) varies 
(fluctuates) in time because of the random temporal variations of the particle co-
ordinates and states, albeit at a much slower rate than the time-harmonic factor 

).i(exp tω−  Since one is typically interested in time-averaged characteristics of 
the total electromagnetic field, it is convenient to decompose E(r) into the aver-
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Fig. 19.4.  Diagrammatic representations of (a) Eqs. (6.47)–(6.48) and (b) Eq. 
(19.2). 
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age (or coherent) part Ec(r) and the fluctuating part Ef (r):  

 ),()()( fc rErErE +=  (19.3) 

where, upon assuming that the particle ensemble is fully ergodic (see Section 
10.4), 
 ,)()()( ,c ξRrErErE 〉〈=〉〉〈〈=  (19.4) 

                                        .)()( ,ff 0rErE R =〉〈=〉〉〈〈 ξ  (19.5) 

The ensemble averaging is performed over a statistically representative set of 
coordinates and states of all the N particles.  

It is imperative to recognize that the coherent field Ec(r) thus defined is not a 
real physical field, but rather is a purely mathematical construction. Indeed, if we 
restore the time-harmonic factor ),i(exp tω−  which we have been omitting so far 
for the sake of brevity, then we must conclude that the time average of the actual 
electric field is equal to zero, according to Eq. (7.1). In contrast, the coherent field 
does not vanish because it is defined as the time average of the part of the electric 
field that does not include the factor ).i(exp tω−  The only reason to introduce the 
coherent field in the first place is that it will eventually appear in formulas for 
quantities that determine the time-averaged energy budget of the scattering me-
dium and/or can actually be measured with a suitable optical device. As we have 
seen before, these quantities are always defined in such a way that the factor 

)i(exp tω−  naturally disappears upon multiplication by its complex-conjugate 
counterpart.   

Let us now assume that: 
● all particle positions iR  as well as all particle microphysical states iξ  (and 

thus the corresponding particle-centered scattering dyadics ))ˆ ,ˆ( nn′iA  as 
functions of time are independent random processes; 

● all particles have the same statistical characteristics; and 
● the individual spatial distributions of all the N particles throughout the entire 

volume V are statistically uniform. 
This implies that averaging over all the individual-particle coordinates and all the 
individual-particle microphysical states can be performed independently and that 
all individual-particle coordinate probability density functions are given by Eq. 
(14.16). We then have from Eq. (19.2):  
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The spatial integrations are performed over the entire volume V.  
Note that since the far-field FEs are valid only in the far zones of all the N 

particles, each volume integration on the right-hand side of Eq. (19.6) should not, 
in principle, include a spherical volume element centered at the observation point 
r or at a particle origin iR  (i = 1, …, N ) and having a radius defined by the in-
equalities (5.12)–(5.14). Typically, however, this volume element is much 
smaller than V, and its relative contribution to the respective volume integral can 
be expected to be negligible.  

Equations (6.42)–(6.45) imply that 
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where ξ〉′〈 )ˆ,ˆ( nnA  is the average of the single-particle scattering dyadic over the 
particle states. Finally, taking the limit →N ∞, we obtain (Problem 19.1) 
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where VNn =0  is the average particle number density. Note that the subscripts 
1, 2, … are now used to label different integration variables rather than to num-
ber the actual particles. Equation (19.8) is the full vector version of the expansion 
derived by Twersky (1964) for scalar waves. 

19.3  Coherent field 

Let us now assume for the sake of simplicity that the volume V is uniformly con-
vex. This assumption ensures that all points of a straight line connecting any two 
points of the medium lie inside the medium. It is convenient for our purposes to 
introduce an s-axis parallel to the incidence direction and going through the ob-
servation point. This axis enters the volume V at the point A such that 0)( =As  
and exits it at point B (Fig. 19.5). Let us consider the first integral on the right-
hand side of Eq. (19.8) and denote it I1. From ,11 RrR ′+=  we have  
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Fig. 19.5.  Geometry showing the quantities used in the derivation of Eq. 
(19.16). 
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The observation point is assumed to be in the far zone of any particle, which 
means that 11Rk ′ 1. We may, therefore, use in Eq. (19.9) the Saxon’s asymp-
totic expansion of a plane wave in spherical waves (see Appendix D): 
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In order to evaluate the integral (19.9), we use a spherical polar coordinate 

system with origin at the observation point and with the z-axis directed along the 
s-axis. We thus have 
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Let us now recall that the number of particles filling the volume V is assumed to 
be very large, and the particles are assumed to be separated by distances greatly 
exceeding the wavelength (Eq. (H.7)). As a consequence, )(rs 11 k  (except 
for points in the immediate vicinity of the boundary), which suggests that the 
second term on the right-hand side of Eq. (19.11) must be much smaller than the 
first term. Also, for objects like clouds, the imaginary boundaries of the scatter-
ing volume V are not perfectly fixed and can be expected to fluctuate during the 
time interval necessary to compute the coherent field. Averaging over these fluct-
uations does not affect the first term on the right-hand side of Eq. (19.11), but 
effectively extinguishes the second term proportional to the rapidly oscillating 
exponential .)]()([2iexp }{ 1 rsBsk −  Thus,  
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Consider now the second integral on the right-hand side of Eq. (19.8) and 
denote it I2. Since ,2112 RRrR +′+=  we have 
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where 
inc
021

inc
2 )ˆi(exp ERsE ⋅k=  

       )()ˆi(exp)ˆi(exp inc
21111 rERsRs ⋅⋅ kk ′=  

       )]i(exp)ˆˆ()i(exp)ˆˆ([ 12i
111111

1

2

1
RkRk

Rk
′′−−′−′+

′⎟
⎠
⎞⎜

⎝
⎛= RsRs δδ

π  

            ).()]i(exp)ˆˆ()i(exp)ˆˆ([ 1 inc
2112121121

21
rERsRs RkRk

R
−−−+× δδ  (19.14) 

It is thus clear that only particles with origins on the s-axis contribute to I2. Sub-
stituting Eq. (19.14) in Eq. (19.13) yields 
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The remaining integrals in Eq. (19.8) are evaluated analogously. The final result 
is as follows: 

 ),()ˆ,ˆ()(2iexp)( inc

1

0
c rEssrrE ⋅⎥⎦

⎤
⎢⎣
⎡ 〉〈= ξ

π As
k

n  (19.16) 

where the dyadic exponential is defined as 
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It is clear from the derivation of Eq. (19.16) that all single- and multi-particle 
paths that contribute to the coherent field at an internal observation point lie on 
the straight line parallel to the incidence direction and going through the observa-
tion point. Furthermore, all particles that contribute to the coherent field lie be-
tween the source of illumination and the observation point. Since the products  

 ,)ˆ,ˆ( inc
0Ess ⋅ξ〉〈A  ,)ˆ,ˆ()ˆ,ˆ( inc

0Essss ⋅⋅ ξξ 〉〈〉〈 AA  etc.  

always yield electric vectors perpendicular to ,ŝ  the coherent field satisfies the 
transversality condition 
 .0ˆ)(c =srE ⋅  (19.18) 

The fact that the coherent field is controlled by the forward-scattering dyadic 
is not surprising. Indeed, the fluctuating component of the total field is the vector 
sum of the partial fields generated by different particles. Random movements of 
the particles involve large phase shifts in the partial fields, thereby causing the 
fluctuating field to vanish when it is averaged over particle positions. The exact 
forward-scattering direction is different because the phase of the partial wave 
forward-scattered by a particle towards the observation point in response to the 
incident wave does not depend on the particle position along the line connecting 
the source of illumination and the observation point (see Fig. 19.6). Therefore, 
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the interference of the incident wave and the forward-scattered partial wave is 
always the same, irrespective of the precise position of the particle, and the result 
of the interference does not vanish upon statistical averaging over particle pos-
itions. The same is true of the interference of the incident field and a wave for-
ward scattered along a multi-particle sequence of any order as well as of the mu-
tual interference of different forward-scattered waves.    

Since srrr ˆ)(sA +=  (Fig. 19.5), we have from Eq. (19.16): 
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is the dyadic propagation constant for the propagation direction ,ŝ   

 ])ˆ(iexp[),ˆ( ss ss κη =  (19.22) 

is the coherent transmission dyadic, and 
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Fig. 19.6.  The phase of the wave forward-scattered by a particle in response to 
the incident plane wave is the same, irrespective of the exact position of the 
particle on the line connecting the source of illumination and the observation 
point. 
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is the boundary value of the coherent field. This is the general vector form of the 
Foldy approximation for the coherent field (cf. Foldy 1945). Another form of Eq. 
(19.19) is 
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Although Eqs. (19.18) and (19.19) may appear to describe a transverse elect-
romagnetic wave, the reader should not forget that )(c rE  is not a real physical 
field. Furthermore, the coherent field was computed by taking an average over a 
uniform distribution of particle positions, as well as over all physically realizable 
particle states. Therefore, it is not defined at any given moment in time.  

We can exploit the transversality of the coherent field to rewrite the above 
equations in a simpler matrix form. As in Section 7.1, we characterize the direc-  
tion of propagation ŝ  at the observation point r using the corresponding polar and 
azimuth angles in the local coordinate system, which is centered at the observation 
point and has the same spatial orientation as the laboratory coordinate system 
(see Fig. 19.7). Then the electric vector of the coherent field can be written as the 
vector sum of the corresponding -θ  and :components-ϕ  

 ).ˆ(ˆ)()ˆ(ˆ)()( ccc sφrsθrrE ϕθ EE +=  (19.25) 
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Fig. 19.7.  The direction of propagation and the electric field vector components 
of the coherent field at an observation point r are specified using a local coor-
dinate system with the same orientation as the laboratory coordinate system 
centered at O. 
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Defining the two-component electric column vector of the coherent field accord-
ing to 
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we have instead of Eq. (19.24) 
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where )ˆ(sk  is the 22×  matrix propagation constant with elements 
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where ξ〉〈 )ˆ,ˆ( ssS  is the forward-scattering amplitude matrix averaged over the 
particle states (cf. Eqs. (5.26)–(5.29)).  

It is often convenient to rewrite Eq. (19.27) in the form 
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where  
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is the coherent transmission amplitude matrix and the 22×  matrix exponential is 
defined as follows:  
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19.4  Transfer equation for the coherent field 

We will now describe the coherent field in terms of quantities having the dimen-
sion of monochromatic energy flux. We first define the coherency column vector 
of the coherent field according to  
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(cf. Eq. (7.40)) and easily derive from Eqs. (19.27) and (19.32) the following 
transfer equation: 
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where JK  is the coherency extinction matrix given by Eq. (13.58). The Stokes-
vector representation of this equation is obtained by using the definition 
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and Eq. (13.61) (Problem 19.3): 
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where K is the Stokes extinction matrix with elements given by Eqs. (13.62)–
(13.68). 

The formal solution of Eq. (19.39) can be written in the form 

 )()](,ˆ[)( cc As rrsr IHI =  
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where incI  is the Stokes column vector of the incident plane wave and  

 ])ˆ([exp),ˆ( 0 ξ〉〈−= ss KH sns  (19.41) 

is the coherent transmission Stokes matrix. As usual, the 44×  matrix exponential 
is defined by 

  ,exp
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where Δ  is the 44×  unit matrix.      

19.5  Ladder approximation for the dyadic correlation function 

We are now well prepared to start the derivation of the ensemble-averaged dy-
adic correlation function of the total field for two internal observation points. Re-
calling Eq. (8.5), we have  

 .,    ,)]([)(),( ,, VC ∈′〉′⊗〈=〉′〈 ∗ rrrErErr RR ξξ  (19.43) 

The Twersky approximation defined by Eq. (19.2) and Fig. 19.4b implies that the 
dyadic correlation function is given by the expression shown diagrammatically in 
Fig. 19.8. To classify the different terms entering the expanded expression inside 
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the angular brackets on the right-hand side of this equation, we will use the not-
ation illustrated in Fig. 19.9a. In this particular case, the upper and lower se-
quences involve different particles. However, the two sequences can involve one 
or more common particles, as shown in Figs. 19.9c–19.9f by using the dashed 
connectors. Furthermore, if the number of common particles is two or more, they 
can enter the upper and lower sequences in the same order, as in Fig. 19.9d, or in 
the reverse order, as in Fig. 19.9e. Figure 19.9f shows a mixed diagram in which 
two common particles appear in the same order and two other common particles 
appear in the reverse order. The contribution of this diagram to the dyadic corre-
lation function is simply 
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Fig. 19.8.  The Twersky expansion of the dyadic correlation function. 
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Fig. 19.9.  Classification of terms entering the Twersky expansion of the dyadic 
correlation function. 
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By the very nature of the Twersky approximation, neither the upper sequence nor 
the lower sequence can involve a particle more than once. Therefore, no particle 
can be the origin of more than one connector. 

To sum and average all the diagrams entering the expanded expression for 
the dyadic correlation function in Fig. 19.8 is a very difficult problem that we 
will not try to address fully. Instead, in this chapter we will neglect all diagrams 
with crossing connectors and will work with a truncated expansion that includes 
only the diagrams with vertical or no connectors. This approximation will allow 
us to sum and average large groups of diagrams independently. The con-
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Fig. 19.10.  Calculation of the cumulative contribution of the diagrams with no 
connectors. 
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sequences of neglecting the diagrams with crossing connectors will be discussed 
in Section 19.13.        

Let us begin with diagrams that have no connectors. Since these diagrams do 
not involve common particles, the ensemble averaging of the upper and lower 
particle sequences can be performed independently. Consider first the sum of the 
diagrams shown in Fig. 19.10a, in which the symbol Σ indicates both the summa-
tion over all appropriate particles and the statistical averaging over the particle 
states and positions. According to the results of Section 19.3, summing the upper 
sequences yields the coherent field at the point r. This result can be represented 
by the diagram shown in Fig. 19.10b, in which the symbol ⇐  denotes the coher-
ent field.  

Similarly, summing the upper sequences of the diagram shown in Fig. 19.10c 
yields, in the limit →N ∞, the diagram shown in Fig. 19.10d. Indeed, since one 
particle is already “reserved” for the lower sequence, the number of particles 
contributing to the upper sequences in panel Fig. 19.10c is .1−N  However, the 
difference between the sum of the upper sequences in panel Fig. 19.10c and the 
coherent field at r vanishes as N tends to infinity. We can continue this process 
and eventually conclude that the total contribution of the diagrams with no con-
nectors is given by the sum of the diagrams shown in Fig. 19.10e.  

It is now clear that the final result can be represented by the diagram in Fig. 
19.10f, which means that the contribution of all the diagrams with no connectors 
to the dyadic correlation function is simply the dyadic product of the coherent 
fields at the points r′  and r: .)]([)( cc

∗⊗′ rErE  This result explains the useful-
ness of introducing the concept of the coherent field in Section 19.2, despite the 
fact that )(c rE  does not represent the actual time (or, equivalently, ensemble) 
average of the electric field.          

All other diagrams contributing to the dyadic correlation function have at 
least one vertical connector, as shown in Fig. 19.11a. The part of the diagram on 
the right-hand side of the right-most connector will be called the tail, whereas the 
box represents collectively the part of the diagram on the left-hand side of the 
right-most connector and can, in principle, be empty. The right-most common 
particle and the box form the body of the diagram. 

Let us first consider the group of diagrams with the same body, but with dif-
ferent tails, as shown in Fig. 19.11b. We can repeat the derivation of Section 19.3 
and verify that in the limit →N ∞, the sum of all diagrams in Fig. 19.12a gives 
the diagram shown in Fig. 19.12c. Indeed, let particle q be the right-most con-

(a) (b) (c)

⇒
⇒

 
Fig. 19.11.  Diagrams with one or more vertical connectors. 
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nected particle and particle p be the right-most particle on the left-hand side of 
particle q in the upper sequence of the diagrams shown in Fig. 19.12a. Consider 
the cumulative contribution of all the diagrams on the left-hand side of Fig. 
19.12b to the total electric field created at the origin of particle p. Writing this 
contribution in the expanded form and then taking the limit ∞→N  yields 
(Problem 19.5) 
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Fig. 19.12.  Summation of the tails. 
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where n is the number of particles in the common body of the diagrams. This 
result is summarized by the right-hand side of Fig. 19.12b.  

Analogously, the sum of the diagrams in Fig. 19.12d is given by the diagram 
in Fig. 19.12e, and so on. We can now sum up all diagrams in Fig. 19.12f and 
obtain the diagram shown in Fig. 19.11c.  

Thus the collective contribution to the dyadic correlation function of all the 
diagrams with the same body and all possible tails is equivalent to the contribu-
tion of a single diagram formed by the body alone, provided that the right-most 
common particle is “excited” by the coherent field rather than by the external 
incident field. This represents a radical difference from the initial expansion 
(19.2), in which the “source of multiple scattering” is the incident field. This im-
portant result allows us to cut off all tails and consider only truncated diagrams of 
the type shown in Fig. 19.11c. 

Thus, the dyadic correlation function is equal to ∗⊗′ )]([)( cc rErE  plus the 
statistical average of the sum of all connected diagrams of the type illustrated by 
Figs. 19.13a–19.13c. The symbols  in these diagrams denote all possible com-
binations of unconnected particles. Let us, for example, consider the statistical 
average of the sum of all diagrams of the kind shown in Fig. 19.13d with the 
same fixed shaded part. We thus must evaluate the left-hand side of the equation 
shown in Fig. 19.13f, where, as before, the symbol Σ indicates both the summa-
tion over all appropriate particles and the statistical averaging over the particle 
states and positions. Let particle w be the right-most particle on the left-hand side 
of particle p in the upper sequences of the diagrams on the left-hand side of Fig. 
19.13f and u be the left-most particle on the right-hand side of particle q. The 
electric field created by particle p at the origin of particle w via the upper se-
quences of all the diagrams shown on the left-hand side of Fig. 19.13f is given by 
the left-hand side of the equation shown diagrammatically in Fig. 19.13g and can 
be written in expanded form as 
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          ,+   (19.45) 

where qE  is the electric field “coming” to the origin of particle q via particle u, 
while the summations and statistical averaging are performed over all appropriate 
unconnected particles (see Fig. 19.14). In the limit →N ∞, Eq. (19.45) takes the 
form 
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Fig. 19.13.  Derivation of the ladder approximation for the dyadic correlation 
function. 
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          ,+   (19.46) 

where the angular brackets now denote scattering dyadics averaged over the part-
icle states. 

Let us consider the first integral on the right-hand side of Eq. (19.46): 
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Since the factor )](i[exp 1 iqpi RRk +  is a rapidly oscillating function of ,iR  the 
contribution of a major part of V to 1I  can be expected to zero out. The only ex-
ception is the small region around the straight line connecting particles q and p, 
where the phase )(1 iqpi RRk +  is almost constant. Therefore, we can evaluate the 
integral (19.47) using the method of stationary phase (see Appendix G).  
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Fig. 19.14.  Calculation of the integrals entering Eq. (19.46). 
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Using the Cartesian coordinate system with origin inside particle q and the z-
axis along the vector ,pqR  as shown in Fig. 19.14, Eq. (19.47) can be rewritten 
in the form 

iqpi
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iiiwp RR
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where ,ix ,iy  and iz  are the coordinates of particle i and the integration limits for 
xi and iy  are set to infinity owing to the fact that only a small part of V along the 
z-axis contributes to .1I  According to Eq. (G.10), the integral over iz  can be sub-
divided into three integrals covering the regions with ,01 << izZ  ,0 pqi Rz <<  
and 2ZzR ipq <<  (Fig. 19.14). The first and third integrals involve rapidly oscil-
lating functions of iz  and vanish. Indeed,  
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where ),2(1 ipq zRkt −=  
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is the sine integral, and 
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is the cosine integral (see Section 5.2 of Abramowitz and Stegun (1964) or Sec-
tion 5.10 of Arfken and Weber (2005)). Similarly, 
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where ).2(1 ipq zRkt +=  Thus only the interval pqi Rz <<0  gives a nonzero 
contribution. We can now use Eq. (G.10), 
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to derive 
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The other integrals on the right-hand side of Eq. (19.46) are computed anal-
ogously. The final result is 
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where the dyadic propagation constant κ  and the coherent transmission dyadic 
η  are given by Eqs. (19.21) and (19.22), respectively. These equations are simi-
lar to Eqs. (19.19) and (19.20) for the coherent field, a notable difference being 
the extra factor .1 pqR   

Equation (19.55a) can be summarized by the diagram on the right-hand side 
of Fig. 19.13g, thereby yielding the right-hand side of the equation in Fig. 19.13f. 
The double rather than a single line indicates that the scalar factor 

pqpq RRk )i(exp 1  has been replaced by the dyadic factor .])ˆ(i[exp pqpqpq RRRκ   
In a quite similar way one can show that the sum of all diagrams of the kind 

shown in Fig. 19.13e with the same fixed shaded part is given by the diagram 
shown in Fig. 19.13h.  

It is now clear that the total contribution of all diagrams with three fixed 
common particles t, q, and p to the dyadic correlation function can be represented 
by the diagram in Fig. 19.13i or, in expanded form, by the statistical average of 
the following product: 
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where the subscripts r and r′  refer to the observation points r and ,r′  respec-
tively. 

After we have neglected all the diagrams with crossing connectors, computed 
the contribution of all the diagrams with no connectors, and figured out how to 
calculate the contributions from various diagrams with one or more vertical con-
nectors, we are perfectly positioned to complete the derivation of the dyadic cor-
relation function. The final result is shown in Fig. 19.15, in which the symbols Σ 
have the usual meaning. Owing to their appearance, the diagrams on the right-
hand side of this symbolic equation are called ladder diagrams. Therefore, this 
entire diagrammatic formula can be called the ladder approximation for the dy-
adic correlation function.  

19.6  Integral equation for the ladder specific coherency dyadic 

The explicit expanded form of the ladder approximation for the dyadic correla-
tion function is as follows (Problem 19.6): 
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Fig. 19.15.  Ladder approximation for the dyadic correlation function. 
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where we use the notation of Fig. 19.16 and  

 .)]([)()( ccc
∗⊗= rErErC  (19.58)  

Let us now take into account the far-field condition ,111rk ′  as well as as-
sume that )ˆ,ˆ( 11 qr′A  is a rather slowly varying function of 1r̂′  and all elements of 
the dyadic ξπ 〉〈− )ˆ,ˆ(2 1

10 qqAkn  are much smaller (in the absolute-value sense) 
than the wave number .1k  Then (Problem 19.7)  
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Let us also integrate over all positions of particle 1 using a local coordinate sys-
tem with origin at the observation point r, integrate over all positions of particle 
2 using a local coordinate system with origin at the origin of particle 1, integrate 
over all positions of particle 3 using a local coordinate system with origin at the 
origin of particle 2, etc. Using the notation introduced in Fig. 19.16 and taking 
into account that ,ˆddd 2

1
3 pp pr=  ,ˆddd 2121

2
2121

3 RR RR=  and so on, we get from 
Eqs. (8.4), (19.57), and (19.59): 
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where )ˆ,(L pr −Σ  is the ladder specific coherency dyadic defined by 
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Fig. 19.16.  Geometry showing the quantities appearing in Eq. (19.57). 
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Note that p ranges from zero at the observation point r to the corresponding value 
at the point where the straight line in the p̂  direction crosses the boundary of the 
medium (point 1C  in Fig. 19.16), 21R  ranges from zero at the origin of particle 1 
to the corresponding value at point ,2C  etc. Importantly, the ladder specific co-
herency dyadic has the dimension of specific intensity or radiance (Wm–2sr–1) 
rather than that of intensity (Wm–2).  

It can be readily verified that the ladder specific coherency dyadic satisfies 
the following closed-form integral equation: 
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Indeed, using )()ˆˆ( c rsp C+δ  as an initial approximation for ),ˆ,(L pr −Σ  we can 
substitute it in the integral on the right-hand side of Eq. (19.62) and obtain an 
improved approximation. By continuing this iterative process, we arrive at Eq. 
(19.61), which is simply the Neumann expansion of the ladder specific coherency 
dyadic.  

