Multiple Scattering of Light by Particles

This volume provides a thorough and up-to-date treatment of multiple scattering of light and
other electromagnetic radiation in media composed of randomly and sparsely distributed
particles. For the first time in monographic literature, the radiative transfer theory (RTT) is
systematically and consistently presented as a branch of classical macroscopic
electromagnetics. The book traces the fundamental link between the RTT and the effect of
coherent backscattering (CB) and explains their place in the context of a comprehensive
hierarchy of electromagnetic scattering problems. Dedicated sections present a thorough
discussion of the physical meaning and range of applicability of the radiative transfer equation
(RTE) and compare the self-consistent microphysical and the traditional phenomenological
approaches to radiative transfer. The work describes advanced techniques for solving the RTE
and gives examples of physically based applications of the RTT and CB in noninvasive particle
characterization and remote sensing. This thorough and self-contained book will be valuable
for science professionals, engineers, and graduate students working in a wide range of
disciplines