19.7  Integro-differential equation for the diffuse specific coherency dyadic 

To derive the integro-differential form of Eq. (19.62), we introduce a q-axis, as 
shown in Fig. 19.17. This axis originates at point C and goes through the obser-
vation point in the direction of the unit vector pq ˆˆ −=  (see Fig. 19.16). We can 
now rewrite Eq. (19.62) as 
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The diffuse specific coherency dyadic is defined as the difference between the 
full ladder specific coherency dyadic and its coherent component: 

 ).()ˆˆ()ˆ,()ˆ,( cLd QCQQ sqqq −−= δΣΣ  (19.64) 

It is easily seen that the integral equation for )ˆ,(d qQΣ  is as follows: 

      )()ˆ,ˆ;(),ˆ()(dd)ˆ,( c
0

0d qCAqQpqnQ
Q

⋅⋅ sqqq ξηξξΣ ξ −= @@  

                                          ∗∗ − TT )],ˆ([)]ˆ,ˆ;([ qQA qsq ηξ ⋅⋅  

                         )ˆ,()ˆ,ˆ;(),ˆ()(ˆddd d
40

0 qqqqq ′′−′+ qAqQpqn
Q

Σξηξξ ξ
π

⋅⋅@@@  

                                                        .)],ˆ([)]ˆ,ˆ;([ TT ∗∗ −′ qQA qqq ηξ ⋅⋅  (19.65) 

Differentiating both sides of Eq. (19.65) finally yields (Problem 19.8) 

       ∗−= T
dd

d )]ˆ([)ˆ,(i)ˆ,()ˆ(i
d

)ˆ,(d qqqqq
κΣΣκ

Σ ⋅⋅ QQ
Q
Q  

                            ∗′′′′+ T
d

4
0 )]ˆ,ˆ;([)ˆ,()ˆ,ˆ;()(ˆdd qqqqqq ξΣξξξ ξ

π
AQApn ⋅⋅@@      

V

r

O
C

q

q̂

p̂ Q

Observation 
point

 
Fig. 19.17.  Geometry showing the quantities appearing in the derivation of the 
integro-differential form of Eq. (19.62). 



Chapter 19 314 

                            .)]ˆ,ˆ;([)()ˆ,ˆ;()(d T
c0

∗+ sqsq ξξξξ ξ AQCApn ⋅⋅@  (19.66) 

For further use, it is more convenient to rewrite Eqs. (19.64) and (19.66) in 
the following form: 
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where the path-length element dq is measured along the unit vector .q̂  The latter 
formula is the integro-differential equation for the diffuse specific coherency dy-
adic. Equation (19.60) then becomes 
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19.8  Radiative transfer equation 

After the dyad )(c rC  is calculated according to Eqs. (19.58) and (19.19), the dif-
fuse specific coherency dyadic can be found by solving Eq. (19.68). The energy-
budget problem can then be addressed by calculating the ensemble-averaged 
Poynting vector at an internal point V∈r  from Eqs. (H.14), (19.69), and (19.67). 
However, it is imperative first to convert all these dyadic equations into equiv-
alent matrix equations suitable for actual numerical computations. To do that, we 
will exploit the transversality of the dyad )(c rC  and the dyadic )ˆ,(d qrΣ  (Prob-
lem 19.9):        

                                        ,ˆ)()(ˆ cc 0srrs == ⋅⋅ CC  (19.70) 

 .ˆ)ˆ,()ˆ,(ˆ dd 0qqrqrq == ⋅⋅ ΣΣ  (19.71) 

Thus only four out of nine components of either )(c rC  or )ˆ,(d qrΣ  are nonzero, 
which allows us to define the corresponding coherency matrix and diffuse spec-
ific coherency matrix using the local coordinate system with origin at the obser-
vation point and orientation identical to that of the laboratory reference frame: 
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Note that hereinafter a tilde is used to label a quantity having the dimension of 
radiance rather than that of intensity. We can then rewrite Eqs. (19.65) and 
(19.68) in the form of the integral and integro-differential equations for the dif-
fuse specific coherency matrix: 
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where S is the amplitude scattering matrix, h is the coherent transmission amp-
litude matrix given by Eq. (19.34), and k is the matrix propagation constant given 
by Eqs. (19.32). 

The next obvious step is to introduce the corresponding four-element coher-
ency column vectors cJ  and d

~J  composed of the elements of the matrices cρ  
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 (cf. Eq. (7.40)). After lengthy, but straightforward algebraic manipulations, we 
derive (Problem 19.10) 
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where  
 })ˆ(exp{),ˆ( 0 ξ〉〈−= ss JJ sns KH  (19.80) 

and ξ〉〈 )ˆ(qJK  and ξ〉′〈 )ˆ,ˆ( qqJZ  are the coherency extinction and phase matrices 
averaged over the particle states (see Eqs. (13.58) and (13.30)). The column vect-
or )(c rJ  satisfies the transfer equation (19.37). 

Our final step is to define the coherent Stokes column vector and the diffuse 
specific intensity column vector according to Eq. (7.43), 
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and rewrite Eqs. (19.78) and (19.79) in the form 
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where ξ〉〈 )ˆ(qK  is the average of the Stokes extinction matrix given by Eq. 
(13.61) over the particle states and ξ〉′〈 )ˆ,ˆ( qqZ  is the analogous average of the 
Stokes phase matrix given by Eq. (13.33). The coherent Stokes column vector 

)(c rI  satisfies the transfer equation (19.39) and is given by Eq. (19.40). 
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Unlike the closed-form integral RTE (19.83), the integro-differential RTE 
(19.84) requires the specification of an appropriate boundary condition. This 
condition follows from Eq. (19.83) and reads 

 ,)ˆ,(~
d 0I =∈← Srqr  (19.85) 

where S is the boundary of the particulate volume V (Fig. 19.1), ←q̂  is any unit 
vector directed into the volume, and 0 is a four-element column with zero com-
ponents. 

Equations (19.39) and (19.84) can also be written as  

           ,)(    ),()ˆ()(ˆ inc
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These equations represent the conventional integro-differential form of the RTE 
applicable to arbitrarily sized, shaped, and oriented particles.  

It is often convenient to introduce the full specific intensity column vector 
according to 
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and rewrite Eqs. (19.86) and (19.87) as a single integro-differential RTE: 
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Accordingly, the integral RTE (19.83) takes the form 
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   (19.90) 
while the boundary condition (19.85) becomes 

 .)ˆˆ()ˆ,(~ inc
 II ←∈← −= qsqr r δS  (19.91) 

It is straightforward to show that both ),(c rI  ),ˆ,(~
d qrI  and )ˆ,(~ qrI  have real-

valued components (Problem 19.11).  
In the absence of particles, the coherent Stokes column vector, the diffuse 

specific intensity column vector, and the full specific intensity column vector be-
come independent of the spatial coordinates. This property follows directly from 
Eqs. (19.86)–(19.88) in the limit .00 →n    
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19.9  Statistically isotropic and mirror-symmetric random particles 

One can expect significant simplifications in cases when the ensemble-averaged 
extinction matrix is diagonal and given by Eq. (15.42). Indeed, then Eqs. (19.41) 
and (19.40) become 
                                    ,][exp),ˆ( ext0 ΔH ξ〉〈−= Csnss  (19.92) 

 inc
ext0c )]([exp)( II rr sCn ξ〉〈−=   

                                                ,)](exp[ inc
ext Irsα−=  (19.93) 

which means that the elements of the Stokes column vector of the coherent field 
are exponentially attenuated with increasing s. The attenuation rates for all four 
components are the same, which means that the polarization state of the coherent 
field does not change with s. Equation (19.93) is the standard Bouguer (or 
Bouguer–Beer) law with   

 ][ abssca0ext0ext ξξξα 〉〈+〉〈=〉〈= CCnCn  (19.94) 

being the attenuation (or extinction) coefficient. Equations (19.83) and (19.84) 
become 
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19.10  Energy-budget problem 

We are now perfectly positioned to finalize the solution of the energy-budget 
problem. Indeed, it is straightforward to show (Problem 19.12) that the ensemble-
averaged Poynting vector at an internal observation point V∈r  is given by 
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where )ˆ,(~ qrI  is the first element of the specific intensity column vector (19.88) 
and is traditionally called the specific intensity. The importance of this direct 
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corollary of the frequency-domain MMEs is hard to overstate. Indeed, it implies 
that to compute the local Poynting vector averaged over a sufficiently long period 
of time, one can solve the RTE for the direction-dependent specific intensity col-
umn vector and then integrate the direction-weighted first element of )ˆ,(~ qrI  
over all directions. This approach is far more practicable than solving the prim-
ordial frequency-domain MMEs or the equivalent FEs written for the entire 
multi-particle object.   

A fundamental and practically important property of the RTE is that it satis-
fies precisely the energy conservation law. Indeed, using the vector identity (H.1) 
and taking into account that q̂  is a constant vector, we can rewrite Eq. (19.89) as 
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00 qrqqrqqrqrqrq ′〉′〈′+〉〈−=∇ IZIKI ξ
π

ξ @nn⋅  (19.98) 

Integrating both sides of this equation over all directions q̂  and recalling Eqs. 
(13.84)–(13.86) yields 

 ),,(~)ˆ,(ˆd)( abs
4

0 qrqrqrS ICn ξ
π

〉〈=〉〉〈〈∇− @⋅  (19.99) 

where ),(~ qrI  is the first element of the column (19.88) traditionally called the 
specific intensity. The physical meaning of this formula is very transparent: the 
net inflow of electromagnetic power per unit volume is equal to the total power 
absorbed per unit volume. If the particles forming the scattering medium are 
nonabsorbing, so that ,0)ˆ,(abs =〉〈 ξqrC  then the time-averaged Poynting vector 
becomes divergence free:  
 .0)( =〉〉〈〈∇ rS⋅  (19.100) 

This means that the time-averaged amount of electromagnetic energy entering a 
differential volume element per unit time is equal to the time-averaged amount of 
electromagnetic energy leaving the differential volume element per unit time. 
This important result can be used for testing various numerical techniques for 
solving the RTE and is a particularly attractive feature of the RTT. 

The previous discussion clearly shows that the RTE follows from the fre-
quency-domain MMEs only upon making several well-defined assumptions, in-
cluding the consideration of only the ladder diagrams. Still, it is very rewarding 
to see that these assumptions are sufficiently consistent with each other in that the 
final result fully complies with the energy conservation law. This also implies, of 
course, that the contribution of all the other types of diagram to the time-
averaged Poynting vector must be identically equal to zero.  

19.11  Reading of a well-collimated radiometer 

Consider WCR 1 placed inside the random particulate volume V and oriented 
such that its small acceptance solid angle q̂ΔΩ  does not subtend the incidence 
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direction ŝ  (Fig. 19.18). The discussion in Section 11.4 implies that in the 
framework of the far-field Neumann expansion (6.48), this instrument reacts only 
to partial wavelets generated by multi-particle sequences having their end part-
icles located within the corresponding conical acceptance volume .Δ q̂V  Thus, the 
reading of the instrument is defined not by the full PST (19.60), but rather by the 
corresponding partial PST ,)Δ;( ,ˆ ξRqr 〉〈 VP  where the subscripts R and ξ  denote 
averaging over coordinates and states of all the N particles constituting the scat-
tering medium and not just those located inside .Δ q̂V  ξ,ˆ )Δ;( Rqr 〉〈 VP  can be 
computed  by making the standard assumptions invoked previously to calculate 

,)( ,ξRr 〉〈P  but also requiring that the end particle of any multi-particle sequence 
be located inside the acceptance volume .Δ q̂V  According to the discussion in 
Section 19.5, the latter is equivalent to requiring that the left-most common parti-
cle of any ladder diagram in Fig. 19.15 be located inside .Δ q̂V   

The outcome of this lengthy yet straightforward computation is as follows 
(Problem 19.13): 

V
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Ω
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WCR 1

V

∇

∇

q̂

q̂

q̂

WCR 3

WCR 2

WCR 4

S

 
Fig. 19.18.  WCRs placed inside the random particulate volume. The sizes of the 
instruments and the particles relative to that of the medium are exaggerated for 
demonstration purposes.  
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where the unit vector q̂  is directed along the optical axis of WCR 1. It can be 
verified (Problem 19.14) that Eq. (19.101) remains valid if ,ˆˆ sq =  which implies 
that q̂ΔΩ  subtends the incidence direction (WCR 2 in Fig. 19.18). Finally, by 
analogy with Eq. (19.97), we have for the net time-averaged electromagnetic en-
ergy recorded by a WCR per unit time:    

,),ˆ,(~Δ)(]ˆ,Δ[)ˆ,(powerEM depcepˆ VISIS ∈+〉〉〈〈 rqrrsqr q ΩΩχ≈  (19.102) 

where the step function ]ˆ,Δ[ ˆ sqΩχ  is defined by Eq. (11.10). More generally, the 
net signal recorded by a polarization-sensitive WCR per unit time is given by the 
following four-component column:   

      .),ˆ,(~Δ)(]ˆ,Δ[)ˆ,( d epcepˆ VSS ∈+〉〉〈〈 rqrrsqr q IISignal ΩΩχ≈  (19.103) 

The fact that the signal recorded by the WCR can be modeled theoretically 
by solving the RTE often makes the {WCR, RTE} combination a potent optical-
characterization tool. Furthermore, comparison of Eqs. (19.97) and (19.102) 
shows that a WCR can be used to solve the energy-budget problem experiment-
ally by scanning over the entire range of directions .4ˆ π∈q  Of course, such opt-
ical-characterization and energy-budget applications of WCRs are only possible 
if the random particulate medium possesses specific macro- and microphysical 
properties, as discussed earlier in this chapter. 

Equation (19.103) together with Eq. (19.93) clarifies the practical meaning of 
the coherent Stokes column vector. Indeed, if the acceptance solid angle ΩΔ  of a 
WCR were infinitely small and the optical axis of the instrument were perfectly 
parallel to the incidence direction ),ˆˆ( sq =  then the response of the WCR would 
be equal to Sep Ic(r). In other words, the WCR would record only the Stokes col-
umn vector of the coherent field. In reality, ΩΔ  is never equal to zero, and the 
WCR always picks up some of the diffuse signal. Still, if both ΩΔ  and )ˆ,(~

d srI  
are sufficiently small and )(c rI is sufficiently large, then the response of the WCR 
facing the incident wave is mostly determined by the first term on the right-hand 
side of Eq. (19.103). It is reasonable to expect that this happens when the WCR is 
located close to the part of the volume’s boundary S directly illuminated by the 
incident wave (WCR 3 in Fig. 19.18), so that )(c rI  is still weakly attenuated and 
there is not much diffuse signal corresponding to directions close to .ŝ  As the 
WCR is moved farther from the illuminated boundary (WCR 2), )(c rI  is progres-
sively attenuated and the diffuse component corresponding to directions close to 
ŝ  increases, thereby making the second term on the right-hand side of Eq. 
(19.103) comparable to the first term. Ultimately, when the WCR is placed 
deeply inside an optically thick medium (WCR 4), its reading is heavily dom-
inated by the diffuse component and is given by the second term on the right-
hand side of Eq. (19.103). 
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19.12  External observation point 

The case of an external observation point V∉r  located in the near zone of the 
entire particulate volume can be treated analogously to that of an internal observ-
ation point. Therefore, below we give only a summary of the corresponding re-
sults and refer the reader to Section 8.14 of MTL2 for specific details.  

First, we introduce the direct internal pathlength Δs(r) for an external observ-
ation point r as follows. Let us draw a straight line from the observation point in 
the direction of the unit vector ,ŝ−  i.e., opposite to the incidence direction (Fig. 
19.19). Then Δs(r) is defined as the length of the segment of this line embedded 
in the particulate volume V. The reader can see that for observation points 1 and 
2 not “shadowed” by the volume, Δs(r1) = Δs(r2) = 0, whereas for observation 
point 3 “shadowed” by the volume, .0)(Δ 3 >rs  Another two quantities are intro-
duced in Fig. 19.20. Specifically, )(rVΩ  is the solid angle subtended by the part-
iculate volume as viewed from an external observation point r, while )ˆ,( qrrS  is 
the boundary point at which the straight line drawn through the observation point 
in the direction q̂−  enters the volume.  

Using this notation, we can write the “external” counterparts of Eqs. (19.97), 
(19.102), and (19.103) (Problem 19.15):   
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Fig. 19.19.  Definition of Δs(r) for .V∉r  
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where 
 incex

c )](Δ,ˆ[)( IHI rsr s=  (19.107) 

and )(ex
c rI  is the first element of this four-element column. Again, )(Δ rs  van-

ishes for observation points not shadowed by the particulate volume, in which 
case )](Δ,ˆ[ rs sH  becomes a unit matrix and )(ex

c rI  reduces to the Stokes column 
vector of the incident plane wave. Note that, unlike Eqs. (19.102) and (19.103), 
Eqs. (19.105) and (19.106) are not based on the assumption that the diffuse com-
ponent )ˆ,([~

d qrr ′SI  is nearly constant for all .Δˆ q̂q Ω∈′  As a consequence, the 
latter formulas can be used in cases when the distance from the particulate vol-

V

Observation
point

rS (r, q)

V (r)Ω

q̂

r

O

ˆ

S

 
Fig. 19.20.  Definitions of )(rVΩ  and )ˆ,( qrrS  for .V∉r  
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ume to the observation point is so large that ΩΔ  is comparable to or exceeds 
).(rVΩ  

The reader can see that Eqs. (19.104)–(19.106) again involve the solution of 
the RTE (19.84) supplemented by the boundary condition (19.85). This time, 
however, the diffuse component of the Stokes specific intensity column vector is 
evaluated not at the external observation point r, but rather at the corresponding 
point )ˆ,( qrr ′S  on the boundary S of the particulate volume. 

If the particles populating the volume V are ISRPs then Eq. (19.107) be-
comes 

 .)](Δ[exp)( inc
ext0

ex
c II rr sCn ξ〉〈−=  (19.108) 

19.13  Summary of assumptions and approximations 

Since the microphysical derivation of the final formulas of Sections 19.08–19.12 
is rather lengthy and technical, it is instructive to recapitulate and further discuss 
the specific assumptions and approximations that had to be made at the various 
stages. They can be summarized as follows:  

1. We have assumed that the particulate volume is illuminated by a mono-
chromatic plane electromagnetic wave. However, the results of Section 10.3 im-
ply that all results of this chapter are also applicable to the case of an incident 
field in the form of a polychromatic parallel beam with N quasi-monochromatic 
components. Specifically, let ),ˆ,(~),()ˆˆ(),ˆ,(~

d c nnn ωωδω qrrsqqr III +−=  be the 
“partial” solution of the RTT obtained by replacing Iinc with ,inc 〉〉〈〈 nI  the latter 
being the time-averaged Stokes column vector of the nth quasi-monochromatic 
component of the incident beam. Then the total specific intensity column vector 
is given by 

 .),ˆ,(~)ˆ,ˆ,(~

1

tot ∑
=

=
N

n
nωqrsqr II  (19.109) 

As usual, the applicability of the formulas quantifying the reading of a WCR 
rests on the assumption that the detection efficiency of the instrument is fre-
quency independent. Furthermore, all formulas of the RTT can be generalized to 
the case of illumination by several polychromatic beams having different propa-
gation directions (Problem 19.17).  

2. We have assumed that each particle is located in the far zones of all the 
other particles and that the observation point is also located in the far zones of all 
the particles forming the scattering medium. This allowed us to use the far-field 
Neumann expansion (6.48).  

3. We have assumed that the observation point is located in the near zone of 
the entire particulate volume.  
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4. We have neglected all multi-particle sequences involving a particle two or 
more times (the Twersky approximation). As we have seen in Section 19.1, doing 
this is justified when the total number of particles in the medium is very large. 

5. We have assumed that the scattering system is fully ergodic and that aver-
aging over time can be replaced by averaging over particle positions and states 
(Section 10.4).  

6. We have assumed that: (i) the position and state of each particle are statist-
ically independent of each other and of those of all the other particles; (ii) all part-
icles are characterized by the same probability density function );(ξξp  and (iii) 
the spatial distribution of the particles throughout the medium is random and stat-
istically uniform (Section 19.2).  

7. We have assumed that the scattering medium is convex, which assured 
that a wave exiting the medium cannot re-enter it (Section 19.3). 

8. We have assumed that the number of particles N forming the scattering 
medium is very large and replaced all factors of the type )!()!( knNnN −−−  by 
Nk (Sections 19.2 and 19.5). 

9. We have ignored all diagrams with crossing connectors in the diagram-
matic expansion of the dyadic correlation function (Section 19.5). 

Assumptions 2 and 8 imply that the overall size of the scattering medium 
must be much greater than the wavelength, average particle size, and average 
distance between two neighboring particles. They ensure, in particular, that the 
exponential factors of the type )i(exp 1rk  oscillate many times over the distances 
traveled by the particles during the measurement, thereby leading to Eqs. (19.12), 
(19.15), and (19.54) and, ultimately, to Eqs. (19.16) and (19.55). 

Another consequence of assumptions 2 and 6 is that the average particle 
number density in the scattering medium must be rather small. Therefore, the 
microphysical RTT may not be expected to perform well for densely packed   
media (see Chapter 22).  

The meaning of assumptions 5 and 6 is illustrated in Fig. 19.21. The accept-
ance solid angle of the WCR ΩΔ  is small enough to resolve the angular variabil-
ity of the diffuse component in Eq. (19.103) (e.g., ∼1°). The entrance pupil Sep of 
the WCR along with ΩΔ  defines the part of the particulate volume V bounded 
schematically by the dotted lines in Fig. 19.21; this part will be called the accept-
ance volume. We have seen that the signal recorded by the WCR is caused only 
by the particles residing in the acceptance volume.  

Let us assume that the WCR accumulates the signal over a time interval T 
and subdivide the acceptance volume into a number of sampling volumes such 
that their optical thickness qCn Δext0 ξ〉〈  along the line of sight of the detector is 
very small (∼0.01). One of these sampling volumes is shown schematically in 
Fig. 19.21. Then it follows from the RTE (19.95) that the contribution of a part-
icle to the WCR signal is essentially independent of the specific particle position 
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in the sampling volume. Therefore, the strict meaning of the assumptions of er-
godicity and statistical uniformity of particle positions within the volume V is 
that each particle visits each sampling volume during the measurement time in-
terval T.   

In reality, however, the particulate volume V can be expected to contain 
many particles of the same type. Therefore, the practical meaning of ergodicity 
and uniformity is that particles of each type visit each sampling volume during 
the measurement interval T a number of times statistically representative of the 
total number of such particles in the entire volume. Obviously, this requirement 
is significantly softer and can be expected to be met in many actual circum-
stances. 

Although Eqs. (19.105) and (19.106) have been derived while assuming that 
the observation point is located in the near zone of the particulate volume, the 
reader can easily verify that in the limit ∞→r  the entire volume starts to behave 
like a single far-field scatterer. Indeed, the diffuse terms on the right-hand side of 
these formulas become the products of r–2 and r-independent yet dependent-q̂  
integrals over the part of the boundary S visible from the observation point. This 
is a very important result. Indeed, the reader should recall that in Section 18.4, 

Incident plane w
ave

Sep

Acceptance 
volume

Sampling
volumeV

WCR Δq

 
Fig. 19.21.  Practical meaning of the assumptions of ergodicity and spatial uni-
formity. The sizes of the WCR and the particles are exaggerated relative to 
that of the particulate volume for demonstration purposes. 



 Microphysical radiative transfer theory 327 

we attributed the diffuse background seen in Fig. 18.4h to the class of wavelet 
pairs depicted in Plate 18.1f. It is obvious that such wavelet pairs correspond to 
diagrams contributing to the ladder approximation of the time-averaged PST, as 
discussed in Sections 19.5 and 19.6. This implies that the diffuse background in 
Fig. 18.4h can be associated with the diffuse RTT regime. In fact, we can now 
broaden the class of wavelet pairs contributing to the diffuse background by in-
cluding pairs of the type shown in Plate 18.1g. As we have seen before, the co-
ordinate-averaged effect of the unconnected particles i, j, and l is reduced to expo-
nential attenuation and, possibly, dichroism.    

To justify approximation 9, let us consider, for example, the contributions of 
two simple two-particle diagrams, shown in Figs. 19.22a and 19.22b, to the time-
averaged PST of the total field. According to Eqs. (8.3), (3.36), and (6.48), these 
contributions are given by 
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Fig. 19.22.  Practical meaning of the assumptions of ergodicity and uniformity. 
The sizes of the detector and the particles are exaggerated relative to that of 
the particulate volume for demonstration purposes. 
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respectively, where the notation follows that in Fig. 19.22c. The main difference 
between the expressions inside the angular brackets in these formulas is that the 
latter contains the rapidly oscillating complex exponential factor ji rrk −(iexp[ 1 − 

)]ˆˆ ijRs ⋅ , which changes with ri and rj much faster than all the other participating 
factors. The presence of this exponential factor causes the contribution given by 
Eq. (19.111) to vanish upon the configurational averaging. The reader can verify 
that this is true of any diagram with crossing connectors and explains why their 
cumulative contribution to the time-averaged PST is negligible relative to the 
contribution of the diagrams with vertical connectors. 

An important exception is the situation where the observation point is located 
in the far zone of the entire particulate volume in the direction opposite to the 
direction of incidence. Then the phase difference )ˆˆ(1 ijji rrk Rs ⋅−−=∆  van-
ishes, the exponential factor becomes identically equal to unity, and the contribu-
tion of the diagrams with crossing connectors becomes comparable to the contri-
bution of the ladder diagrams. Again, the reader should recognize that we have 
attributed the backscattering peak seen in Fig. 18.4h to the class of wavelet pairs 
depicted in Plate 18.1e and that such wavelet pairs correspond to the diagrams of 
the type shown in Fig. 19.22b. This implies that the microphysical RTT does not 
describe the far-zone WL effect.   

Similarly to WL, the forward-scattering localization of electromagnetic 
waves discussed in Section 18.4 and illustrated in Plate 18.1d is an expressly far-
field scattering effect and as such is not accounted for by the microphysical  
RTT. Indeed, it can be readily demonstrated that the contribution of the diagrams 
of the type shown in Fig. 19.9b evaluated at a near-field observation point does 
not vanish only when both particles are positioned along the same straight line 
parallel to the incidence direction and going through the observation point. This 
non-vanishing contribution is ultimately included in the exponentially attenuated 
coherent Stokes column vector .cI  In order to observe the forward-scattering in-
terference effect directly, the observation point must be located in the far zone of 
the entire particulate volume, i.e., at a distance r from the scattering volume satis-
fying the inequalities (5.12)–(5.14). For most particulate volumes encountered in 
practice, this distance is unrealistically large, which makes the microphysical 
RTT a rather robust modeling tool. 
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The assumption that the particulate volume is statistically uniform simplified 
greatly the derivation of the microphysical RTT. It has been shown by the author 
(Mishchenko 2006) that all results of the RTT remain unchanged for a random 
particulate medium with small-scale random spatial inhomogeneities. Although a 
similar derivation for a general statistically inhomogeneous DRM is absent, it is 
very tempting to assume that the RTT remains valid, provided that the scale of 
inhomogeneities greatly exceeds the average distance between the particles. In 
this case the extinction and phase matrices averaged over particle states and the 
particle number density become functions of spatial coordinates, and so Eqs. 
(19.86), (19.87), and (19.89) take the form 
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19.14  Corollaries of the microphysical radiative transfer theory 

Important corollaries of the microphysical RTT are the following:  
1. The derivation of the RTT does not need fundamental physical laws other 

than those already contained in the classical frequency-domain macroscopic elect-
romagnetics. In particular, the ill-defined concepts of collective effects, element-
ary volume elements, incoherent light rays, and photons as localized particles of 
light have no relevance whatsoever to the transport of electromagnetic radiation 
in elastically scattering DRMs. It is, in fact, remarkable that although the RTE 
(19.87) has the formal mathematical structure of a kinetic equation describing 
particle transport, it follows directly from the electromagnetic wave theory. 

2. Neither the coherent Stokes column vector nor the diffuse specific intens-
ity column vector characterize the instantaneous distribution of the radiation field 
inside the scattering medium. Instead, both are averages over a sufficiently long 
period of time. The minimal averaging time necessary to ensure ergodicity may 
be different for different scattering systems, but the following is always true: the 
longer the averaging time the more accurate the theoretical prediction based on 
the RTT. Accumulating a signal over an extended period of time is often used to 
improve the accuracy of a measurement by reducing the effect of random noise. 
However, the situation with the RTT is fundamentally different since averaging 
the signal over an extended period of time is necessary to ensure the very applic-
ability of the RTE. 
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3. Averaging over all particle positions makes both Ic and d 
~I  continuous 

functions of the position vector of the observation point r and also makes d 
~I  a 

continuous function of the “propagation” direction .q̂  For the same reason, I~  
differs from the Stokes column vector of a transverse electromagnetic wave, ,I  in 
that it has the dimension of monochromatic radiance, Wm–2sr–1, rather than the 
dimension of monochromatic energy flux, Wm–2.  

4. In the context of the RTT, the scattering properties of particles are spec-
ified in terms of the extinction and phase matrices rather than in terms of the scat-
tering dyadic or the scattering amplitude matrix. Each particle with its individual 
extinction and phase matrices is effectively replaced with a virtual random part-
icle characterized by the extinction and phase matrices obtained by averaging 
over the states of all the particles.    

5. The RTE is an inherently vector equation. The frequently used scalar ver-
sion of the RTE is obtained by artificially replacing the specific intensity column 
vector by its first element (i.e., the specific intensity) and the extinction and phase 
matrices by their respective 1)(1,  elements. As such, the scalar approximation 
has no compelling physical justification besides being easier to solve and yield-
ing sufficiently accurate values of the specific intensity in some (but not all!) 
cases. Section 13.1 of MTL2 contains an extensive discussion of the numerical 
accuracy of the scalar approximation. 

6. The specific intensity is a nonnegative quantity (Problem 19.18). This cor-
ollary ensures that Eqs. (19.102), (19.103), (19.105), and (19.106) are physically 
meaningful.  

7. If the incident field is a plane electromagnetic wave then the elements of 
the coherent Stokes column vector (19.38) (or (19.81)) satisfy the Stokes identity 
(7.4), while the elements of the diffuse specific intensity column vector )ˆ,(~

d qrI  
satisfy the Stokes–Verdet inequality (9.34). If the incident field is a polychro-
matic parallel beam with quasi-monochromatic components then the elements of 
either the total coherent Stokes column vector or the total diffuse specific inten-
sity column vector satisfy the Stokes–Verdet inequality (9.34) (Problem 19.19). 

8. Although Eqs. (11.12) and (19.97) have the same mathematical structure, 
it can be shown that ).ˆ,(~)ˆ,(~ qrqr IN ≠  Specifically, let us recall that the micro-
physical derivation of the time-averaged Poynting vector is based on the com-
plex-vector frequency-domain formalism. This approach allows one to conven-
iently factor out the time-harmonic dependence of the electric and magnetic 
fields, but necessitates the initial definition of the Poynting vector and the PST as 
averages over a sufficiently large number of time-harmonic oscillations captured 
by a time interval ωπ2T  (Section 2.3). This means that the frequency-
domain formalism cannot be used to evaluate the integrals in Eq. (11.11). Indeed, 
time-harmonic oscillations of the electric and magnetic vectors cause a rapidly 
oscillating Poynting vector at the observation point. At certain moments ),( trS  
can be directed along q̂  and thereby contribute to ),ˆ,(~ qrN  while at other mo-
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ments it can be directed along q̂−  and contribute to ).ˆ,(~ qr −N  While these “op-
posing” contributions are accounted for and accumulated in the computation of 

)ˆ,(~ qrN  and ),ˆ,(~ qr −N  they substantially (but, of course, not completely) cancel 
each other in the frequency-domain computation of )ˆ,(~ qrI  and ),ˆ,(~ qr −I  owing 
to the initial averaging over a large number of time-harmonic oscillations. This 
implies that )ˆ,(~ qrI  would not be measured by the hypothetical directional detect-
or discussed in Section 11.3, even if it could be built.  

Of course, the inequality )ˆ,(~)ˆ,(~ qrqr IN ≠  coupled with the mathematical 
uniqueness of solution of Eq. (19.89) supplemented by the boundary condition 
(19.91) implies that )ˆ,(~ qrN  cannot be the first element of a four-element column 
satisfying the standard RTE. It remains unknown whether a closed-form analyt-
ical equation for )ˆ,(~ qrN  exists, but if it were derived then it would offer an al-
ternative way of solving the time-averaged radiation-budget problem via Eq. 
(11.12).  

This discussion implies that the specific intensity )ˆ,(~ qrI  cannot be inter-
preted as describing the directional distribution of electromagnetic energy flow at 
the point r. Actual physical significance can be attributed only to the integral of 

)ˆ,(~ˆ qrq I  over all directions ,q̂  rather than to the particular values of )ˆ,(~ qrI  
corresponding to individual directions. Indeed, adding to )ˆ,(~ qrI  any function 

)ˆ,( qrf  such that  

 0qrqq =)ˆ,(ˆˆd
4

f@
π

 

yields another “specific intensity” causing the same .),( 〉〉〈〈 trS  A simple exam-
ple would be any symmetric function such that ).ˆ,()ˆ,( qrqr ff =−  We have 
seen in Section 2.4 that even the Poynting vector cannot be legitimately claimed 
to specify the direction of time-averaged electromagnetic energy flow, and so 
there is even less justification for ascribing any “directional energy” content to 
the specific intensity. The quantity )ˆ,(~ qrI  is nothing but a formal solution of the 
intermediate equation (19.89) and appears merely as a byproduct of the math-
ematical derivation of Eqs. (19.97) and (19.102) from the frequency-domain 
MMEs. 

19.15  “Independent” scattering 

We have seen before that at any moment in time, the incident electromagnetic 
wave perceives the entire multi-particle group as a unified, albeit morpholog-
ically complex, scatterer. We have also witnessed how the RTE emerges from the 
MMEs as a consequence of several specific assumptions and, in the final anal-
ysis, contains single-particle extinction and phase matrices averaged over the part-
icle states. However, the traditional phenomenological way of addressing elect-
romagnetic energy transport in particulate media has been to proceed in exactly 
the opposite direction:  
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● by first considering the scattering properties of each particle in total isolation 
from all the other particles by solving individually the MMEs (e.g., by using 
the LMT);  

● then considering widely separated, randomly positioned particles forming a 
particle group as “independent scatterers” characterized individually by the 
previously determined extinction and phase matrices;  

● then considering “incoherent single scattering” by the “independently scat-
tering particles” occupying an imaginary “elementary volume element”; 

● then considering “incoherent multiple scattering” by the “elementary volume 
elements”; and finally 

● by speculating how the “single-scattering properties” of the individual part- 
icles and of the “elementary volume elements” can change as a consequence 
of hypothetical “packing density” effects. 

It is thus clear that the notion of “independent scattering” has been very impor-
tant to the phenomenological RTT. Several definitions of “independently scatter-
ing particles” have been given in the literature over the years, most of them being 
rather vague. The common intent of those definitions has been to ensure that ob-
servable consequences of scattering by a disperse medium are described in terms 
of the extinction and phase matrices of the individual particles, i.e., the quantities 
describing single-particle transformations of Stokes parameters rather than elect-
romagnetic fields.   

The microphysical RTT outlined above makes it quite clear that a particle is 
an independent scatterer only when it is completely alone. Particles forming a 
group cannot be independent scatterers, irrespective of how widely they are sep- 
arated and how randomly they are distributed since the forward-scattering interfer-
ence and WL effects are ubiquitous and cannot be described in terms of individ-
ual-particle extinction and phase matrices. In the case of large rarified objects 
such as terrestrial water clouds, the forward-scattering and WL intensity peaks 
are extremely narrow, contain a negligible fraction of the total scattered energy, 
and are hardly observable, thereby making the RTT a very good quantitative de-
scriptor of many actual observables. We have seen, however, that even in the 
limited context of the RTT, particles are not characterized by their individual ex-
tinction and phase matrices. Instead, each actual particle is replaced by an imag-
inary “average particle” characterized by the ensemble-averaged extinction and 
phase matrices. We must, therefore, conclude that the term “independent scatter-
ing” has little heuristic value and can, in fact, be quite misleading.  

19.16  Gaseous media 

It is well known that electromagnetic scattering can be caused not only by part-
icles with distinct boundaries, but also by density and anisotropy fluctuations in 
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rarified molecular media such as gases (Smoluchowski 1908). This type of scat-
tering is traditionally called Rayleigh scattering and is thoroughly reviewed by 
Fabelinskii (1968), Crosignani et al. (1975), and Kuz’min et al. (1994). Each 
density and/or anisotropy fluctuation can be considered a particle in the sense of 
causing the electric permittivity (or, in general, the electric permittivity tensor) in 
a small volume element to be different from that of the surrounding medium. As 
long as such volume elements are located in the far zones of each other, the far-
field Neumann expansion (6.48), as well as the microphysical RTT outlined 
above remain applicable. The specific form of the corresponding extinction and 
phase matrices entering the RTE depends on the type of gas (or gas mixture) and 
on factors such as gaseous pressure and temperature. 

It is sometimes claimed that the actual cause of Rayleigh scattering in an opt-
ically thick gaseous medium are randomly positioned and randomly moving in-
dividual molecules rather than electric permittivity fluctuations. However, mol-
ecules can often be separated by distances much smaller than the wavelength, 
thereby grossly violating the far-field assumption used to derive the RTE. Of 
course, one cannot exclude completely the possibility that the RTE can be de-
rived without the far-field assumption, but until and unless this has been done, it 
is more prudent to attribute Rayleigh scattering in optically thick gaseous media 
to molecular fluctuations rather than to the individual molecules.   

Quite often a gaseous medium contains randomly distributed macroscopic 
particles. Typical examples are aerosols and cloud particles suspended in the at-
mospheres of the Earth and other planets. Obviously, the RTE still remains appli-
cable, provided that the particles and the density/anisotropy fluctuations are lo-
cated in the far zones of each other. The phase and extinction matrices entering 
the RTE are obtained by straightforward averaging over the gas–particle mix-
ture.  

Problems 

19.1:   Derive Eq. (19.8).  

19.2:   Derive the reciprocity relations for the coherent transmission dyadic and 
the coherent transmission amplitude matrix.  

19.3:   Derive Eq. (19.39).  

19.4:   Derive the reciprocity relation for the coherent transmission Stokes matrix. 

19.5:   Derive Eq. (19.44). 

19.6:   Derive Eq. (19.57). 

19.7:   Derive Eq. (19.59). 

19.8:   Derive Eq. (19.66). 
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19.9:   Verify the transversality properties (19.70) and (19.71).  

19.10:  Derive Eqs. (19.78) and (19.79).  

19.11:  Prove that all elements of the columns ),(c rI  ),ˆ,(~
d qrI  and )ˆ,(~ qrI  are real 

valued.   

19.12:  Derive Eq. (19.97).  

19.13:  Derive Eq. (19.101).  

19.14:  Verify that Eq. (19.101) also applies to the case of .Δˆ q̂s Ω∈   

19.15:  Derive Eqs. (19.104)–(19.107) by following the approach outlined in Sec-
tion 8.14 of MTL2. 

19.16:  Consider the scattering problem sketched in Fig. 14.3 and recover Eqs. 
(14.47) and (14.48) from Eqs. (19.106) and (19.107). 

19.17:  Generalize Eq. (19.109) to the case of an incident field in the form of a sup-
erposition of several polychromatic parallel beams with quasi-monochro-
matic components and different propagation directions. Discuss the impli-
cations of this result assuming that the cloud is illuminated by the sun. 
Take into account that the thermally emitted solar light is a superposition 
of statistically independent quasi-monochromatic waves with propagation 
directions confined to the solid angle subtended by the solar disk. At a 
large distance from the sun each such wave becomes locally plane.  

19.18:  Prove that the specific intensity is a nonnegative quantity.  

19.19:  Prove corollary 7 of Section 19.14.  

Notes and further reading 

The RTT was originally developed by using the old conceptual framework of 
phenomenological photometry. A thorough account of the early history of pho-
tometry was provided by D. L. DiLaura in Lambert (2001). He attributes the cul-
mination of medieval optics to Ad Vitellionem Paralipomena by Johannes Kepler 
(1571–1630) (Kepler 1604), which contains one of the most fundamental ele-
ments of photometry: the attenuation of light as the inverse square of distance 
from a point-like source. However, establishing photometry as a scientific dis-
cipline was the result of systematic studies by Pierre Bouguer (1698–1758) fol-
lowed by those of Johann Lambert (1728–77). Bouguer’s Essai d’Optique was 
published in 1729 (Bouguer 1729), while its thorough augmentation, Traité 
d’Optique, appeared posthumously in 1760 (Bouguer 1760). Bouguer’s research 
was mostly experimental and based on several ingeniously designed photometric 
instruments. In particular, in Essai d’Optique he describes the use of the inverse-
square law to derive the ratio of luminous intensities of two light sources and 
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discovers the famous exponential attenuation law (sometimes incorrectly attrib-
uted to Lambert) by studying the diminution of light as it passes through trans-
lucent media. In his Photometria, Lambert (1760) was the first to extensively use 
contemporary mathematics, including calculus, to interpret experimental results 
and developed the mathematical foundation of radiometry by introducing specific 
definitions of photometric quantities and a unified set of photometric principles 
and laws.  

The impact of Bouguer’s and Lambert’s work was so profound that even 
now much of illumination engineering is based on their treatises. Perhaps the 
only notable augmentation was the incorporation of the solution concentration 
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into the Bouguer’s exponential attenuation law by August Beer (Beer 1854). All 
in all, phenomenological photometry, as summarized eloquently by Gershun 
(1936) in terms of the so-called “light field,” has been one of the oldest surviving 
paradigms in contemporary science despite its whopping disconnect from the 
“mainland” of modern physics (in the words of Preisendorfer (1965)). 

The main contribution by Eugen von Lommel (1837–99) was to introduce 
the notion of the amount of radiant energy crossing an imaginary geometrical 
rather than an actual physical surface element. This allowed him to conceptualize 
the directional flow of radiant energy through space and introduce the integral 
form of the RTE as a way of solving the problem of diffusion of light through a 
turbid medium composed of isotropically scattering centers (Lommel 1887). Virt-
ually identical results were published independently by Orest Khvolson (1852–
1934) two years later (Chwolson 1889) (see also the instructive historical account 
of the early history of the phenomenological RTT by Ivanov 1994). The work by 
Lommel and Khvolson has remained largely unnoticed. The first introduction of 
the RTE has traditionally been attributed to Arthur Schuster (1851–1934) who, in 
fact, proposed what is now known as the two-stream approximation rather than 
the integral or integro-differential form of the RTE (Schuster 1905). The work by 
Viktor A. Ambartsumian (1908–96), Subrahmanyan Chandrasekhar (1910–95), 
Viktor V. Sobolev (1915–99), and Hendrik C. van de Hulst (1918–2000), among 
others, had served to transform the phenomenological RTT into a branch of 
mathematical physics.  

François Arago was among the first to criticize phenomenological photo-
metry for complete neglect of polarization state of light. This criticism was nomi-
nally addressed by replacing the specific intensity )ˆ,(~ qrI  with the four-element 
specific intensity column vector ).ˆ,(~ qrI  Richard Gans (1880–1954) was the first 
to consider the transfer of polarized light in a plane-parallel Rayleigh-scattering 
atmosphere (Gans 1924); however, he analyzed only the special case of perpend-
icularly incident light and considered only the first two components of the 
specific intensity column vector. The case of arbitrary illumination and arbitrary 
polarization was studied by Chandrasekhar (1950). In a paper never translated 
into English, Georgi Rozenberg (1914–82) introduced the most general form of 
the vector RTE (Eqs. (19.86) and (19.87)) for sparse scattering media composed 
of arbitrarily shaped and arbitrarily oriented particles (Rozenberg 1955).  

Whether spelled out explicitly or not, the key premise of phenomenological 
photometry, as well as of the phenomenological RTT, is that matter interacts with 
the energy of the electromagnetic field rather than with the electromagnetic field 
itself. This profoundly false assumption explains the deceitful simplicity of the 
phenomenological concepts, as well as their ultimate failure. Indeed, the very 
outset of both phenomenological disciplines is the postulation of the existence of 
specific intensity as the primordial physical quantity describing the “directional 
distribution of the radiant energy flow” at a point in space. This is followed by a 
back-of-an-envelope “derivation” of the scalar RTE on the basis of “simple 
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physical considerations.” The often uncontrollable use of the word “photon” 
taken out of its proper QED framework is another manifestation of the implicit 
desire to bypass the complexities of dealing with the electromagnetic field. The 
inevitable outcome of such verbal speculations has been the notorious “photonic 
confusion.”  

In the paper titled “Anti-photon”, Willis Lamb Jr. famously stated: “There is 
no such thing as a photon. Only a comedy of errors and historical accidents led to 
its popularity among physicists and optical scientists” (Lamb 1995). What Lamb 
meant is that in most cases the word “photon” is used without clear understand-
ing of what a QED photon actually is and, in particular, without recognizing that 
it is not a localized particle of light. The QED photon represented a new pro-
found paradigm brought about by the work of Paul Dirac, Werner Heisenberg, 
and Pascual Jordan in the late 1920s–early 1930s, and the consequences of this 
major conceptual shift are still being evaluated (Roychoudhury et al. 2008).  

Paraphrasing Lamb, it can be said that “there is no such thing as phenomen-
ological specific intensity.” Indeed, the very notion of polydirectional propaga-
tion of electromagnetic energy at a point in space contradicts basic laws of class-
ical electromagnetics and does not follow from QED. Furthermore, there is no 
practical need whatsoever to postulate specific intensity as a primordial physical 
quantity with its a priori defined properties. As this chapter demonstrates, all one 
needs to do is clearly formulate specific problems of actual practical significance 
and solve them using the MMEs as the starting point. It then becomes obvious 
that the specific intensity is just the formal solution of an auxiliary mathematical 
equation rather than a primordial physical quantity. One can say figuratively that 
the specific intensity is what a WCR measures, but only on condition that the pa-
rameters of the particulate medium in question are consistent with the set of as-
sumptions summarized in Section 19.13. 

The fundamental weaknesses of the phenomenological approach to direct-
ional photometry and radiative transfer have been thoroughly exposed in the lit-
erature (e.g., Preisendorfer 1965; Wolf 1978; Apresyan and Kravtsov 1996; 
Mishchenko 2009, 2011, 2013; Mishchenko et al. 2011b). As a result of recent 
research, there has been a paradigm-changing shift in the physical foundation of 
these disciplines that has finally brought them into the realm of physical optics. 
From allegedly describing the “directional flow of radiant energy,” directional 
photometry and the RTT have been transformed into the discipline of performing 
measurements with WCRs and modeling these measurements theoretically on the 
basis of fundamental physical laws. 

The development of the microphysical RTT in this chapter largely follows 
that in MTL2 and Mishchenko (2010). Important early contributions to the     
microphysical approach had been made by Borovoy (1966), Dolginov et al. 
(1970), Barabanenkov (1975), and Tsang et al. (1985). The case of an absorbing 
host medium was addressed by Mishchenko (2008a,b).    
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2200  
Radiative transfer in plane-parallel                        

particulate media 

In order to use the results of Sections 19.10–19.12 in various practical applica-
tions, one needs efficient techniques for solving the RTE in either the integral or 
the integro-differential form. Unfortunately, like many other integral and integro-
differential equations, the RTE is difficult to solve analytically or numerically. In 
order to facilitate the solution, it is customary to make several simplifying as-
sumptions. The most typical of them, which will be used throughout this chapter, 
are the assumptions that the particulate medium:  
● is plane parallel;  
● has an infinite horizontal extent; and 
● is illuminated from above by a plane electromagnetic wave or a parallel 

polychromatic beam with quasi-monochromatic components.  
These assumptions mean that all statistically averaged optical properties of the 
medium and all observable characteristics of the radiation field may vary only in 
the vertical direction and are independent of the horizontal coordinates. Taken 
together, these assumptions specify the so-called standard one-dimensional prob-
lem of the RTT and provide a model relevant to a great variety of applications in 
diverse fields of science and engineering.  

To simplify the standard problem even further, we will also assume that the 
particulate medium is populated by statistically isotropic and mirror-symmetric 
random particles and use the extinction matrix given by Eq. (15.42) and the 
phase matrix given by Eqs. (15.20) and (15.21).   

In this chapter we will derive several general equations describing the radia-
tion field in the particular case of plane-parallel scattering geometry. Also we 
will describe several selected illustrative examples which demonstrate typical 
qualitative and quantitative predictions of the RTE and are expected to be of in-
terest to a broad range of customers of the RTT.     



 Radiative transfer in plane-parallel particulate media 339 

20.1  The standard problem 

Let us consider a plane-parallel particulate layer extending in the vertical direc-
tion from bzz =  to ,tzz =  where the z-axis of the laboratory right-handed co-
ordinate system is perpendicular to the boundaries of the medium and is directed 
upwards, while “b” and “t” stand for “bottom” and “top”, respectively (Fig. 
20.1). A propagation direction n̂  at a point in space will be specified by a couplet 
{u, },ϕ  where ]1 ,1[cos +−∈−= θu  is the direction cosine, while θ  and ϕ  are 
the corresponding polar and azimuth angles with respect to the local coordinate 
system having the same spatial orientation as the laboratory coordinate system. A 
positive u always corresponds to a downward direction, whereas a negative u 
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Fig. 20.1.  Plane-parallel particulate medium illuminated from above by a paral-
lel polychromatic beam with quasi-monochromatic components.  
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always corresponds to an upward direction. It is also convenient to introduce a 
nonnegative quantity ].1 ,0[|| ∈= uμ   

Let us assume that the particulate layer is illuminated from above by a plane 
electromagnetic wave or a parallel quasi-monochromatic beam of light propagat-
ing in the direction }. ,{ˆ 000 ϕu=n  The uniformity and the infinite transverse ex-
tent of the wave or the beam ensure that all parameters of the internal radiation 
field (including that at the boundaries of the particulate layer) are independent of 
the coordinates x and y. Therefore, Eqs. (19.112) and (19.113) can be rewritten in 
a simplified form: 

      ,)(    ),()ˆ ,()(
d

)(d
0tcc0

c IIIKI =−=− zzzzn
z
zu n  (20.1) 

 )ˆ ,(~)ˆ ,ˆ ,( ˆd)()ˆ ,(~)ˆ ,()(
d

)ˆ ,(~d
d 

4
0d 0

d nnnnnn
n

′′′+−=− zzznzzzn
z
z

u IZIK
I @

π
 

                                 ),()ˆ ,ˆ ,()( c00 zzzn IZ nn+  (20.2) 

where 0I  is the Stokes column vector of the incident radiation, while K and Z are 
the extinction and phase matrices, respectively, averaged over particle states 
(note that henceforth we omit the angular brackets ξ〉〈  for the sake of brevity). 
As before, the tilde distinguishes specific intensity column vectors from Stokes 
column vectors. Equation (20.2) must be supplemented by the boundary cond-
itions 

                                    ,), ,(~), ,(~
bd td 0II =−= ϕμϕμ zz  (20.3) 

where, as before, 0 is a zero four-element column. These boundary conditions 
follow directly from Eq. (19.85) and mean that there is no “downwelling” diffuse 
radiation at the upper boundary of the layer and no “upwelling” diffuse radiation 
at the lower boundary. Equations (19.109) and (20.1)–(20.3) collectively repre-
sent what we have called the standard problem.    

Let us further assume that the particles populating the plane-parallel medium 
are ISRPs as defined in Chapter 15. Then Eqs. (20.1)–(20.3) become (Problem 
20.1)  
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where  
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is the so-called optical depth and extC  is the depth-dependent average extinction 
cross section (see Fig. 20.2). Unlike the geometrical height z, the optical depth is 
dimensionless. Replacing the phase matrix in Eq. (20.5) by the normalized phase 
matrix according to Eq. (15.65) finally yields 
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is the optical-depth-dependent single-scattering albedo. The standard problem is 
now reformulated by supplementing Eqs. (20.4) and (20.7) with the boundary 
conditions 
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d d 0II =−= ϕμϕμ T  (20.9) 

where )( bzτ=T  is the optical thickness of the layer (Fig. 20.2).  
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Fig. 20.2.  The standard problem. 
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20.2  Integral equation 

Let us define the so-called matrix source function as a four-element column 
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Then (Problem 20.2) 
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The reader can verify (Problem 20.3) that the substitution of Eq. (20.10) in Eqs. 
(20.11) and (20.12) yields the “plane-parallel” version of the integral RTE 
(19.83).   

Iteration of Eqs. (20.10)–(2.12) using 0000 )(exp),;, ;(~
4

)( IZ μτϕμϕτπ
τϖ −u  as 

the initial approximation for ), ,( ϕτ uJ  shows that the diffuse specific intensity 
column vector ), ,(~

d ϕτ uI  is linearly expressed in the Stokes column vector of 
the incident field I0. This expression is usually formulated in terms of 44×  
Green’s matrices U and D as follows:  
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At the upper and lower boundaries, 
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respectively, where ),;, ;0(),;,( 0000 ϕμϕμϕμϕμ UR =  is the so-called reflec-
tion matrix and ),;, ;(),;,( 0000 ϕμϕμϕμϕμ TDT =  is the transmission matrix. 

There are several efficient, numerically exact computer techniques for solv-
ing the RTEs (20.7) or (20.10)–(20.12) and calculating the matrices U, D, R, and 
T. Detailed discussions can be found in Hansen and Travis (1974), Marchuk et 
al. (1980), Lenoble (1985), Hovenier et al. (2004), and Chapter 12 of MTL2. Us-
ing these techniques, one can calculate all quantities necessary to solve the radia-
tion-budget problem via Eqs. (19.97) and (19.104) as well as to quantify the read-



 Radiative transfer in plane-parallel particulate media 343 

ing of a WCR via Eqs. (19.103) and (19.106). It is straightforward to show that 
the time-averaged Poynting vector at an external observation point and the read-
ing of an external WCR are independent of the distance from the particulate layer 
(Problem 20.4).  

Note that analogously to the case for the phase matrix (Section 15.3), the 
azimuthal symmetry of the particulate medium causes the matrices U, D, R, and 
T to depend on the difference ϕϕ ′− rather than on ϕ and ϕ ′ separately. In other 
words, if 11 ϕϕϕϕ ′−=′−  then ),,;, ;(),;, ;( 11 ϕμϕμτϕμϕμτ ′′=′′ DD  and anal-
ogously for the other matrices. This is equivalent to the statement that for 
any ,ϕ ,ϕ ′ and ,Δϕ  

 ),,;,()Δ,;Δ,( ϕμϕμϕϕμϕϕμ ′′=+′′+ YY  (20.17) 

where Y stands for U, D, R, or T (see Section 12.2 of MTL2). 

20.3  Scalar approximation 

Equations (20.7) and (20.9) can be further simplified by artificially neglecting 
polarization and so replacing the specific intensity column vector by its first ele-
ment (i.e., the specific intensity) and the normalized phase matrix by its (1, 1) 
element (i.e., the phase function): 
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where I0 is the first element of the column I0, while  
 )]cos()1()1([arccos 212212 ϕϕΘ ′−′−−+′=′ uuuu  (20.21)  
and 
 )]cos()1()1([arccos 0

212
0

212
00 ϕϕμμΘ −−−+= uu  (20.22)  

are the corresponding scattering angles (see Eqs. (15.23) and (15.81)). We have 
already mentioned that ignoring the vector nature of light and replacing the exact 
RTE by its approximate scalar counterpart has no rigorous physical justification. 
Nevertheless, this simplification is widely used when the medium is illuminated 
by unpolarized light and only the specific intensity of multiply-scattered light 
needs to be computed. The main (and probably outdated) reason for doing that is 
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saving computer resources. It should be kept in mind, however, that the errors of 
the scalar approximation can exceed 12% (see Section 13.1 of MTL2). 

20.4  Directional reflectance and spherical and plane albedos 

In this section we will use numerically exact computer solutions of the standard 
problem summarized by Eqs. (20.7) and (20.9) to analyze how the various par-
ameters of a particulate slab affect the angular dependence of the reflected 
specific intensity and its integral characteristics. It will be assumed for simplicity 
that the plane-parallel particulate medium is homogeneous and that the particles 
populating the medium are homogeneous spheres. All numerical data in this and 
the following section have been obtained with the so-called fast invariant-
imbedding technique described in Mishchenko (1991b).   

We have seen in the preceding chapter that the total diffuse specific intensity 
column vector is the result of summing all ladder diagrams with varying numbers 
of connected particles. In other words, we can write the Neumann expansion 

 ,)ˆ,(~)ˆ,(~

1
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=
∞

n

n nn ττ II  (20.23)  

where )ˆ,(~
d nτnI  is the cumulative contribution of all ladder diagrams with n con-

nected particles. An analytical expression for )ˆ,(~
d nτnI  can be derived by iterat-

ing the integral RTE (20.10)–(2.12) and will not be given here explicitly (Prob-
lem 20.5). However, the reader can verify that besides angular and τ - integra-
tions, the nth order Neumann term involves:  
● n multiplications by the single-scattering albedo ;ϖ  
● n left multiplications by the normalized phase matrix ;~Z  and 
● n multipliers of the type ).)((exp μττ ′′−′′±      

The combined effect of these operations can be quite convoluted. However, in 
some cases the contributing factors listed above can be used to give a simple 
qualitative interpretation of computer solutions of the plane-parallel version of 
the RTE. 

Figure 20.3 shows the phase function and other elements of the normalized 
Stokes scattering matrix for a gamma size distribution of spherical particles given 
by Eq. (15.108) with 0min =r  and .max ∞=r  The effective radius and the effect-
ive variance of the size distribution are μm05.1eff =r  and ,07.0eff =v  respect-
ively, the particle relative refractive index is m = 1.44, and the wavelength of the 
quasi-monochromatic incident field is =1λ 550 nm. Note that owing to ,0I =m  
these particles are nonabsorbing (i.e., ).1=ϖ   

Let us consider a homogeneous slab populated by such particles and assume 
that it is illuminated by an unpolarized parallel quasi-monochromatic beam of 
light incident perpendicularly to the upper boundary of the slab. The intensity of 
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this beam is I0 = .mW 2−π  Owing to the azimuthal symmetry of the illumin-
ation–reflection geometry, the reflected specific intensity, given by 

 ),1;,;(), ,0(~
011 ϕϕμϕμ TRI =−   )srmW( 12 −−  (20.24) 

(see Eq. (20.15)), is independent of the azimuth angles of the incidence and re-
flection directions, 0ϕ  and ,ϕ  and depends only on the polar angle of the reflec-
tion direction, .θ  Figure 20.4 shows the reflected specific intensity versus 

θ−°180  for five optical thickness values increasing from 0.01 to 100. Note that 
the angle θ−°180  is equal to the scattering angle for the contribution from the 
first-order Neumann term (H.63).  

The comparison of the bottom curve in Fig. 20.4 and the solid curve in the 
upper left diagram of Fig. 20.3 reveals that the angular distribution of the specific 
intensity reflected by an optically thin layer closely follows that of single-particle 
scattering. This is consistent with the formula (Problem 20.6) 
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Fig. 20.3.  Elements of the normalized scattering matrix for polydisperse spher-
ical particles (see text). The dotted curve depicts the Rayleigh phase function. 
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In particular, such phase-function features as the glory centered at Θ  = 180° and 
the primary rainbow centered at Θ ∼163° clearly show up in the reflected light. 
As the optical thickness of the slab grows from 0.01 to 100, the specific intensity 
increases by three orders of magnitude, the characteristic phase-function features 
become less pronounced, and the angular profile of the reflected specific intensity 
becomes very smooth. This behavior is quite similar to that of the curves in the 
upper left diagram of Plate 18.2.  

All these effects are easy to understand qualitatively. Indeed, let us consider 
three particulate slabs with optical thicknesses ,321 TTT <<  as shown in Fig. 
20.5. The single-particle sequence 1 contributes to the specific intensity reflected 
by all three slabs. The multi-particle sequence 2 contributes to the specific inten-
sity reflected by layers 2 and 3, but not by layer 1. Finally, the multi-particle se-
quence 3 contributes only to the specific intensity reflected by layer 3. Thus, 
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Fig. 20.4.  Angular dependence of the reflected specific intensity (in Wm–2sr –1) 
for a homogeneous slab populated by polydisperse spherical particles (see 
text). The optical thickness of the slab varies from T  = 0.01 to 100.  
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increasing optical thickness accommodates more multi-particle sequences con-
tributing to the reflected light, which explains the increase of the reflected 
specific intensity in Fig. 20.4.  

However, the multi-particle sequences reaching large optical depths, such as 
the multi-particle sequences 2 and 3 in Fig. 20.5, are longer than those control-
ling the reflectivity of optically thin layers, such as the sequence 1, and involve 
many more multiplications by normalized phase matrices. As such, they are less 
dependent on the original incidence direction and are likely to contribute more 
evenly to all reflection directions, thereby creating a more isotropic angular dist-
ribution of the reflected specific intensity than that typical of optically thin slabs. 
The latter is dominated by the first-order Neumann contribution and preserves 
pronounced single-particle features such as the glory and the rainbow.        

It is instructive to visualize the overall increase of the reflected specific in-
tensity with growing optical thickness by plotting the so-called spherical albedo  

 ),;,;(ddd2)( 001100

1

0

1

0

2

0
S ϕμϕμμμμμϕ

π

π

TT RA @@@=  (20.26) 

as a function of T. The term “spherical albedo” comes from planetary astrophys-
ics, wherein SA  represents the ratio of the electromagnetic energy reflected by 
the whole planet covered with a uniform cloud layer to the total (unpolarized) 
solar energy falling on the planet (Sobolev 1975). The solid curve in the upper 
left panel of Fig. 20.6 depicts SA  versus T for a slab composed of the micro-
meter-sized spherical particles. Taking into account that the T scale in Fig. 20.6 
is logarithmic, one can clearly identify the following three regimes:  
● a nearly linear growth of SA  on the interval 0 T 1;  
● a nearly logarithmic growth of SA  on the interval 1 T 20; and   
● the regime of slow saturation at T  > 20.  
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Fig. 20.5.  Various sequences of connected particles contributing to the specific 
intensity of reflected light.  
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Fig. 20.6.  Solid curves depict the spherical albedo (in percent) of a homogen-
eous slab composed of polydisperse spherical particles. Dotted curves show 
the results for Rayleigh-scattering slabs.  
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It is also seen that 
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The above limit is an obvious manifestation of the energy conservation law: all 
light incident from above on a semi-infinite nonabsorbing scattering slab must 
eventually exit the slab through its only boundary. 

The linear regime at small T  is consistent with Eq. (20.25). The existence of 
the slow saturation regime for a slab composed of nonabsorbing particles is also 
easy to understand. Indeed, the particle phase function, Fig. 20.3, has a pro-
nounced forward-scattering peak, which implies that ladder diagrams involving 
multiplications by forward-scattering phase matrices )ˆ;ˆ(~ nn ′Z  with nn ′ˆˆ ≈  carry 
a much larger contribution than those involving multiplications by side- and 
backscattering phase matrices. It is obvious that a sequence involving only near-
forward-scattering phase matrices must consist of very many particles in order to 
contribute to the diffusely reflected specific intensity. Some of such sequences 
are so long and extend so deeply into the slab that they still contribute sig-
nificantly to the diffusely transmitted light even for very large T, thereby causing 
the spherical albedo to be smaller than one. Therefore, it takes exceedingly large 
optical thicknesses to prevent the loss of a few percent of the incident energy 
through the lower boundary of the slab.          

The dotted curve in the upper left panel of Fig. 20.6 is computed for a 
Rayleigh-scattering slab and reveals spherical albedo values always exceeding 
those for optical-thickness-equivalent slabs populated by the micrometer-sized 
spherical particles. This overestimation is especially large at small optical thick-
nesses, where it exceeds a factor of two. The obvious reason for this overestim-
ation is that the Rayleigh phase function, shown by the dotted curve in the upper 
left panel of Fig. 20.3, is nearly isotropic, lacks a forward-scattering peak, and 
has significantly larger side- and back-scattering values than the phase function 
shown by the solid curve. As a consequence, low-order sequences of Rayleigh 
particles provide a significantly stronger contribution to the reflected light than 
low-order sequences of forward-scattering micrometer-sized particles. 

The presence of a lower boundary is not the only factor reducing the spher-
ical albedo. Another factor is a nonzero Im  causing a single-scattering albedo 
value smaller than one. Although a non-zero Im  can also modify the elements of 
the normalized Stokes scattering matrix and, thus, the elements of the normalized 
phase matrix, it is instructive to examine the “pure” effect of absorption on RTT 
computations by simply varying the single-scattering albedo and keeping the nor-
malized phase matrix fixed. The corresponding numerical results are shown in 
the remaining panels of Fig. 20.6. Not surprisingly, decreasing ϖ  causes pro-
gressively reduced spherical albedo values. This effect is much more pronounced 
at larger optical thicknesses, where it causes an early saturation of SA  at values 
progressively smaller than unity. To explain this result, let us recall that the con-



Chapter 20 350 

tribution of an n-particle sequence to the reflected specific intensity is propor-
tional to the nth power of the single-scattering albedo. Therefore, although opt-
ically thick slabs can accommodate very long sequences, the contribution of 
these sequences rapidly vanishes with growing n because the factor nϖ  becomes 
negligibly small. It is in fact remarkable that as small a deviation of the single-
scattering albedo from the value one as 0.0001 (see the top right-hand panel of 
Fig. 20.6) already causes the loss of several percent of the incident energy in a 
slab with infinite optical thickness. The effect of absorption on the spherical al-
bedo is noticeably weaker for Rayleigh-scattering slabs, which can be explained 
by a larger contribution of low-order sequences to the reflected specific intensity 
and the fact that these sequences are less affected by absorption.                  

We have mentioned in Chapter 15 that a widespread practice in many applied 
science and engineering disciplines had been to replace the actual phase function 
by an asymmetry-parameter-equivalent Henyey–Greenstein (HG) phase function 
(15.116). Although not a solution of the MMEs, this “unphysical” phase function 
has several attractive properties discussed in Problem 15.14. Figure 20.7 com-
pares Lorenz–Mie phase functions computed for two models of polydisperse 
spherical particles with their g-equivalent HG counterparts. For both models we 
assumed the gamma size distribution (15.108) with ,0min =r  ,max ∞=r  an effect-
ive radius reff = 10 μm, and an effective variance veff = 0.1. The model 1 and 2 
values of the relative refractive index were 1.55 + i0.001 and 1.55 + i0.004, re-
spectively, whereas the incident wavelength was fixed at 0.63 μm. The corre-
sponding values of the asymmetry parameter g were 0.838 and 0.901.  

Plate 20.1 shows the angular distribution of the reflected specific intensity for 
a semi-infinite homogeneous slab composed of model 1 particles, as well as for 
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Fig. 20.7.  Phase functions for model 1 and 2 polydisperse spherical particles 
(solid curves) and their HG counterparts (dotted curves).  
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its HG counterpart. Two obvious features of the reflected specific intensity distri-
butions in the left-hand column are the backscattering enhancement caused by 
the glory and the primary rainbow in the Lorenz–Mie phase function (see the 
gray solid curve in Fig. 20.7) as well as the strong near-forward scattering for the 
cases of grazing and near-grazing incidence 0(μ  equal or close to zero). The  
reflectance patterns for the asymmetry-parameter-equivalent HG phase function 
lack the first feature, which is explained by the absence of backscattering phase 
function maxima. The right-hand column of Plate 20.1 shows that errors in the 
reflected specific intensity caused by the use of the approximate HG phase func-
tion can be very large and can, in fact, exceed a factor of 20 at backscattering 
geometries and a factor of 3 at near-forward-scattering geometries. These errors 
can be unequivocally attributed to the large phase-function differences in Fig. 
20.7. Thus, Plate 20.1 makes a compelling case against the use of the HG phase 
function in directional reflectance computations, even for semi-infinite slabs.  

The upper panel of Fig. 20.8 depicts the so-called plane albedo  
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as a function of 0μ  for two semi-infinite homogeneous slabs composed of the 
model 1 and 2 particles, respectively. In general, the plane albedo characterizes 
situations when a slab is illuminated by an unpolarized parallel beam of light, and 
is defined as the ratio of the radiant energy reflected by the slab per unit area of 
the upper boundary per unit time to the incident energy per unit area of the upper 
boundary per unit time (Sobolev 1975). Comparison of Eqs. (20.26) and (20.28) 
reveals a close connection between the spherical and plane albedos. Specifically,  
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We also computed the plane albedo using the asymmetry-parameter-equivalent 
HG phase functions. The ratios of these approximate plane-albedo values to the 
respective exact ones are shown in the bottom panel of Fig. 20.8.  

Not surprisingly, the plane albedos shown in the upper panel of Fig. 20.8 de-
crease with increasing mI and, thus, with decreasing single-scattering albedo. The 
g-equivalent HG phase functions cause significant plane-albedo errors, especially 
for grazing illumination. The use of the HG phase functions overestimates 

),( 0P μTA  for small 0μ  and underestimates it for 0μ  close to unity, which is 
naturally explained by the angular pattern of the phase-function differences seen 
in Fig. 20.7. The plane-albedo errors increase significantly with increasing ab-
sorption. This trend is caused by the increasing relative contribution of the first-
order ladder diagrams coupled with the large phase-function differences.  

The respective spherical albedo ratios (0.99 for model 1 and 0.98 for model 
2) are much closer to unity. This significantly better accuracy of the HG estimate 
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of the spherical albedo can be explained in terms of cancellation of the plane-
albedo errors upon integration over 0μ  in Eq. (20.29). 

20.5  Polarization as an effect and as a characterization tool 

The widespread use of the approximate scalar RTE has caused an equally wide-
spread ignorance of an important scattering effect called polarization. This term 
refers to the situation when an initially unpolarized incident light becomes polar-
ized upon scattering. This means that at least one of the elements of the specific 
intensity column vector other than the specific intensity acquires a nonzero value.  
 This effect is illustrated in Fig. 20.9, which parallels Fig. 20.4, but shows the 
absolute value of the second element of the specific intensity column vector of 
the reflected light. Owing to the particular illumination geometry and to the inci-
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Fig. 20.8.  Top panel: plane albedo versus 0μ  for two homogeneous semi-
infinite slabs composed of model 1 and 2 spherical particles, respectively.  
Bottom panel: plane albedos computed for HG phase functions relative to their 
g-equivalent Lorenz–Mie counterparts.  
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dent beam being unpolarized, the third and fourth elements of the specific inten-
sity column vector are equal to zero, whereas the second one is independent of 
the azimuth angle of the reflection direction.  
 There are two striking differences between the results shown in Fig. 20.9 and 
in Fig. 20.4. First, the overall growth of |~|Q  as T  increases from 0.01 to 100 is 
more than an order of magnitude smaller than that of .~I  Second, the saturation of 

|~|Q  occurs at smaller values of the optical thickness than that of the specific in-
tensity. In particular, the |~|Q  curves for T  = 10 and T  = 100 are hardly distin-
guishable, while the overall growth of |~|Q  as T  increases from 1 to 100 is less 
than a factor of 2. These results suggest unequivocally that the main contribution 
to Q~  is carried by low-order Neumann terms in Eq. (20.23), the first-order term 
being the prime contributor, whereas the contribution of higher-order terms be-
comes largely unpolarized.  

These conclusions are corroborated by Fig. 20.10 which shows the corres-
ponding signed degree of linear polarization of the reflected light (cf. Eq. (9.40)). 
One can see indeed that the ratio IQ ~~−  for small T essentially replicates the 
ratio 11 ab−  of the elements of the normalized Stokes scattering matrix (see the 
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bottom left-hand panel in Fig. 20.3), whereas the growth of T only serves to 
make the polarization more neutral.  

Note that the deep spikes in the curves shown in Fig. 20.9 correspond to so-
called inversion (or neutral) points of polarization, i.e., the scattering angles at 
which the signed degree of linear polarization switches sign. The remarkable 
constancy of both inversion angles with increasing T in Fig. 20.9 indicates too 
that the main contribution to the second element of the specific intensity column 
vector comes from the first-order Neumann term. 

The majority of particle characterization techniques in disciplines such as ter-
restrial and planetary remote sensing, astrophysics, and biomedicine are based on 
intensity measurements. However, there are two major factors that can make po-
larimetry a much more sensitive particle characterization tool. First, the absolute 
accuracy of intensity measurements is typically of order 0.05I and can become 
significantly worse for weak signals, whereas the absolute accuracy of measure-
ments of the ratios ,IQ  ,IU  and IV  can be as good as 0.001 and sometimes 
is much better (see, e.g., Table 1.3 of Tinbergen (1996), which lists the best accu-
racies obtained in various types of astrophysical polarimetric observations). Ow-

−0.5

−0.25

0

0.25

−
Q

I

T  = 100
  10
    1
 0.1

0.01

~
~

120 150 18090
°180 θ−  

Fig. 20.10.  As in Fig. 20.9, but for .),,0(~),,0(~ ϕμϕμ −−− IQ  



 Radiative transfer in plane-parallel particulate media 355 

ing to the Stokes–Verdet inequality, these ratios can vary between −1 and +1. 
However, the 0.001 absolute accuracy makes informative even data spanning a 
significantly narrower range, as, for example, in Fig. 20.10. Second, a major con-
tribution to Q~  and U~  comes from the first-order Neumann term, which causes 
these quantities to preserve more information content of the Stokes scattering 
matrix than the specific intensity. Furthermore, the degree of the “first-order” 
polarization given by )()( 11 ΘΘ ab−  exhibits a much stronger variability with 
particle size, shape, and relative refractive index than the phase function ),(1 Θa  
which makes the former a more sensitive indicator of particle microphysical 
characteristics (see Chapters 9 and 10 of MTL1 and references therein).        

Problems 

20.1:   Derive Eqs. (20.4) and (20.5). 

20.2:   Show that Eqs. (20.10)–(20.12) give the solution of the boundary-value 
problem specified by Eqs. (20.7) and (20.9).  

20.3:   Show that Eqs. (20.11) and (20.12) represent the specific version of the 
integral RTE (19.83) applicable to a plane-parallel particulate slab.  

20.4:   Verify that in the case of a plane-parallel particulate layer, the left-hand 
sides of Eqs. (19.104) and (19.106) are independent of the distance from 
the upper or lower boundary of the medium. 

20.5:   Derive explicit analytical expressions for the first-order terms in the Neu-
mann expansions of the reflection and transmission matrices of a homo-
geneous plane-parallel particulate medium. 

20.6:   Derive Eq. (20.25) from the RTE (20.7). Show that the result is consistent 
with taking the limit 0→T  in Eq. (H.63). 

Notes and further reading 

Diverse applications of the RTT in atmospheric radiation and terrestrial remote 
sensing are discussed in the textbooks and monographs by Goody and Yung 
(1989), Liou (1992, 2002), Lenoble (1993), Stephens (1994), Yanovitskij (1997), 
Thomas and Stamnes (1999), Zdunkowski et al. (2007), and Wendisch and Yang 
(2012). The subject of ocean optics is covered in the books by Shifrin (1988), 
Mobley (1994), and Spinrad et al. (1994). Planetary remote sensing and various 
applications of the RTT in astrophysics are described in Dolginov et al. (1995), 
Hanel et al. (2003), Videen et al. (2004), and Mishchenko et al. (2010, 2011a). 
Applications in biomedicine and engineering are discussed thoroughly in the 
monographs by Tuchin (2002, 2007), Tuchin et al. (2006), Howell et al. (2011), 
and Modest (2013). Marshak and Davis (2005) and Davis and Marshak (2010) 
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reviewed the application of the RTT to particulate media other than plane-
parallel slabs.  

The word “photon” is frequently used in descriptions of the Monte Carlo sol-
ution of the integral RTT (20.10)–(20.12) (e.g., Welch and van Gemert 2011). It 
is imperative to recognize, however, that the RTT is derived from classical Max-
well’s electromagnetics and as such does not involve quantization of the electro-
magnetic field. Therefore, the imaginary “Monte Carlo photons” have nothing to 
do with the real QED photons. The following quote from Wiscombe (2005, p. 
36) is quite instructive: 

Monte Carlo is just a way of solving the integral form of the radiative 
transfer equation. At root… Monte Carlo has nothing to do with “pho-
tons” propagating from one “point scatter” to the next; these are merely 
convenient (but potentially misleading) fictions for algorithmically calc-
ulating the Monte Carlo solution. Expressing the radiative transfer 
equation with scattering in integral form leads to a sum of integrals of 
increasing dimensionality, corresponding to higher and higher numbers 
of scatters (sometimes called the Neumann series). There are no good 
quadrature methods for such N-dimensional integrals except Monte 
Carlo and, for small N, a generalization of Trapezoidal Rule… All the 
elegant Gaussian quadrature methods for one-dimensional integrals are 
useless for N-dimensional integrals. So… “[Monte Carlo] photons” are 
merely drunken census takers, careening around the medium to get a 
decent-enough sample to do the N-dimensional integrals.  

Similarly, it is incorrect to characterize the Monte Carlo solution of the integral 
RTT as beam or ray tracing.       
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2211  
Weak localization 

The main advantage of the microphysical approach to radiative transfer is that it 
establishes a direct link between the MMEs and the RTE via a sequence of nine 
unambiguously defined and physically realizable assumptions and approxima-
tions summarized in Section 19.13. By keeping assumptions 1, 2, and 4–8 from 
Section 19.13, but relaxing approximations 3 and 9, one can extend the micro-
physical approach and establish a similar direct link between the MMEs and the 
effect of WL of electromagnetic waves by a sparse DRM. Specifically, one can 
supplement the computation of the ladder component of the dyadic correlation 
function with the computation of the so-called “cyclical” component. The latter is 
caused by pairs of multi-particle sequences exemplified by Plates 18.1e and 
18.1h. As we have seen in Section 18.4, the sum of the ladder and cyclical com-
ponents can be expected to provide a better representation of optical observables 
at certain points located in the far zone of the particulate medium.  

It is important to recognize that WL is not an independent physical phen-
omenon. It is implicitly contained in the exact solution of the MMEs (Section 
18.4) but “falls through the cracks” when one resorts to the ladder approximation 
in order to simplify the computation. Therefore, one may characterize WL as the 
difference between the exact solution of the MMEs for a sparse DRM and the 
ladder approximation, although this characterization may still not be fully accu-
rate since it neglects the existence of multi-particle sequences that go through a 
particle more than once.  

Given the complexity of the subject, this chapter provides only a brief intro-
duction to the theory of WL and a few numerical examples. Further details and 
references can be found in Chapter 14 of MTL2. 

21.1  Weak localization by a sparse discrete random medium 

Consider again a scattering object in the form of a large group of discrete, ran-
domly and sparsely distributed particles, as shown schematically in Fig. 21.1. 
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The object is illuminated by a plane electromagnetic wave. The reader should 
recall that the final formulas of the RTT have been derived by neglecting all dia-
grams with crossing connectors in the diagrammatic representation of the dyadic 
correlation function. Following the line of reasoning outlined in Section 19.13, 
one may indeed conclude that upon statistical averaging, the contribution to the 
total PST of all the diagrams of the type illustrated in Fig. 21.2 must vanish at 
near-field observation points located either inside (observation point 1) or outside 
(observation point 2) the object. 

However, we have already discussed in Section 19.13 that there is an excep-
tion corresponding to the situation when the observation point is in the far zone 
of the entire particulate volume and resides within its “back-shadow” (observ-   
ation point 3 in Fig. 21.1). Then the class of diagrams illustrated by Plates 18.1e 
and 18.1h and Figs. 21.2c–21.2e gives a nonzero contribution that causes the 

Incident plane w
ave

1

3

2

 
Fig. 21.1.  Scattering of a plane electromagnetic wave by a volume of discrete 
random medium populated by sparsely distributed particles. The size of the 
particulate volume is exaggerated relative to its distance from observation 
point 3 for demonstration purposes. 

(a) (b)

(d)

(c)

(e)  
Fig. 21.2.  Diagrams with crossing connectors. 



 Weak localization 359 

WL effect. These diagrams were called by Barabanenkov (1973) cyclical or 
maximally crossed, since they can be drawn in such a way that all connectors 
cross at one point.  

The expression for the cumulative contribution of all cyclical diagrams to the 
far-field dyadic correlation function, ),,(C rr′C  can be derived using the diagram-
matic technique introduced in Chapter 19. The final result can be summarized by 
the diagrammatic expression shown in Fig. 21.3. As before, the symbol Σ denotes 
both the summation over all appropriate particles and the statistical averaging 
over the particle states and positions, whereas the double lines account for the 
effect of exponential attenuation and, possibly, dichroism. It is very instructive to 
compare Fig. 21.3 with Fig. 19.15, since this comparison reveals quite vividly the 
morphological difference between the participating diagrams. The total far-field 
dyadic correlation function is now approximated by the following expression: 

 ),,(),(),( CL, rrrrrr R ′+′〉′〈 CCC ≈ξ  (21.1) 

where, as before, the ladder component ),(L rr′C  is given by the right-hand side 
of the equation shown in Fig. 19.15. Accordingly,  

 ,)()()()( ,C,L, ξξξ RRR rrrr 〉〈+〉〈〉〈=〉〉〈〈 PPPP ≈  (21.2) 

where ξ,L )( Rr 〉〈P  and ξ,C )( Rr 〉〈P  are the ladder and cyclical components, respect-
ively, of the total time-averaged PST at the far-field observation point r. The lad-
der component is given by an appropriate modification of Eq. (19.69). 

The inclusion of the cyclical diagrams makes the computation of the total 
PST much more involved and limits the range of problems that can be solved 
accurately. In particular, no closed-form analytical equation similar to the RTE 
(19.62) has been derived for the computation of .)( ,C ξRr 〉〈P  As a consequence, 
the cyclical component is often computed using the brute-force Monte Carlo 
summation of the cyclical diagrams (e.g., Muinonen 2004; Muinonen et al. 
2012).  

It follows from Eq. (18.6) that the range of scattering directions affected by 
WL is inversely proportional to ,1 〉〈lk  where 〉〈l  is the average distance between 
the end particles of the various multi-particle sequences such as those shown in 
Plates 18.1e and 18.1h. Factors limiting 〉〈l  and thereby increasing the angular 
width of various manifestations of WL are absorption by particles and a finite 
size of the scattering medium. The finite-size effect is well illustrated by Plate 
18.3d which reveals that the angular widths of the backscattering WL maxima 
decrease as the size parameter k1R of the particulate volume increases. For an 
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Fig. 21.3.  The cyclical part of the far-field dyadic correlation function. 
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optically thick, plane-parallel, nonabsorbing DRM, a good proxy for 〉〈l  is the 
so-called transport mean free path given by 

 
)1(

1
ext0

tr g−〉〈
=

ξCn
l  (21.3) 

(Ishimaru 1978).  
The interference origin of WL implies that in the case of plane-wave illum-  

ination, the observer must be located in the far zone of the entire scattering me-
dium. In reality, various manifestations of WL can be observed at distances much 
shorter than those dictated by Eq. (5.14). Specifically, the distance D from the 
particulate medium to the observation point must satisfy the following inequality 
(Problem 21.1): 

 .2
12

1 〉〈lkD  (21.4) 

This requirement ensures that the observation point is in the far zones of the ma-
jority of individual multi-particle sequences contributing significantly to the 
right-hand side of the Neumann expansion (6.48). However, the inequality (21.4) 
can still be rather demanding if the scattering medium is composed of sparsely 
distributed, nonabsorbing, wavelength-sized or larger particles with asymmetry 
parameters approaching the value one and if the minimal dimension of the me-
dium is comparable to or greater than ltr. 

The transport mean free path for sparsely populated objects such as liquid-
water clouds is many orders of magnitude greater than the wavelength. There-
fore, the angular width of various WL features for such particulate media can be 
expected to be extremely small, thus making them hardly observable with passive 
instruments measuring the scattered sunlight. However, WL can affect the results 
of active observations of clouds with lidars and radars designed to observe elect-
romagnetic radiation scattered in exactly the backscattering direction (e.g., Ko-
bayashi et al. 2007).    

The situation is different for densely packed particulate media, in which case 
ltr can be comparable to the wavelength of the incident wave. As a consequence, 
WL can be detectable not only with active instruments or specially designed 
laboratory equipment (e.g., Gross et al. 2007; Psarev et al. 2007), but even in 
telescopic observations of sunlight scattered by particulate surfaces of high-al-
bedo solar system bodies (see, e.g., Mishchenko et al. (2010), Rosenbush and 
Mishchenko (2011), and references therein).  

Monostatic radars use the same antenna to transmit and receive electromag-
netic waves. Therefore, radar observations of particulate surfaces are inevitably 
affected by WL. Several solar system objects have been found to generate radar 
returns quite uncharacteristic of bare solid surfaces. For example, the icy Gali-
lean satellites of Jupiter exhibit both strong radar reflectivities and Cδ  values 
exceeding one (Ostro 1993). Similar radar echoes have been detected in observa-
tions of the poles of Mercury (Harmon et al. 1994). These measurements have 
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been interpreted in terms of electromagnetic scattering by voids and/or rocks 
imbedded in a transparent layer of ice (Hapke 1990; Mishchenko 1992a).   

Although it is straightforward to derive a general analytical expression for 
the cyclical dyadic correlation function supplementing Eq. (19.57), the use of this 
expression in practical computations, either analytical or numerical, still remains 
highly problematic. Nevertheless, there are two rigorous particular solutions of 
the problem that have already found extensive applications. The aim of the     
following section is to briefly discuss these solutions and their consequences. 

21.2  Weak localization by a plane-parallel discrete random medium 

Being a far-field phenomenon, WL should ideally be observed with a WCR lo-
cated in the far zone of the entire scattering medium (Chapter 18). Since in the 
majority of practical situations this is virtually impossible, in what follows we 
will assume that a WCR is located in the near zone of the particulate volume yet 
far enough to satisfy the inequality (21.4).  

Consider the scattering of a plane electromagnetic wave )ˆi(exp 01
inc
0 rnE ⋅k  by 

a plane-parallel layer of sparse DRM populated by ISRPs (Fig. 21.4). A remote 
WCR scans a range of upward directions ,n̂  including the exact backscattering 

n̂0Plane electromagnetic wave

−
Remote observation point

n̂0

n̂

 
Fig. 21.4.  Electromagnetic scattering by a plane-parallel sparse DRM of infinite 
lateral extent. 
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direction given by .ˆˆ 0nn −=  Since the scattering slab is assumed to have infinite 
lateral extent, the reading of the WCR is independent of the distance to the upper 
boundary of the slab, as long as it satisfies the inequality (21.4).  

It follows from Eq. (19.106) that in the absence of WL, the polarized reading 
of the WCR would be given by the product ),ˆ,0(~Δ d ep nISΩ  where, as before, 
ΩΔ  is the acceptance solid angle of the WCR and Sep is the area of its entrance 

pupil, while )ˆ,0(~
d nI  is the diffuse specific intensity column vector at the upper 

boundary of the slab expressed in terms of the RTT reflection matrix R, according 
to Eq. (20.15). To take account of WL, the polarized signal recorded by the WCR 
must be written as ),ˆ(~Δ ep nISΩ  where the four-element specific intensity col-
umn vector )ˆ(~ nI  is the sum of the ladder (diffuse) and cyclical components:  

).ˆ(~)ˆ(0,~)ˆ(~)ˆ(~)]ˆ(~),ˆ(~),ˆ(~),ˆ(~[)ˆ(~ C
d

CLT nnnnnnnnn IIII +≡+== IVUQI  (21.5) 

By analogy with Eq. (20.15),  

 ,)ˆ,ˆ()ˆ(~
000

1 Innn RI μ
π

=  (21.6) 

where the “full” 44×  reflection matrix R  is also given by the sum of the ladder 
(RTT) and cyclical components: 

   ).ˆ,ˆ()ˆ,ˆ()ˆ,ˆ()ˆ,ˆ()ˆ,ˆ( 0
C

00
C

0
L

0 nnnnnnnnnn RRRR +≡+= R  (21.7) 

In accordance with the previous discussion of WL, it is useful to consider the 
following three scenarios: 

1. The direction n̂  is relatively far from the exact backscattering direction 
− .ˆ 0n  Then the cyclical component of the full specific intensity column vector 

)ˆ(~ nI  vanishes, and the response of the WCR is fully defined by the slowly 
changing ladder component (Fig. 21.5): 

 ).ˆ(0,~)ˆ(0,~)ˆ(~)ˆ(~
0dd

L nnnn −≡ II ≈≈ II  (21.8) 

This implies that the response of the polarization-sensitive WCR can be quant-   
ified in terms of the ladder reflection matrix )ˆ,ˆ( 0

L nnR  obtained by solving the 
RTE with one of the available numerically exact computer techniques mentioned 
in Chapter 20:  

 ).ˆ,ˆ()ˆ,ˆ()ˆ,ˆ()ˆ,ˆ( 0000
L

0 nnnnnnnn −≡ RR ≈≈ RR  (21.9) 

2. The WCR is aligned along the exact backscattering direction. Then the ef-
fects of WL can be expected to be maximal and must be taken into account by 
computing the respective full reflection matrix )ˆ,ˆ( 00 nn−R  and the full column 
vector )ˆ(~

0n−I  (see Fig. 21.5). We will explain in Section 21.2.1 that, somewhat 
unexpectedly, this can also be done in terms of the solution of the standard RTE.  

3. As the axis of the WCR deviates more and more from the exact back-
scattering direction, the effects of WL can be expected to weaken and gradually 
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disappear (see Fig. 21.5). The quantification of the angular profile of the WCR 
response in this transition region of scattering directions requites the knowledge 
of the full specific intensity column vector )ˆ(~ nI  and thus the full reflection mat-
rix ).ˆ,ˆ( 0nnR  The calculation of )ˆ,ˆ( 0nnR  is a very complex problem that has 
been solved analytically only in a few particular cases. We will discuss the con-
sequences of one such solution in Section 21.2.2.   

21.2.1  Exact backscattering direction 

Let us expand the ladder component of the reflection matrix into the first-order 
(superscript 1) and cumulative higher-order (or “multiple-order,” superscript M) 
contributions: 

 ).ˆ,ˆ()ˆ,ˆ()ˆ,ˆ()ˆ,ˆ( 0
C

0
M

0
1

0 nnnnnnnn RR ++= RR  (21.10) 

The first-order component )ˆ,ˆ( 0
1 nnR  is given by Eq. (H.63), while )ˆ,ˆ( 0

M nnR  is 
obtained by subtracting )ˆ,ˆ( 0

1 nnR  from )ˆ,ˆ( 0nnR  after the latter has been calc-  
ulated by solving the RTE. Analogously,  

 ),ˆ(~)ˆ0,(~)ˆ0,(~)ˆ(~ CM1 nnnn II ++= II  (21.11) 
where  
 ).ˆ0,(~)ˆ0,(~)ˆ0,(~

d
M1 nnn III =+  (21.12) 

One of the few rigorous results of the analytical theory of WL has been de-
rived by applying the Saxon’s reciprocity relation for the scattering dyadic (5.30) 
to the expressions for the ladder and cyclical components of the specific coher-
ency dyadic corresponding to the case of the exact backscattering direction (see 
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Fig. 21.5.  Backscattering enhancement caused by weak localization. The phase 
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Section 14.3 of MTL2 for details). The final result is a remarkably simple rel-
ation between the corresponding matrices )ˆ,ˆ( 00

M nn−R  and )ˆ,ˆ( 00
C nn−R  

(Mishchenko 1992b): 
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where 
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The arguments )ˆ,ˆ( 00 nn−  in Eqs. (21.13)–(21.17) are omitted for the sake of 
compactness. The importance of this rigorous result is hard to overstate. Indeed, 
it demonstrates that although the RTT is based on the neglect of all cyclical diag-
rams, all observable characteristics of WL at the exact backscattering direction 
can still be calculated by solving the RTE. Furthermore, this can be done by 
characterizing the scattering medium in terms of actual physical parameters, such 
as the optical thickness of the slab and the size, shape, and refractive index of the 
constituent particles. Equations (21.13)–(21.17) apply to quasi-monochromatic 
as well as to monochromatic scattering. 

Let us consider one instructive application of Eqs. (21.10) and (21.13). In the 
case of an unpolarized quasi-monochromatic incident beam the specific intensity 
of light reflected in exactly the backscattering direction is given by  

 ,)ˆ,ˆ()ˆ(~
0001100

1 Innn −=− RI μ
π

  

where I0 is the intensity of the incident beam. On the other hand, the diffuse 
background is given by 

  000
M
1100

1
1100d )]ˆ,ˆ()ˆ,ˆ([)ˆ0,(~ 1 IRRI nnnnn −+−=− μ

π
  

(see Fig. 21.5). Therefore, we can define the corresponding WL enhancement 
factor as 
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where the angular arguments )ˆ,ˆ( 00 nn−  on the right-hand side are again omitted 
for brevity. We have already mentioned that the enhancement factor is a quantity 
that can be measured for particle suspensions and particulate surfaces using spe-
cialized laboratory equipment, as well as for atmosphereless solar-system objects 
using ground-based or spaceborne telescopes. As such, Iζ  may be useful in re-
trieving macro- and microphysical characteristics of various particulate media.  

Plate 21.1 shows the results of numerically exact computer calculations of 
Iζ  for a homogeneous semi-infinite layer populated by polydisperse spherical 

particles. The enhancement factor is depicted as a function of the particle effect-
ive size parameter xeff eff1 rk=  and 0μ  for several values of the real and imag-    
inary parts of the relative refractive index. The particle size distribution is given 
by the gamma law (15.108) with ,0min =r  ,max ∞=r  and a fixed effective var-     
iance .1.0eff =v  The reflection matrix )ˆ,ˆ( 0nnR  was found by solving numer-    
ically the Ambartsumian nonlinear integral equation (see Section 12.4 of MTL2).  

Plate 21.1 reveals a surprisingly complex dependence of the enhancement 
factor on the particle microphysical properties. For example, we have seen in 
Section 20.4 that increasing absorption can be expected to suppress higher-order 
terms in the ladder expansion of the reflection matrix )ˆ,ˆ( 0nnR  and thus reduce 
the enhancement factor. Yet Iζ  can be seen to grow as the imaginary part of the 
relative refractive index increases and can reach maximal values for moderately 
absorbing particles. A more detailed discussion of these computational results, as 
well as of other analytical and numerical implications of Eqs. (21.10) and (21.13) 
can be found in Sections 14.5 and 14.6 of MTL2.  

Similarly to the scalar version of the RTT discussed in Section 20.3, the sca-
lar treatment of WL is based on the assumption that all elements of the reflection 
matrix )ˆ,ˆ( 0nnR  other than the (1, 1) element can be ignored if the incident light 
is unpolarized and one is interested in the computation of only the specific inten-
sity .)ˆ(~ I n  It is important to emphasize, however, that the rigorous formula 
(21.18) derived for the case of unpolarized incident light involves all the diagonal 
elements of the matrix )ˆ,ˆ( 00

M nnR  rather than only its (1, 1) element. One may 
therefore expect substantial differences between numerical predictions of the en-
hancement factor Iζ  based on the scalar approximation and the corresponding 
exact results. 

Plate 21.2 (adapted from Mishchenko and Dlugach (2008)) complements 
Plate 21.1 by showing the percentage error of the scalar approximation in the 
enhancement factor defined as 

 %,100|| ×−=
I

I

ζ
ζζ

δζ  (21.19) 

where ζ  is the “scalar” analog of .Iζ  It is seen indeed that the errors of the scalar 
approximation in the WL enhancement factor can often exceed 20%. The errors 
are especially large for nonabsorbing particles (the left-hand column of Plate 
21.2) and can reach 25%. In the limit ,00 →μ  both Iζ  and ζ  tend to unity, 
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thereby resulting in smaller .ζδ  Large nonabsorbing spherical particles with 
=Rm 1.8 and 2 develop a strong backscattering peak in the phase function. As a 

consequence, 1
11R  strongly increases (see Eq. (H.63)), whereas ,Iζ ,ζ  and ζδ  

decrease.  
It is obvious that the percentage errors ζδ  in the WL enhancement factor Iζ  

corresponding to the case of unpolarized incident light can be so large that one 
should exercise extreme caution when using the scalar approximation. Perhaps it 
would be wise to avoid the use of this approximation altogether.  

21.2.2  Angular dependence of weak localization: Rayleigh scattering 

In this section we use an exact solution of the WL problem obtained by Amic et 
al. (1997) in order to illustrate the angular distribution of the reflected intensity 
and polarization in the vicinity of the exact backscattering direction. Specifically, 
let us assume that a homogeneous semi-infinite slab is populated by nonabsorb-
ing particles with sizes much smaller than the wavelength. The slab is illum-      
inated by an unpolarized quasi-monochromatic beam incident perpendicularly to 
the slab boundary.  

Figure 21.6 depicts the corresponding enhancement factor )(qIζ  as a func-
tion of the dimensionless so-called angular parameter ,tr1 αlkq =  where α  is the 
phase angle. The dotted curve exhibits a typical WL peak centered at exactly the 
backscattering direction. The amplitude of the peak is )0(Iζ 1.537 and its half-
width at half-maximum is qHWHM,I = ≈Ilk HWHM,tr1 α 0.597 (see Fig. 21.5). Thus 
the relationship between the half-width at half-maximum of the backscattering 
intensity peak and the transport mean free path for the particular case of conserv-
ative Rayleigh scattering and unpolarized normal illumination is given by 
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Fig. 21.6.  Angular profiles of the enhancement factor (dotted curve) and the   
degree of linear polarization for unpolarized incident light (solid curve).  
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 .597.0
tr1

HWHM, lkI ≈α  (21.20) 

The degree of linear polarization of the reflected light for unpolarized inci-
dent light is equal to minus the ratio of the second element of the total specific 
intensity column vector to the total specific intensity:  

 .
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11
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11

1
11
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21

1
21

qqRqR
qqRqR

q
qqP
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I
Q

++
++

−=−=  (21.21) 

Both ),0(1
21R ),0(M

21R  and )0(C
21R  vanish, the latter two quantities as a conse-

quence of azimuthal symmetry in the case of normal illumination and unpolar-
ized incident light. Furthermore, both ),(1

11 qR ),(M
11 qR ),(1

21 qR  and )(M
21 qR  change 

with reflection direction much more slowly than )(C
11 qR  and )(C

21 qR  within the 
range of reflection directions affected by WL. As a result,  

 .
)()0()0(

)( )( C
11

M
11

1
11

C
21

qRR
qqP
R

R
++

−≈  (21.22) 

This quantity is shown in Fig. 21.6 by the solid curve. It is seen indeed that po-
larization is zero at the exact backscattering direction. However, with increasing 
q, polarization becomes negative, rapidly grows in absolute value, and reaches its 
minimal value Pmin –2.765% at a reflection direction very close to opposition 
(qP 1.68). This depression is highly asymmetric, so that the half-minimal value 
–1.383% is first reached at qP,1 0.498, which is even smaller than the value 
qHWHM,I 0.597 corresponding to the half-width at half-maximum of the back-
scattering intensity peak, and then at a much larger qP,2 7.10. This unusual be-
havior of polarization at near-backscattering angles is the polarization opposition 
effect discussed in Section 18.4 (see Fig. 18.6). Astrophysical observations of 
this effect have played an important role in remote characterization of regolith 
particles covering the surfaces of high-albedo atmosphereless solar-system bod-
ies (Mishchenko et al. 2010; Rosenbush and Mishchenko 2011).  

Problems 

21.1:   Derive the requirement (21.4). 

21.2:   Discuss what happens if the requirement (21.4) is not satisfied. 

21.3:   The angular resolution of the WCR shown in Plate 11.1b is defined by the 
diameter of the pinhole d and the focal length of the objective lens f (Sec-
tion 11.4). What must be the distance D from the particulate layer to the 
WCR in Fig. 21.4 and the WCR’s d and f  in order to fully resolve the 
backscattering peak in Fig. 21.5 and accurately determine its amplitude?  
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2222  
Epilogue 

The diagram in Fig. 22.1 provides a schematic summary of this textbook and 
serves to classify the place of the microphysical theories of radiative transfer and 
WL within the broader context of Maxwell’s electromagnetics. Although we 
have been using the adjective “microphysical” in order to emphasize the back-
traceability of both theories to the MMEs, it can also be said that these theories 
have a mesoscopic origin. Indeed, the term “mesoscopic physics” refers to a size 
regime that is intermediate between the microscopic and macroscopic and is 
characteristic of a region where a large number of particles can interact in a cor-
related fashion. The direct computer solutions of the Maxwell equations de-
scribed in Chapter 18 demonstrate indeed how the “macroscopic” regime of ra-
diative transfer and WL emerges from the “microscopic” particle-level regime of 
Maxwell’s electromagnetics upon averaging over random realizations of a multi-
particle group. Extensive discussions of mesoscopic optical phenomena can be 
found in the monographs by Sheng (2006) and Akkermans and Montambaux 
(2007). 

Besides being a one-page summary of the book, Fig. 22.1 also helps identify 
problems that still await solution. First of all, by using the frequency-domain 
MMEs as the point of departure, we have completely excluded from considera-
tion such phenomena as emission of electromagnetic waves and frequency redis-
tribution, as well as situations involving pulsed illumination. These areas of elect-
romagnetic energy transfer remain purely phenomenological (e.g., Oxenius 1986; 
Hanel et al. 2003; Mätzler 2006; Wehrse and Kalkofen 2006; Ito et al. 2007) and 
invoke modified versions of the RTE without strict derivation from first physical 
principles.  

Another challenging subject is electromagnetic scattering by stochastic het-
erogeneous media composed of widely separated yet spatially correlated part-
icles. For example, it has been suggested by Knyazikhin et al. (2005) and Mar-
shak et al. (2005) that cloud droplets belonging to a particular size range may 
tend to form relatively small groups imbedded in an otherwise homogeneous 
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Fig. 22.1.  Classification of electromagnetic scattering problems. 
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cloud. It was shown by Mishchenko (2006) on the basis of the microphysical  
approach that as long as such inclusions are sufficiently small and specific as-
sumptions of ergodicity and spatial uniformity hold, one can still apply the con-
ventional RTE, in which the participating extinction and phase matrices are ob-
tained by averaging the respective single-particle matrices over all the particles 
constituting the entire cloud. However, this result may not necessarily apply to 
clouds with larger inhomogeneities. 

Apart from Mishchenko (2006), the problem of electromagnetic scattering by 
stochastic media composed of widely separated yet correlated particles has been 
analyzed so far by using the motley concepts of the phenomenological RTT, in-
cluding the fictitious “photons” (e.g., Pomraning (1991), Borovoi (2006), Davis 
and Marshak (2010), and references therein). We have seen in Chapter 19 that 
the extinction and phase matrices appear in the standard RTE as a consequence 
of well-defined assumptions and approximations and only as ensemble-averaged 
quantities. In the phenomenological stochastic RTT, the extinction and phase 
matrices are taken for granted and are postulated to be the primary optical attrib-
utes of the individual particles. Clearly, a self-consistent application of the micro-
physical approach is necessary to determine whether and to what extent the con-
cepts of extinction and phase matrices can be applied to correlated particles.  

Many geophysical scattering media consist of densely packed and strongly 
correlated particles. Typical examples are snow, soil and regolith surfaces, as 
well as vegetation. There is a rapidly growing number of publications in which 
numerical solutions of the RTE are used to model optical characteristics of the 
various densely packed particulate media. The reader can recall that the formal 
applicability of the RTT rests on the assumption that scattering particles are lo-
cated in each-other’s far zones and are uncorrelated. The obvious violation of this 
assumption in the case of densely packed particles can lead to significant devia-
tions from the numerical predictions based on the RTE. Therefore, it is important 
to analyze, both theoretically and experimentally, to what extent the RTT – as 
well as the theory of WL – can be applied to densely packed particulate media. 
Recent progress in this direction has been reported by Voit et al. (2009), 
Muinonen et al. (2012), Mackowski and Mishchenko (2013), and Mishchenko et 
al. (2013c) based on numerically exact solutions of the MMEs and results of con-
trolled laboratory experiments.  

The rigorous analytical theory of electromagnetic energy transport in densely 
packed particulate media directly back-traceable to the MMEs is still in progress 
(e.g., Tishkovets et al. (2011) and references therein). There are several heuristic 
approaches to this problem that start with the notion of “independent scattering” 
and attempt to predict the modification of the phase and extinction matrices by 
effects of packing density (e.g., Hapke 2012), but the conceptual value of such 
approximations is limited and their range of validity is unknown, if not quite 
questionable. Fortunately, the ever-increasing power of scientific workstations 
coupled with the availability of efficient numerical techniques has led to the 
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emergence of an accurate quantitative approach to this complex problem based 
on direct computer solutions of the MMEs (see Chapter 18, Dlugach et al. 
(2011), Mackowski and Mishchenko (2013), and references therein).   

Another important problem is electromagnetic scattering by an infinite ran-
dom rough surface separating two half-spaces with different refractive indices. 
Although some rough surfaces, such as the ocean surface, indeed change ran-
domly in time, many rough interfaces do not change and are deterministic rather 
than random. However, quite often their position relative to the source of light 
and/or the detector is not fixed during the measurement and their vertical profile 
is described by a highly irregular function of lateral coordinates. Even minute 
displacements of the source of light and/or the detector change phase differences 
entirely, thereby destroying the speckle pattern. Furthermore, the detector may 
view different parts of the surface at different moments in time, thereby in effect 
recording an average over a temporally varying surface profile. These two factors 
make the concept of a random rough surface a good model for describing the re-
sults of many actual static measurements. Further information on this subject can 
be found in the review by Shchegrov et al. (2004) and numerous publications 
cited therein. 

One can also think of more complex problems involving different types of 
volume and/or surface scattering. A good example is electromagnetic scattering 
by a layer of continuous fluctuating medium comprising randomly positioned 
discrete particles and bounded by random rough interfaces. Although problems 
like this one are important in practice and have been treated using various phen-
omenological approaches, microphysical treatments based on consistent appli-
cation of the Maxwell equations have been extremely scarce (e.g., Mudaliar 
2013). 

Problems 

22.1:   Discuss the main results of this textbook by following the flow of the dia-
gram in Fig. 22.1. 

22.2:   The essays by Mishchenko (2009) and Mishchenko et al. (2011b) dispel 
numerous profound and long-lasting misconceptions encountered in the 
theory of electromagnetic scattering by particles, as well as in the phen-
omenological disciplines of directional radiometry and radiative transfer. 
Discuss the issues raised in those essays in the context of the diagram in 
Fig. 22.1. 
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AAppppeennddiixx  AA  

Dyads and dyadics 

Considered as mathematical entities, dyads and dyadics share with vectors the 
property of being independent of any coordinate system, although they possess 
representations in each of the reference frames appropriate for representations of 
vectors. This trait makes dyads and dyadics useful as mathematical measures of 
certain types of physical quantities that, like the directional quantities represented 
by vectors, can be visualized and manipulated without specifying beforehand a 
particular coordinate system.  

From this coordinate-free standpoint, a dyad is defined as the result of a dy-
adic product of two vectors ba ⊗  such that the operation cba ⋅)( ⊗  yields the 
vector )( cba ⋅  and the operation )( bac ⊗⋅  yields the vector .)( bac ⋅  The vector 
product cba ×⊗ )(  is defined as a dyad ),( cba ×⊗  and )( bac ⊗×  yields 

.)( bac ⊗×  The dot product of two dyads ba ⊗  and dc ⊗  yields the dyad 
).()( dacb ⊗⋅   

The sum of two dyads dcba ⊗+⊗=A  is not necessarily a dyad in that 
there may not exist two vectors e and f such that .fe ⊗=A  Therefore, the sum 
of two or more dyads is called a dyadic. The result of a dyadic operating on a 
vector is another vector:  

 ),()( edcebae ⋅⋅⋅ +=A  (A.1) 

                                             .)()( dcebaee ⋅⋅⋅ +=A  (A.2) 

The vector products e×A  and A×e  are defined analogously.  
From the coordinate standpoint, the operation (A.1) may be thought of as a 
33×  matrix representing the dyadic multiplying a column matrix consisting of 

the initial vector components, thereby producing another column matrix consist-
ing of the resulting vector components. The components of both vectors must be 
specified in the same coordinate system.  

Any dyadic can be represented as a sum of at most nine dyads. For example, 
in Cartesian coordinates any dyadic A  can be expressed as 
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                              zxyxxx ˆˆˆˆˆˆ   ⊗+⊗+⊗= xzxyxx AAAA  

                                      zyyyxy ˆˆˆˆˆˆ ⊗+⊗+⊗+ yzyyyx AAA   

                                      ,ˆˆˆˆˆˆ zzyzxz ⊗+⊗+⊗+ zzzyzx AAA  (A.3)   

where ,x̂  ,ŷ  and ẑ  are the unit vectors along the x-, y-, and z-axis, respectively, 
and the coefficients ijA  can be thought of as elements of the matrix representing 
the dyadic. It can be shown that dyadics are Cartesian tensors of rank two. 

The transpose of a dyadic A  is a dyadic TA  such that  

 T  AA ⋅⋅ aa =  (A.4) 

for any a. One may easily verify that transposing a dyadic is equivalent to trans-
posing the matrix representing the dyadic in a coordinate system. Obviously, 

 AA = )( TT  (A.5) 
and 
 .  T aa ⋅⋅ AA =  (A.6) 

A dyadic A  is symmetric if  
 AA = T  (A.7) 
and is Hermitian if  
 .T ∗= AA  (A.8) 

The identity dyadic I  is defined by the relations 

 aaa     == II ⋅⋅  (A.9)   

for any a. As a consequence, we have for any :A   

 .    AIAAI == ⋅⋅  (A.10)   

Problems 

A.1:   Show that 

                                    ,  )(  )( bababa ⋅⋅⋅⋅⋅⋅ AAA ==  (A.11)   

                                    ,  )(  )( BABABA ⋅⋅⋅⋅⋅⋅ aaa ==  (A.12)   

                                    ,  )(  )( aaa ⋅⋅⋅⋅⋅⋅ BABABA ==  (A.13)   

 ,  )(  )( CBACBACBA ⋅⋅⋅⋅⋅⋅ ==  (A.14)   

                                    ,  T abba ⋅⋅⋅⋅ AA =  (A.15)   

                                    , )( TTT ABBA ⋅⋅ =  (A.16)   

                                    ,)(  )()( TBABA ⋅⋅⋅⋅ baba ⊗=⊗  (A.17) 
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                                               ).(  )( AA ×=× baba ⋅⋅  (A.18) 

A.2:   Show that  
 zzyyxx ˆˆˆˆˆˆ  ⊗+⊗+⊗=I  (A.19)   

in Cartesian coordinates and  

 φφθθrr ˆˆˆˆˆˆ  ⊗+⊗+⊗=I  (A.20)   

in spherical polar coordinates, where ,r̂  ,θ̂  and φ̂  are the corresponding 
unit vectors. 

Notes and further reading 

The profound concept of dyads and dyadics was 
pioneered by the great American physicist and 
mathematician J. Willard Gibbs (1839–1903) (see, 
in particular, the famous textbook by Gibbs and 
Wilson 1909). Among his other supreme contribu-
tions to physics, mathematics, and physical chemist-
ry are the foundation of classical statistical physics, 
the development (independently of Oliver Heavi-
side) of vector calculus, and the formulation of the 
phase rule for a heterogeneous system in thermo-
dynamic equilibrium. Although Gibbs’ dyadic calc-
ulus has eventually become part of the more general 
tensor calculus, it remains an extremely useful 
mathematical tool in electromagnetics and optics.  

A comprehensive introduction to dyadic calculus can be found in Drew 
(1961). A useful compendium of formulas from dyadic algebra and dyadic anal-
ysis is given in Appendix 4 of Van Bladel (2007). 

 

Josiah Willard Gibbs
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AAppppeennddiixx  BB  

Free-space dyadic Green’s function 

The free-space dyadic Green’s function is defined as 

 ), ,(1  ) ,( 2 rrrr ′⎟
⎠
⎞⎜

⎝
⎛ ∇⊗∇+=′ g

k
IG  (B.1) 

where ,, 3ℜ∈′rr  k is a positive real number, and  
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is the real-valued scalar Green’s function. The latter satisfies the three-dimen-
sional Helmholtz equation  

 )(   ) ,()( 22 rrrr ′−−=′+∇ δgk  (B.3) 

(see, e.g., p. 598 of Arfken and Weber (2005)), where )( rr ′−δ  is the three-
dimensional delta function defined by 
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Furthermore, it obeys the obvious symmetry relation  

 ) ,(  ) ,( rrrr ′=′ gg  (B.5) 
and the asymptotic limit  
 .0  ) ,(lim

 ||
=′

→′−
rr

rr
g

∞
 (B.6) 

Let us now invoke the dyadic identities  

 ,0  )(  )( =∇⊗∇×∇=∇⊗∇×∇  (B.7) 
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 ggg 2   )( ∇−∇⊗∇=×∇×∇ II  (B.8) 

(Van Bladel 2007), where 0  is a zero dyad. By applying these to Eq. (B.1) and 
taking into account Eq. (B.3), we easily verify that ) ,( rr ′G  satisfies the follow-
ing differential equation: 

 ).(  ) ,() ,( 2 rrrrrr ′−=′−′×∇×∇ δIGkG  (B.9) 

If we recall that in Cartesian coordinates 

                                 
zyx ∂
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∂
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∂=∇ zyx ˆˆˆ   (B.10) 

and denote the gradient operator in the primed Cartesian coordinates by ∇′  then 
) ,() ,( rrrr ′∇−=′∇′ gg  and ). ,() ,( rrrr ′∇⊗∇=′∇′⊗∇′ gg  By interchanging r 

and r′  in Eq. (B.1) and recalling Eq. (B.2), we obtain 
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which yields the symmetry property 

 ). ,(  ) ,( rrrr ′=′ GG  (B.11) 

Furthermore, Eqs. (B.1) and (B.10) imply that ) ,( rr ′G  is a symmetric dyad: 

 .)] ,([  ) ,( Trrrr ′=′ GG  (B.12) 
Hence 
 .)] ,([  ) ,( Trrrr ′=′ GG  (B.13) 

Equation (B.10) also implies the property of translational invariance: 

 ). ,(  ) ,( rrRrRr ′=+′+ GG  (B.14) 

Let us now take into account that in spherical coordinates,  

                                , 
sin
1ˆ 1ˆˆ  

ϕθθ ∂
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rrr
φθr  (B.15) 

 0,  ˆ =
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∂ r
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    ,ˆ  ˆ θr =
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    ,sinˆ  ˆ θ
ϕ

φr =
∂
∂  (B.16) 

the order of operator components relative to ,r̂ ,θ̂  and φ̂  in Eq. (B.15) being 
essential because the unit basis vectors depend on θ  and .ϕ  Assuming that 
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kr 1, we derive from Eqs. (B.1) and (B.2):  
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(Problem B.1). Furthermore, since  
                                       II ×∇=×∇ )(  )( gg  (B.18) 

(Van Bladel 2007), we can use Eqs. (B.1), (B.7), and (B.17) to derive the follow-
ing radiation condition for the dyadic Green’s function:  

 0  ) ,(i)] ,([
1rk

GrkG =+×∇× 0r0rr  (B.19) 

(Problem B.2). Taking into account that  
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we derive from Eqs. (B.14) and (B.17):  
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Finally, Eqs. (B.10), (B.14), and (B.19) imply that  

 .0  ) ,(i)] ,([
1

rr
rk

GrkG
′

=′+′×∇× rrrrr  (B.22) 

Problems 

B.1:   Derive Eq. (B.17). 

B.2:   Derive Eq. (B.19). 

Notes and further reading 

The dyadic Green’s function was introduced by Levine and Schwinger (1950). It 
belongs to the general class of functions first studied by the self-taught English 
mathematician (and professional miller) George Green (1793–1841) in his ini-
tially obscure, but now famous Essay (Green 1828). Typically a Green’s function 
is an integral kernel that can be used to solve an inhomogeneous differential 
equation defined on a domain, with specified boundary (or initial) conditions 
(see, e.g., Barton (1989)). Green’s approach was popularized by W. Thomson, 
Lord Kelvin and further developed into an efficient mathematical tool by O. 
Heaviside. For a scientific biography of George Green see Cannell (2001).    
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AAppppeennddiixx  CC  

Euler rotation angles 

Consider right-handed Cartesian coordinate systems } , ,{ zyx  and } , ,{ zyx ′′′  
having a common origin. It is often convenient to specify the orientation of the 
coordinate system } , ,{ zyx ′′′  relative to the coordinate system } , ,{ zyx  in terms 
of three Euler rotation angles ,α ,β  and γ  which transform the coordinate sys-
tem } , ,{ zyx  into the coordinate system }, , ,{ zyx ′′′  as shown in Fig. C.1. Speci-
fically, the three consecutive Euler rotations are performed as follows: 

● Rotation of the coordinate system } , ,{ zyx  about the z-axis through an angle 
),2 ,0[  πα ∈  reorienting the y-axis in such a way that it coincides with the 

line of nodes (i.e., the line formed by the intersection of the xy- and the 
).planes-yx ′′   

Line of nodes
y

x′

y′

z′

α
βγ

z

x
β

 
Fig. C.1.  Euler angles of rotation ,α ,β  and γ  transforming the coordinate sys-
tem } , ,{ zyx  into the coordinate system }. , ,{ zyx ′′′  
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● Rotation about the new y-axis through an angle ]. ,0[  πβ ∈   
● Rotation about the axis-z′ through an angle ).2 ,0[  πγ ∈  

An angle of rotation is positive if the rotation is performed in the clockwise direc-
tion when one is looking in the positive direction of the rotation axis. 
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AAppppeennddiixx  DD  

Spherical-wave decomposition of a plane wave          
in the far zone 

In this appendix we derive Eq. (13.14) following the approach described by 
Saxon (1955b). We begin with the well-known expansion of a plane wave in sca-
lar spherical harmonics (see p. 471 of Jackson (1998)):  
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where ,  ˆ rrr =  ,  ˆ r′′=′ rr   

 ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−=

y
y

yy
yyj

l
l

l
sin

d
d 1    )(  (D.2) 

are spherical Bessel functions of the first kind, and )ˆ(rlmY  are scalar spherical 
harmonics. The latter are defined as 
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where θ  and ϕ  are spherical angular coordinates of the unit vector r̂  and the 
m
lP  are associated Legendre functions defined in terms of Legendre polynomials 

Pl as follows: 
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with ].1  ,1[  −∈x  Using the asymptotic form (see p. 729 of Arfken and Weber 
(2005)), 
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we have 

 .
2

iiexp
2

iiexp 
2

i   )( ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ −′−⎟

⎠
⎞⎜

⎝
⎛ +′−

′
=′
→′

ππ lrrlrr
rr

rrj
rr

l
∞

 (D.7) 

Substituting this expression in Eq. (D.1) and making use of the completeness re-
lation for the spherical harmonics (see p. 108 of Jackson (1998)) 
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and the symmetry relation 
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we finally derive after simple algebra: 
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where )ˆˆ( rr ′−δ  is the solid-angle delta function given by Eq. (13.15). 
A direct consequence of Eq. (D.10) is the so-called Jones’ lemma (see, e.g., 

Appendix XII of Born and Wolf (1999)), which states the following: 
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π
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where S is the surface of a sphere centered at the origin, R is the sphere radius, 
the position vector r connects the origin and a point on the surface, )(rf  is a 
“well-behaved” function of the position vector, and n̂  is a constant unit vector. 
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Integration quadrature formulas 

Practical numerical evaluation of definite integrals is often based on using one of 
the so-called quadrature formulas. Assume, for example, that one needs to com-
pute numerically the integral 

 ),(d  xfxI
b

a
@=  (E.1) 

where )(xf  is a real-valued function. The simplest approach is to use the (ex-
tended) trapezoidal rule  
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where  
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are equidistant so-called division points such that ax =1  and .bxN =  By increas-
ing the number of division points N, the result can usually be made arbitrarily 
accurate. However, this simplistic approach often leads to a rapid increase in 
computer time.  

In many cases a much more accurate and faster result can be achieved by us-
ing so-called quadrature formulas of the highest algebraic degree of precision 
(Krylov 1962; Press et al. 1992). Perhaps the most important example is the 
Gaussian quadrature formula, which reads 

 )(d
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1
xfx@

−
∑

=

N

n
nn xfw

1

),(  (E.4) 

where the nth quadrature division point nx  is the nth zero of the N th degree Leg-
endre polynomial )(xPN  defined by Eq. (D.5), while the quadrature weights nw  
are given by 
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Table E.1.   Gaussian division points and weights for N = 9.

n         n     x                n          w

1          –0.968160239507626           0.081274388361574

2          –0.836031107326636           0.180648160694857

3          –0.613371432700590           0.260610696402935

4          –0.324253423403809           0.312347077040003

5            0.000000000000000           0.330239355001260

6            0.324253423403809           0.312347077040003

7            0.613371432700590           0.260610696402935

8            0.836031107326636           0.180648160694857

9            0.968160239507626           0.081274388361574
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The Gaussian quadrature formula is exact for all functions that can be repre-
sented by a polynomial of degree smaller than or equal to .12 −N  Substituting 

1)( ≡xf  yields a useful numerical check on the quadrature weights: 
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As an illustration, Table E.1 lists the Gaussian division points and weights 
for N = 9. Notice that 1+−−= nNn xx  and 1+−= nNn ww  so that the middle division 
point of the Gauss quadrature of any odd order is always zero.  

The Gaussian formula for an arbitrary integration interval [a, b] follows from 
Eq. (E.4): 
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n
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where the corresponding division points and weights are now given by 

 ,
22

  abxaby nn
++−=  (E.8) 

                                              . 
2
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For given a, b, and N, the division points of the Gaussian quadrature formula 
are chosen automatically so that the formula is exact for polynomials of the high- 
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Table E.2.  Division points and weights of the Markov

quadrature formula on the interval [–1, 1] with  N = 9

and one prescribed division point 1
9

=x .

n nx nw

1          –0.964440169705273           0.090714504923282

2          –0.817352784200412           0.200553298024552

3          –0.571383041208738           0.286386696357232

4          –0.256135670833455           0.337693966975930

5            0.090373369606853           0.348273002772967

6            0.426350485711139           0.316843775670438

7            0.711267485915709           0.247189378204593

8            0.910732089420060           0.147654019046315

9            1.000000000000000           0.024691358024692

 
 

est possible degree. As a consequence, one has no direct control over the exact 
location of the division points, the middle division point 2)( ab +  for an odd N 
being the only exception. However, it is often convenient to have an integration 
formula that has one or more prescribed division points and still provides the 
highest possible degree of precision. If the number of prescribed division points 
is M and the total number of points is N then this so-called Markov quadrature 
formula (Krylov 1962) is exact for all polynomials of degree smaller than or 
equal to 2N – M – 1. The Markov quadrature with 1=M  and ax =1  is often 
called the Radau formula, whereas that with ,2=M ,1 ax =  and bxN =  is called 
the Lobatto formula. As an example, Table E.2 lists the division points and 
weights for the Markov quadrature formula on the interval [–1, 1] with =N 9 and 
one prescribed division point .19 =x   

Tables E.1 and E.2 were computed using FORTRAN subroutines GAUSS and 
MARK included in the code refl.f available at http://www.giss.nasa.gov/staff/ 
mmishchenko/brf (assessed November 2013).   
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Wigner d-functions 

Wigner d-functions are defined as  
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where s, m, and n are integers, ,0 πθ ≤≤  and the sum is taken over all integer 
values of k that lead to nonnegative factorials. Thus the summation index runs 
from ),0(maxmin nmk −=  to ).,(minmax nsmsk −+=  Therefore, 0)( =θs

nmd  
unless minmax kk ≥  or, equivalently, 0≥s  and ., snms ≤≤−  As follows from 
their definition, the d-functions are real-valued.  

The d-functions possess the following symmetry properties: 
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Furthermore, 
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where mnδ  is the Kronecker delta: 
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Equations (F.4) and (F.5) imply that 

 .)1()( nm
nss
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−−= δπ  (F.7) 

A convenient and efficient way to compute the d-functions is to use the fol-
lowing recurrence relation: 



Appendix F 386 

 )(])1([)12( 
)1()1(

1)( {
2222

1 θθ s
nm

s
nm dmnxsss

nsmss
d −++

−+−+
=+  

                       ,    ,)()1( min
12222 } ssdnsmss s

nm ≥−−+− − θ  (F.8) 
where 
 |).||,(|maxmin nms =  (F.9) 

The initial values are given by 
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The d-functions are orthogonal on the interval :],0[ π  
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Furthermore, functions )(2
1 θs

nmds +  with …,1, minmin += sss  form a complete 
orthonormal system of functions on ].,0[ π  This means that if a real-valued func-
tion )(θf  defined on the closed interval ],0[ π  is square integrable on this inter-
val, i.e., if 
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then there exists a unique set of coefficients sη  with minss ≥  such that the series 
expansion 
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holds in the following sense: 
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Conversely, if a real-valued function )(θf  on ],0[ π  admits the expansion (F.15) 
in the sense of Eq. (F.16), then it is square integrable on ],0[ π  and the expansion 
coefficients are given by 
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The latter formula follows directly from Eqs. (F.15) and (F.13). 
The Wigner d-functions with 0== nm  are equivalent to the usual Legen-

dre polynomials defined by Eq. (D.5): 

 ).()(00 xPd s
s =θ  (F.18)  

For ,0=n  we obtain 
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where )(xPm
s  are associated Legendre functions defined by Eq. (D.4). Equations 

(F.8) and (F.19) yield a simple recurrence relation for the associated Legendre 
functions: 
 ).()()()12()()1( 11 xPmsxPxsxPms m
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Despite its simplicity, the use of this relation in computer calculations for large s 
and ||m  results in overflows, whereas the original recurrence relation for the 
functions )(0 θs

md  remains stable and accurate. Furthermore, the Wigner func-
tions )(0 θs

md  have simpler symmetry properties than the ).(xPm
s  It is, therefore, 

advisable to use the d-functions instead of the associated Legendre functions 
from both the analytical and the numerical standpoint.  
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Fig. F.1.  Wigner d-functions. 
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Figure F.1 and Table F.1 illustrate the d-functions used in the expansions 
(15.86)–(15.91). 

Further reading 

Detailed accounts of the Wigner d-functions, as well as of the closely related 
Jacobi polynomials and generalized spherical functions are given in Rose (1957), 
Szegő (1959), Gelfand et al. (1963), Varshalovich et al. (1988), and Edmonds 
(1996). Our definition of the d-functions is consistent with that of Rose (1957), 
Varshalovich et al. (1988), and Hovenier et al. (2004). Edmonds (1996) uses 
functions ).()1()()( θθ s

nm
nms

nm dd +−=   
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Stationary phase evaluation of a double integral 

Consider the double integral 

 ,)],(i[exp ),(dd
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and k is real. The exponential )],(i[exp yxf  is a rapidly oscillating function eve-
rywhere except in the region in which ),( yxf constant. Therefore, if ),( yxA  
is a slowly varying function of x and y then the only significant contribution to I 
arises from the nearest vicinity of the stationary phase point determined from 
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and given by 0=x  and .0=y  Expanding ),( yxf  in a Taylor series about this 
point, we have 
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Finally, approximating  
 ),0 ,0(),( AyxA ≈  (G.7) 
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substituting Eq. (G.6) in Eq. (G.1), and taking into account that 
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Hints and answers to selected problems 

2.1:   ),()() ,( tttt ′−=′− δrr ,,  ),()() ,( tttt ′−=′− δμμ rr  and ) ,( tt ′−rσ = 
),()( tt ′−δσ r  where )( tt ′−δ  is the delta function. It is easy to verify that 

the substitution of these formulas into Eqs. (2.13)–(2.15) indeed yields 
Eqs. (2.9)–(2.11).  

2.3:   Equations (2.1) and (2.21) yield: 

   ).()2iexp()()()2iexp()( rrrDrD ∗∗ +−=∇+−∇ ρωρω tt ⋅⋅  

 This formula must be valid for any t, which implies Eq. (2.22). Equations 
(2.23)–(2.26) are derived similarly.  

2.7: Use Eq. (2.60) along with the constitutive relations (2.30)–(2.32). 

3.1:   Take into account the following well-known formulas of vector calculus:    

                                       ,  )( fff ∇+∇=∇ ⋅⋅⋅ aaa  (H.1) 
 ,)(  )( aaa ×∇+×∇=×∇ fff  (H.2) 
                                       ).i(expi  )i(exp rkkrk ⋅⋅ =∇  (H.3) 

3.2:   Take the vector product of k with both sides of Eq. (3.5) and use Eq. (3.6) 
and the vector identity (3.18) together with Eq. (3.3). 

3.4: Use Eqs. (2.27), (2.28), (2.41), and (2.51). 

3.5: Recall Eqs. (3.3), (3.5), and (3.10) and apply the well-known vector ident-
ity 

 ).()()()(  )()( cbdadbcadcba ⋅⋅⋅⋅⋅ −=××  (H.4) 

4.1: Taking the divergence of both sides of Eq. (2.23) and accounting for the 
vector identity 0  )( =×∇∇ a⋅  yields Eq. (2.24). Similarly, taking the di-
vergence of both sides of Eq. (2.25) and accounting for Eq. (2.26) yields 
Eq. (2.22). 
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5.1:  According to Eq. (B.14), )., () ,( 0rrrr ′−=′ GG  Then use Eq. (B.17). 

5.2:  For particles comparable to and greater than the incident wavelength, there 
exist three distinct zones (Fig. H.1). In the far zone, all three criteria 
(5.12)–(5.14) are satisfied and the total scattered field is a unified outgoing 
spherical wave. Each point of the transition zone satisfies the inequality 
(5.12), but not the inequalities (5.13) and (5.14). Therefore, although the to-
tal scattered field is not a unified spherical wave, it can still be represented 
as a superposition of outgoing spherical wavelets generated by the element-
ary volume elements of the object. In the near zone, all three criteria 
(5.12)–(5.14) are violated, and the total scattered field does not have a 
simple representation. 

5.3:  Use the unit-vector identities 

  ).ˆ(ˆ  )ˆ(ˆ    ,)ˆ(ˆ   )ˆ(ˆ nφnφnθnθ −=−=−  (H.5) 

6.1: According to the results of Section 5.2, Eq. (6.21a) is valid provided that 
any point inside particle i is located in the far zone of particle j: 

  )(1 jiij aaRk −−  1,   iij aR − ,ja    iij aR − ,22
1 jak  (H.6) 

 where ia  and ja  are the radii of the smallest circumscribing spheres of 
particles i and j, respectively. Similarly, Eq. (6.21b) follows from  

Far zone

Transition zone

Near zone

 
Fig. H.1.  Near, transition, and far zones. 
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6.2:   )(1 ii ark −  1,   ir ,ia    ir 22
1 iak   for any i. (H.8) 

7.2:   
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7.3: The modified Stokes column vector has only one nonzero element and is 
equal to T]0  0  0  [I  if 2πζ =  (the electric field vector vibrates along the 
θ -axis, i.e., in the meridional plane) or T]0  0    0[ I  if 0=ζ  (the electric 
field vector vibrates along the ϕ -axis, i.e., in the plane perpendicular to the 
meridional plane) (see Fig. 7.3c). 

7.4: The circular-polarization column vector CPI  has only one nonzero element 
and takes the values T]0    0  0[ I  and T]0  0    0[ I  for right- and left-handed 
circular polarization, respectively. 

7.5:    

 ,
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02cos2sin2sin
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ηη ALAL  (H.13) 

7.7: Use the formula ALAL )(  )( CP1 ηη −=  and the matrix identity (GH)–1 = H –1  
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×G–1 along with Eqs. (7.49)–(7.50).  

8.1:   .ˆ)(ˆ)(ˆ)( zyxS ∗∗∗∗∗∗ −+−+−= xyyxzxxzyzzy PPPPPP  (H.14) 

8.2: In this case, ),(ˆ)()( 21 rEnrH ×= μ,  where the unit vector n̂  specifies the 
local propagation direction. Therefore, one has in local spherical coord-
inates (Fig. 7.1): 

                                                 ,ˆ)( nS ∗∗ −= θϕϕθ PP  (H.15) 
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PP
PP
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I  (H.16) 

8.3: Use the first equalities of Eqs. (4.2) and (4.3). 

9.1: Let us first consider the superposition of two monochromatic plane waves 
with different angular frequencies. We have 

  ,2
1

2
1

2
1

2
1 VUQI ++=     ,2

2
2
2

2
2

2
2 VUQI ++=  (H.17) 

 from which we need to prove that 
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2
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2
21 VVUUQQII +++++≥+  (H.18) 

 In view of Eq. (H.17), proving the inequality (H.18) is equivalent to prov-
ing that 

  .21212121 VVUUQQII ++≥  (H.19) 

 This latter inequality follows from the positivity of the intensities 1I  and 
2I  combined with the Cauchy–Schwartz inequality 
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 where an and bn are real numbers. Indeed, 
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212121 IIVUQVUQVVUUQQ =++++≤++   

   (H.21) 
 Let us now denote ,2112 III +=  ,2112 QQQ +=  ,2112 UUU +=  V12 = V1 + 

V2 and add a third monochromatic plane wave to the mix. In this case  

  ,2
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2
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2
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2
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2
3

2
3 VUQI ++=  (H.22) 

and we have again  
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2
312 VVUUQQII +++++≥+  (H.23) 
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The general case of an arbitrary number of monochromatic plane waves is 
then handled by induction. 

9.2: Let us first consider the superposition of two monochromatic plane waves 
with different angular frequencies. For Eq. (H.17) to imply 

  ,)()()()( 2
21

2
21

2
21

2
21 VVUUQQII +++++=+  (H.24) 

 the following equality must hold:  

  .21212121 VVUUQQII ++=  (H.25) 

 The equality in Eq. (H.20) holds only if nn ba α=  for any n, where α  is a 
real-valued constant. Therefore,  
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212121 )()()( IIVUQVUQVVUUQQ =++++=++   

   (H.26) 

 only if ,21 QQ α= ,21 UU α=  and ,21 VV α=  which implies that .|| 21 II α=  
For 2

2
2
1

2
212121 )( IIVVUUQQ =++  to yield Eq. (H.25), α  must be pos-

itive. This proves Eq. (9.19) for the case N = 2. The general case of an arbit-
rary number of monochromatic plane waves is handled by induction. 

9.3: Let us first consider the case of two quasi-monochromatic waves, of which 
the first is partially polarized. Omitting for the sake of brevity the angular 
brackets ,〉〉〈〈  we have for the respective time-averaged Stokes parame-
ters: 
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2 VUQI ++≥  (H.27) 

 from which we need to prove that 
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 In view of Eq. (H.27), proving the inequality (H.28) is equivalent to prov-
ing that 

  .21212121 VVUUQQII ++≥  (H.29) 

 This latter inequality follows from the positivity of the intensities I1 and I2 
combined with the Cauchy–Schwartz inequality. Indeed, 
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212121 IIVUQVUQVVUUQQ <++++≤++  (H.30) 

 The general case of an arbitrary number of quasi-monochromatic waves is 
handled by induction.  

9.4: Take into account the definitions (9.37)–(9.39) and Eqs. (7.7)–(7.8).   

10.1: Use the dyadic identity (A.17).  
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10.2: Write Eq. (10.7) in Cartesian coordinates and use Eq. (H.14). 

10.3: Equations (10.16) (10.23), and (10.38) become, respectively, 

                            ∑
=

=
N

n
nnn PP

1

incinc ,),ˆ ,(ˆ  )( ωnrr T  (H.31) 
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n
nnn tPttP ωnrr T  (H.33) 

 where incˆ nn  is the incidence direction of the nth monochromatic or quasi-
monochromatic component. 

 11.1: From ii EH ×= n̂)( 21
01 μ,  for any i and the vector identity (3.18), we 

derive: 
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13.2: 〉′〈′′=〉〈 ) ,(ˆd  2
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where 2
2ep2ep   rS=Ω  is the solid angle centered around the direction incn̂  

and subtended by the entrance pupil of WCR 2 at the distance r from the 
origin. 

13.3: Use Eqs. (7.43) and (7.46). 

13.5: DZDZ )ˆ ,ˆ(    )ˆ ,ˆ( scainc1scainc nnnn −−=−− −J   
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      DΔZΔD 3
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3
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3
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23 ΔZΔ nnJ=      (H.35) 
where 

 ].1,1,1 1,[diag      1
23

T
2323 −−=== −ΔΔΔ  (H.36) 

14.3: Make use of Eq. (5.35). 

15.4: In this case, Eq. (15.5) holds whereas Eq. (15.4) does not. Therefore, Eqs, 
(13.62)–(13.68), (15.39), and (15.40) yield 
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15.7: If the incident quasi-monochromatic beam of light is polarized linearly in 
the scattering plane then ,incinc 〉〉〈〈=〉〉〈〈 IQ  whereas 〉〉〈〈=〉〉〈〈 incinc VU = 0. 
It is easily seen that the corresponding angular distributions of the co-
polarized and cross-polarized scattered intensities are given by 

        ,)]()(2)([])()([ inc
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Therefore, the LPR is given by  
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15.8: Equations (F.5), (F.7), (15.75), and (15.76) yield for the exact forward and 
exact backward directions: 
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15.9: Make use of Table F.1. 

15.11: See Fig. H.2. 
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Fig. H.2.  Elements of the normalized scattering matrix for a spherically sym-
metric Rayleigh particle. 
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15.12:  .
12cos2

1)(LR ++
−=

Θ
Θμ

y
y  (H.47) 

This quantity is plotted in Fig. H.3 for .21 ≤≤ y  Please note the logarith-
mic vertical scale. 

15.13: Let us assume that rmax remains finite while being increased in small steps 
until the average scattering and absorption characteristics of the size dist-
ribution, as well as its effective radius and effective variance computed ac-
cording to Eqs. (15.109)–(15.111) converge within a prescribed numerical 
accuracy. Then the truncated size distribution with the “converged” finite 
rmax is numerically equivalent to the distribution with rmax = ∞. Assuming 
that 0min =r  and ∞=maxr  in Eq. (15.108) implies that 

 ,
)(])21([

1constant )21( bbabbb −−
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Γ
 (H.48) 

                                  ,, effeff bar == v   (H.49) 
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Fig. H.3.  Linear polarization ratio for a nonspherical Rayleigh particle in ran-
dom orientation. 
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where )(xΓ  is the gamma function (see Chapter 8 of Arfken and Weber 
(2005)). 

15.14:  .,)12( HGHG,1 ggs ss =+= gα  (H.50) 

16.1: Make use of Eqs. (16.23)–(16.25) and keep in mind that m ranges from –n 
to +n according to Eqs. (16.18)–(16.21). 

17.1: Use the following input parameters for each effective size parameter and 
relative refractive index: NDISTR = 4, AA = xeff, BB = 0.2, R1 = 0, R2 = 
8xeff, LAM = 2π, MRR = m, MRI = 0, N = 10, NK = 100, NPNA = 19, 
DDELT = 0.0001 (the parameters GAM and NP are ignored). Compare the 
resulting plots with Plate 1 in Mishchenko and Travis (1997).   

18.1: Consider, for example, the term incˆˆˆˆˆˆ ETGTGTG lji  on the right-hand side of 
Eq. (6.20), assuming that the observation point is located in the far zone of 
the ith particle. Using the translational invariance property (B.14) and the 
asymptotic relation (B.21), we have 
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 (H.51) 

 the notation being explained in Fig. H.4. After the requisite -r′ integration 
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Fig. H.4.  Notation used in Eq. (H.51). 
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over the volume Vi, the constant factor 1
1 )4()(iexp )ˆˆ( −⊗− iiii rrkI πrr  de-

fines an outgoing transverse spherical wave centered at Oi. 

18.4: If the incident quasi-monochromatic beam of light is polarized circularly in 
the counter-clockwise direction when looking in the direction of propag-
ation then ,incinc 〉〉〈〈=〉〉〈〈 IV  whereas 〉〉〈〈=〉〉〈〈 incinc UQ = 0. It is easily 
seen that the corresponding angular distributions of the same-helicity and 
opposite-helicity scattered intensities are given by 
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Therefore, the CPR is given by  
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19.2: Equation (A.16), the matrix identity ,)( TTT ABAB =  and the reciprocity 
relations (5.30) and (5.31) imply that  

                                   ,)],ˆ([),ˆ( Tss ss ηη =−     (H.55) 
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19.4: Equation (13.70) implies that  

                                   .)],ˆ([),ˆ( 3
T

3 ΔHΔH ss ss =−     (H.57) 

19.6: Use Eqs. (A.16) and (A.17).  

19.7: Use Eq. (B.15) and the formulas  

              ,)()( CfCfCf ×∇+×∇=×∇     (H.58) 

 .ˆ)i(expiˆ)i(exp)i()]i(exp[ 1

1

111 rr rkrkrkrrkrkr
rk

−−−− →−=∇     (H.59) 

19.8: Use the Leibniz rule  

 .),(d),(),(d
b

bxfxbbfbxfx
b

b

a

b

a ∂
∂+=

∂
∂ @@     (H.60) 

19.9: Use Eqs. (19.18) and (19.65) as well as the transversality of the scattering 
dyadic. 

19.11: Since all elements of the extinction matrix and the column incI  are real val-
ued, Eqs. (19.40) and (19.41) imply that the column )(c rI  is also real val-
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ued. All elements of the phase matrix are real valued as well. Therefore, it-
erating Eq. (19.83) and using the first term on the right-hand side as the ini-
tial approximation proves that )ˆ,(~

d qQI  is real valued too.  

19.12: Use Eq. (19.69), the formulas )ˆ(ˆ)ˆ(ˆˆ qφqθq =×  and ),ˆ(ˆ)ˆ(ˆˆ qθqφq −=×  and 
the definitions (19.88), (19.81), and (19.82).  

19.16: First, solve Eq. (19.83) by iteration, using the first term on the right-hand 
side as the initial approximation. Second, assume that the number of part-
icles in the scattering volume is sufficiently small that || ])ˆ([0 pqLn ξ〉〈 qK 1 
and || ])ˆ,ˆ([0 pqLn ξ〉′〈 qqZ 1 for p, q = 1, …, 4 and for any q̂  and ,q̂′  
where L is the largest linear dimension of the particulate volume. As a con-
sequence, all terms proportional to powers of n0 higher than the first can be 
neglected.  

19.17: Let )ˆ,ˆ,(~ tot sqrI  be the specific intensity column vector corresponding to 
the case of the incident field represented by a parallel polychromatic beam 
with quasi-monochromatic components propagating in the direction of the 
unit vector ŝ  (see Eq. (19.109)). If the incident field is a superposition of 
M polychromatic beams with propagation directions ,ˆ is  i = 1, 2, …, M, 
then the resulting specific intensity column vector is given by  

 .)ˆ,ˆ,(~)ˆ,(~

1

tottot ∑
=

=
M

i
isqrqr II  (H.61) 

19.18: Note that )()()( ccc rrr ϕϕθθ ρρ +=I  and ),ˆ,(~)ˆ,(~)ˆ,(~
ddd qrqrqr ϕϕθθ ρρ +=I   

where )(c rρ  and )ˆ,(~
d qrρ  are given by Eqs. (19.72) and (19.73), respect-

ively. The nonnegativity of )(c rI  follows from Eq. (19.58). The nonnega-
tivity of )ˆ,(~

d qrI  can be shown by solving Eq. (19.74) iteratively. The ini-
tial approximation is the first term on the right-hand side of this equation. It 
is easily seen that the integrand can be represented by a matrix product of 
the type  

 ],[ ∗∗
⎥⎦
⎤

⎢⎣
⎡ ba
b
a

 (H.62) 

which implies the nonnegativity of the initial approximation for ).ˆ,(~
d qrI  

The substitution of this initial approximation in the second integral on the 
right-hand side of Eq. (19.74) also leads to an integrand of the type (H.62), 
and so on. This implies the nonnegativity of each iterative approximation 
for )ˆ,(~

d qrI  and, by induction, the nonnegativity of ).ˆ,(~
d qrI  

19.19: Recall the solution of Problem 19.18 and take into account that the integ-
rand of the type (H.62) yields a differential contribution to )ˆ,(~

d qrI  satis-
fying the Stokes identity (7.4). Subsequent integration over coordinates 
and states coupled with the Cauchy–Schwartz inequality implies that the 



Appendix H 404 

elements of )ˆ,(~
d qrI  satisfy the Stokes–Verdet inequality (9.34) (see the 

solution of Problem 9.1).   

20.2: Differentiate Eqs. (20.11) and (20.12) with respect to .τ   

20.5:  
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21.1: To estimate how far the observation point should be from a particulate 
slab, let us assume that it lies on the straight line originating at particle 1 
and drawn in the exact backscattering direction 0n̂−  (see Fig. H.5). Then 
the requirement that the phase difference between the two reciprocal paths 

A

2

1

Towards observation point B

Towards observation point B

n

n −1 ...

n̂0Plane electromagnetic wave

 
Fig. H.5.  Derivation of Eq. (H.66). 
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going through particles 1 → 2  → … → n –1 → n and n → n –1 → … → 2 
→ 1 and arriving at the observation point B be much smaller than one im-
plies that  

 ,1
2

)( 2
1

AB
nAk  (H.66) 

where AB  is the distance between points A and B. Thus, in general, the 
distance D from the scattering medium to the observation point must sat-
isfy the inequality (21.4). 

21.2: The phase difference between very long multi-particle sequences becomes 
randomized. As a consequence, the angular widths of various manifest-
ations of WL can increase, while the WL intensity peaks can become 
rounded and their amplitudes can decrease.  

21.3: The following inequalities must be satisfied: .2 ,HWHM IfdDl α〉〈  
The first inequality ensures that for the majority of multi-particle se-
quences, the WCR captures the backscattering interference of the wavelets 
coming from both end particles (see Fig. H.5).  

B.1: Use Eq. (3.27). 

B.2: Recall Eq. (A.20) and the vector identities φθr ˆˆˆ =×  and .ˆˆˆ θφr −=×  
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1 
Index 

A 
A-Train, 11 
absorption coefficient, 34 
absorption cross section, see cross  

section, absorption  
Alexander’s dark band, 251 
amplitude scattering matrix, 57, 58 
 backscattering, 197 

backscattering theorem for, 58, 59 
forward-scattering, 194, 195 

 reciprocity relation for, 58, 59 
 symmetry properties of, 186–188 
angle 
 azimuth, 36, 73  
 phase, 363  
 polar, 36, 73 

scattering, 186, 189  
 zenith, see angle, polar  
angular frequency, 5, 19 
approximation 
 first-order-scattering, see first-order- 

scattering approximation 
geometrical optics, 225–231  

 physical optics, 231 
ray-tracing, see approximation,  

geometrical optics  
 scalar, see scalar approximation 
 single-scattering, see single- 

scattering approximation 
associated Legendre functions, 380, 387 
asymmetry parameter, 156, 199, 239, 

243 

attenuation coefficient, see extinction  
coefficient 

averaging 
 ensemble, 108, 109, 160–165 

orientation, 161, 164, 165 
analytical, 222 
effects of, 252 

over time, 107–109  
shape, 164, 165 
 effects of, 253 
size, 164, 165 

effects of, 248, 252 
azimuth angle, see angle, azimuth 

B 
backscattering depolarization ratio 
 circular, 201, 209 
 linear, 201, 209, 256, 257, 267–269 
backscattering theorem, 58, 59, 149 
Bessel functions, spherical, 214, 380 
Bouguer–Beer law, see Bouguer law 
Bouguer law, 318, 334  
boundary conditions, 5, 17, 18, 43 
 absorbing, 216, 217 

C 
charge density 

macroscopic, 16 
surface, 18 

charge-coupled device, 112, 113, 128 
circular-polarization column vector, 83 
 rotation transformation rule for, 84, 

394 
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coherency column vector, 83 
 of the coherent field, 298 
  transfer equation for, 299 
coherent backscattering, xiii, 279, also 

see weak localization 
coherent field, 291, 293–298 
 transfer equation for, 298, 299 
 Twersky expansion of, 291–293 
coherent Stokes column vector, 299, 

316 
 Stokes identity for, 330 
 Stokes–Verdet inequality for, 330 
coherent transmission amplitude matrix, 

298 
 reciprocity relation for, 333, 402 
coherent transmission dyadic, 296 
 reciprocity relation for, 333, 402 
coherent transmission Stokes matrix, 

299 
 reciprocity relation for, 333, 402 
complex permittivity, 20 
conductivity, 16 
constitutive parameters 

frequency  dependent, 20 
frequency  independent, 20 

constitutive relations, 16, 17, 19, 20 
continuity equation, 16 
controlled laboratory measurements, 
  213 
coordinate system  
 Cartesian, 73 
 laboratory, 161, 221 
 particle, 161, 221 
 right-handed, 36, 73 
 spherical, 36, 73 
cosine integral, 307 
cross section 
 absorption, 154, 199 
 differential scattering, 155 
 extinction, 142, 154, 195 
 geometrical, 155 
 scattering, 154, 199 
current density, 16 
 surface, 18  
cyclical diagrams, 359 

D 
delta function 
 solid-angle, 140 
 three-dimensional, 375 
dichroism, 151 
differential equation methods, 213 
diffraction, 226, 227, 250 
diffuse specific coherency dyadic, see 

specific coherency dyadic, diffuse 
diffuse specific coherency matrix, see 

specific coherency matrix, diffuse 
diffuse specific intensity column vector, 

see specific intensity column   
vector, diffuse 

direct problem, 13 
discrete dipole approximation, 219, 224 
discrete random medium, 270, 369  
Doppler shift, 4 
dyad, 372 
dyadic, 372 
 Hermitian, 373 

identity, see identity dyadic 
 symmetric, 373  
 transpose of, 373 
dyadic correlation function, 88, 

299, 359 
 cyclical, 357, 359 
 ladder approximation for, 299– 

310 
 Twersky expansion of, 300 
dyadic exponential, 295 
dyadic propagation constant, 296 
dyadic transition operator, 48, 49, 56, 

57, 63 
 integral equation for, 48 
dynamic light scattering, see scattering, 

dynamic 

E 
effective radius, 208 
effective size parameter, see size  

parameter, effective 
effective variance, 206 
efficiency factor 
 for absorption, 155, 199 

for extinction, 155, 199, 238–244 
 for scattering, 155, 199 
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electric displacement, 16 
electric field, 5, 16 
electric permittivity, 16 
 complex, 20 
 frequency-dependent, 20 
 of a vacuum, 16  
electric polarization, 16 
electric susceptibility, 16 
electromagnetic energy density, 23 
 time-averaged, 39, 40 
electromagnetic field 
 monochromatic, 9, 19, 41  
 polychromatic, 89–98 
 quasi-monochromatic, 9, 93 
electromagnetic scattering, 6, 7, 41–49 
 monochromatic 
  by a fixed object, 99–101 
  by a stochastic object, 105, 106 
 polychromatic 
  by a fixed object, 101, 102 
  by a stochastic object, 106, 107 
electromagnetic scattering problem, 

standard, 43 
 existence of solution, 43, 44, 47 
 uniqueness of solution, 43, 44 

electromagnetic scattering problems,  
classification of, 369 

electromagnetic spectrum, see  
spectrum, electromagnetic 

electromagnetic wave  
 plane, 7, 30–35, 56, 74 
  circularly polarized, 79, 81, 82, 84 

homogeneous, 32 
  inhomogeneous, 32  
  linearly polarized, 79, 80, 84 
  quasi-monochromatic, see quasi- 

monochromatic plane wave 
spherical, 35–39, 52 

  incoming, 38, 39 
  outgoing, 35–38 
 transverse, 32, 37, 39, 51, 52, 73 
emission, thermal, 4 
energy-budget problem, 10, 12, 13, 21– 
  24, 151–153, 175, 176, 318, 319, 

322 
energy conservation, 22, 24 

enhancement factor, 364 
 scalar, 365 
entrance pupil of a WCR, 124, 125, 

141, 142 
ergodic hypothesis, 109, 110 
ergodicity, 108, 109, 110, 291, 325, 326 
Euler angles, 161, 221, 378, 379 
extended boundary condition  method, 

222 
 iterative, 224  
extinction coefficient, 318 
extinction cross section, see cross 

section, extinction 
extinction matrix 

coherency, 149, 150 
 Stokes, 150, 195 
  reciprocity relation for, 151 
  symmetry property of, 151  

F 
far-field limit, 52 
 theoretical criteria of, 53–56 
far-field scattering, 50–61, 137–167 
 by a stochastic object, 157–159 
 by an ergodic random object, 159, 

160 
 polychromatic, 156–160 
far zone, 51–56, 393 
finite-difference time-domain method, 

217, 224 
finite element method, 216, 217, 224 
first-order-scattering approximation, 

177–179  
conditions of applicability of, 179– 

182 
effects of forward-scattering  

interference on, 181, 182 
fluorescence, 4 
Foldy approximation, 297 
Foldy equations, 62–71 
 far-field version of, 66–70 
  conditions of applicability, 71, 

393, 394 
forward-scattering localization, 279, 

328 
Fredholm integral equation method, 219 
frequency-domain formalism, 21 
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Fresnel’s formulas, 225 

G 
Gauss theorem, 22  
generalized spherical functions, 203 
geometrical optics approximation, see  

approximation, geometrical optics 
Gershun tube, 129 
glory, 251 
Green’s function  
 dyadic, free space, 45, 46 
  differential equation for, 376 
  radiation condition for, 377 
  singularity of, 49  
  symmetries of, 376 

scalar, 375 
 differential equation for, 375 

Green’s matrices, 342 
Green’s theorem, dyadic, 45  

H 
halo, 256 
Hankel functions, spherical, 214  
Henyey–Greenstein phase function, 

210, 211, 350 

I 
identity dyadic, 373 
incident field, 6, 7, 9, 41, 45, 47 
independent scattering, 331, 332, 370 
integral equation methods, 213 
intensity, 34, 37, 39, 75 
interference structure, 240 
inverse problem, 13 

J 
Jones’ lemma, 381 

K 
Kronecker delta, 385 

L 
ladder diagrams, 309 
ladder specific coherency dyadic, 311, 

312 
 integral equation for, 312  
Legendre functions, associated, see  

associated Legendre functions  
Legendre polynomials, 380, 387 

Leibniz rule, 402  
light scattering, 14, also see  

electromagnetic scattering 
Lippmann–Schwinger equation, 48, 63 
Lorentz force, 22  
Lorenz–Mie  
 coefficients, 214 
  resonance behavior of, 241–243  
 computer code, 214 
 resonances, 241–245, 251, 266, 267 

scattering matrix, 200, 203, 214 
theory, 213–215, 236 

M 
magnetic field, 5, 16 
magnetic induction, 16 
magnetic permeability, 16 
 of a vacuum, 16  
magnetization, 16 
matrix exponential, 298, 299 
matrix propagation constant, 298 
maximally crossed diagrams, see  

cyclical diagrams 
Maxwell equations, macroscopic, 1, 

15, 16 
 curl, 5, 42 
 frequency domain, 5, 19 
measurement techniques for scattering, 

231–235 
 using microwaves, 233–235 
 using visible and infrared light, 232, 

233  
medium 
 absorbing, 25, 33 
 active, 25 
 discrete random, see discrete random 

medium 
 gaseous, 332, 333 
 lossless, 25, 39 
 lossy, 25, 34 
 nonabsorbing, 25, 33, 34, 37 
 nondispersive, 19 
 passive, 25 

time-dispersive, 17, 19 
meridional plane, 73, 74 
mesoscopic optical effects, 368 
mesoscopic physics, 368 
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method of moments, 219, 224 
microwave analog technique, 231, 233  
modified Stokes column vector, 83 
 rotation transformation rule for, 84, 

394 
modulator, electro-optic, 232 
Monte Carlo method, 356 
Mueller matrix, 132, 134, 232 
multi-sphere method, 215, 224, 236  

N 
natural light, see polychromatic beam, 

unpolarized 
near-field scattering, 61 
Neumann expansion, 65, 71, 344 
 convergence of, 66 
 far-field, 70, 71 
numerically exact computer solution, 3  

O 
observable, optical, 72, 99 
optical-characterization problem, 13, 

266–269 
optical depth, 341 
optical equivalence principle, 75, 95 
optical theorem, 141, 151, 152 
optical thickness, 341  
orientation averaging, see averaging, 

orientation 
orientation distribution function, 164  
 uniform, 165, 185 
outgoing wave, 35 

P 
parallel beam of light, 91 
particle 
 deterministic, 238 
  scattering properties of, 238–246 
 random morphologically complex, 

scattering properties of, 251– 
265 

 random spherical, scattering  
properties of, 247–251 

particle number density, 293 
particles 
 feldspar, 254 
 fractal soot, 260–264 

irregular, 253 

 macroscopic, 9   
 spherically symmetric, 200 
 statistically isotropic and mirror- 

symmetric random, 184, 185, 
189   

phase angle, see angle, phase 
phase function, 156, 202 
 expansion in Legendre polynomials, 

206 
 Henyey–Greenstein, see Henyey– 

Greenstein phase function 
normalization condition for, 202 

phase matrix  
 coherency, 147 
  reciprocity relation for, 166, 397, 

398 
normalized Stokes, 202, 203 

  symmetry properties of, 203  
Stokes, 147, 148 

backscattering, 149 
for a statistically isotropic and 
  mirror-symmetric random 

particle, 190–192 
  inequalities for, 148 
  reciprocity relation for, 148 

symmetry relations for, 192, 193 
phase velocity, 31, 33, 37 
phenomenological radiative transfer  

theory, see radiative transfer  
theory, phenomenological  

photodiode, 112, 113 
photoelectric detector, 112–114 
 angular sensitivity of, 113, 114 
 direction insensitive, 117 
 polarization sensitivity of, 113, 114 
photoelectric effect, 112, 113, 129 
 QED theory of, 112, 113, 130 
photometry 

directional, xiii 
phenomenological, 334–337 

photomultiplier, 112, 113 
photon, 129, 130, 285, 336, 337, 356 
plane albedo, 351 
plane wave, decomposition in spherical 

waves, 380, 381 
Poincaré recurrence theorem, 109 
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point matching method, 217 
 generalized, 218 
  multiple-expansion, 218, 224   
polar angle, see angle, polar 
polarization  
 circular, 79, 81, 82, 84 
  degree of, 96 
 elliptical, 79, 82 
  degree of, 96 
 left-handed, 78, 80, 96 
 linear, 79, 80, 84 
  degree of, 96 
   signed, 98 
 right-handed, 78, 80, 81, 96 
polarization analyzer, 232 
polarization ellipse, 78–82 
 ellipticity of, 78 
 orientation of, 78 
 preferential, 96 
polarization modulation technique, 233 
polarization opposition effect, 281, 285, 

367 
polarization ratio 
 linear, 209, 210, 264, 265, 280, 398, 

400 
circular, 280, 284, 285, 402 

polarizer, 131–134, 232, 234 
polychromatic beam, 91, 92, 94 
 circularly polarized, 92 
 fully polarized, 92, 96 
 linearly polarized, 92 
 partially polarized, 92, 96 
 unpolarized, 92, 96 
Poynting-meter, 111, 114–117 
Poynting–Stokes tensor, 73, 87, 88 
 complex, 88 
 time-averaged 
  for a monochromatic field, 88 
  for a polychromatic field, 90, 91, 

94 
Poynting theorem, 10, 12, 22, 28 
Poynting vector, 10, 22, 23, 28, 34, 37, 

72, 73, 87 
 complex, 24 
 measurement of, 114–125 
 time-averaged, 10, 24 
  for a polychromatic field, 91, 94 

probability density function, 108, 160, 
161, 164, 165, 184, 185 

 normalization condition for, 109, 
161, 164, 165, 184 

pseudo-spectral time domain method, 
217 

Q 
quadrature division points, see  

quadrature formula 
quadrature formula, 161, 382–384 
 Gauss, 383 
 Lobatto, 384 
 Markov, 384 
 Radau, 384 
quadrature weights, see quadrature 

formula 
quantum electrodynamics, 2, 26, 28, 

129, 285, 336, 337 
quarter-wave plate, 232 
quasi-monochromatic plane wave, 9, 94 
 unpolarized, 95   

R 
radiance, see specific intensity 
radiation condition, 6, 43, 47, 220, 235 
radiative transfer, xiii 
 in plane-parallel particulate media, 

338–355 
radiative transfer equation 
 boundary conditions for, 317 
 for a plane-parallel medium, 341 
  boundary conditions for, 341 
 for statistically isotropic and mirror- 

symmetric  random particles, 
318 

integral, 316, 317 
 integro-differential, 316, 317, 329 
 scalar, 336, 343 
radiative transfer theory, 3, 61 
 microphysical, 286–337 
 phenomenological, 334–337, 368, 

370  
radiometer 

panoramic, 128 
well-collimated, see well-collimated 

radiometer 
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rainbows, 250, 251 
ray-tracing approximation, see 

approximation, geometrical optics  
Rayleigh hypothesis, 217, 235 
Rayleigh scattering, 210, 235, 239, 265, 

366, 367, 399, 400  
reflection matrix 
 cyclical, 362, 363  
 diffuse multiple-scattering, 363 
 first-order, 404  
 for the exact backscattering  

direction, 363, 364 
 ladder, 342, 362 
refractive index, 33, 35, 39 
 relative, 45 
relativity theory, 28 
retarder, 134 
ripple, high-frequency, 240 
rotation matrix 
 for circular-polarization  

representation, 84, 394 
for modified Stokes column vector, 

84, 394 
 Stokes, 77, 84 

S 
scalar approximation, 330, 343, 365, 366  
scale invariance rule, 59, 60, 148, 150, 

151, 155, 233 
scattered field, 6, 7, 41, 45, 47 
scattering 
 Brillouin, 4 
 by a multi-particle object, 1, 7  
 dynamic, 277 
 elastic, 4 
 electromagnetic, see electromagnetic 

scattering 
 far-field, see far-field scattering 
 gaseous, 332, 333 

independent, see independent  
scattering 

 microphysical approach to, 3 
 monochromatic, xiii, 41 

multiple, 65, 66, 271–274, 285 
near-field, see near-field scattering 
polychromatic, xiii, 99 
Raman, 4 
static, 277 

scattering angle, see angle, scattering 
scattering cross section, see cross  

section, scattering 
scattering dyadic, 56–58 
 backscattering, 60 
 reciprocity relation for, 58, 59 
scattering matrix, Stokes, 185 
 effects of morphology and  

orientation on, 200, 201 
 for backward scattering, 198  
 for forward scattering, 196 
 for a spherically symmetric particle, 

200 
 for a statistically isotropic and 

mirror-symmetric random  
particle, 189 

 inequalities for, 190 
 normalized, 201–203 

expansion in generalized spherical 
functions, 203–209 

  Rayleigh, 210 
 symmetries of, 188, 189  
scattering object, stochastic, 103–109 
scattering plane, 185 
separation of variables method for  

spheroids, 215, 224 
shape averaging, see averaging, shape 
sine integral, 307 
single-scattering albedo, 154, 199 
single-scattering approximation, 169 
 conditions of validity of, 180, 181, 

283, 284 
size averaging, see averaging, size 
size distribution, 165 
 gamma, 206, 248, 400 
 log normal, 267 
 modified power law, 252 
size parameter, 59 
 effective, 208 
Snell’s law, 225, 251 
solid angle element, differential, 38 
specific coherency column vector  

diffuse, 315 
  integral equation for, 316 
  integro-differential equation for, 

316 
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specific coherency dyadic 
 coherent, 313 
 diffuse, 313 
  integral equation for, 313 
  integro-differential equation for, 

313, 314 
 ladder, 311 
  integral equation for, 312 
specific coherency matrix,  diffuse, 314, 

315 
integral equation for, 315  

 integro-differential equation for,  
   315 
specific intensity, 319, 331, 343 
 nonnegativity of, 330, 334, 403 

phenomenological, 336, 337  
specific intensity column vector, 317, 

362 
 cyclical, 362 
 diffuse, 316 

integral equation for, 316 
  integro-differential equation for, 

316, 329 
  Stokes–Verdet inequality for, 330 
 full, 317 
  integral equation for, 317,  
  integro-differential equation for, 

317, 329 
speckle pattern, 272–277 
spectrum, electromagnetic, 14 
speed of light  
 in a nonabsorbing material medium, 

39 
in a vacuum, 33 

spherical albedo, 347 
spherical harmonics, scalar, 380  
 completeness relation for, 381 
 symmetry relation for, 381 
standard problem in radiative transfer, 

339  
static light scattering, see scattering, 

static 
stationary phase method, 306, 390, 391 
Stokes column vector, 75  
 modified, see modified Stokes  

column vector 

 of the coherent field, 299, also see 
coherent Stokes column vector 

  transfer equation for, 299 
Stokes identity, 75, 76, 330 
Stokes parameters, 73–85 
 ellipsometric content of, 77–82 
 for a polychromatic beam, 92, 94, 95 
  additivity of, 92 
  polarization analysis of, 96–98 

for a quasi-monochromatic plane 
wave, 95 

 measurement of, 131–136 
 rotation transformation rule for, 76, 

77 
Stokes–Verdet inequality, 92, 95, 330 

T 
T matrix, 220, 221 
 for a cluster, 216, 221 
 rotation transformation rule for, 221   
 translation transformation rule for, 

222   
T-matrix computer programs, 223 
T-matrix method, 219–224 
 invariant-imbedding, 224 
 superposition, 65, 216, 223, 224 
thermal emission, see emission, thermal 
total field, 7, 47 
transformation dyadic, 100 
transmission matrix 
 first-order, 404 
 ladder, 342 
transport mean free path, 360  
Twersky approximation, 288 

V  
vector, complex, 19 
vector spherical wave functions, 213, 

215, 217, 220, 236 
 translation addition theorem for, 215 
volume integral equation, 44–47, 49, 62 
 existence of solution, 47 
 uniqueness of solution, 47  
volume integral equation method, 218, 

219 

W 
wave equation, vector, 44 
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wave number, 32, 37, 43 
wave vector, 7, 31 
wavelength 

free-space, 34 
in a nonabsorbing medium, 34 

weak localization, xiii, 279, 328, 357– 
367 

angular profile of, 366, 367 
half-width at half-maximum, 366, 

367 
by a plane-parallel discrete random 

medium, 361–367 
by Rayleigh particles, 366, 367 
by solar-system bodies, 367 
scalar theory of, 365 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

well-collimated radiometer, 111, 120– 
125, 129, 137–145, 176, 177, 319– 
321, 325, 326 

 response to polychromatic light, 
125–127 

Wigner d-functions, 203, 385–389 
 completeness of, 386 

orthogonality of, 386  
 recurrence relation for, 386   
 symmetry properties of, 385 
Wigner D-functions, 221 

Z 
zenith angle, see angle, polar 
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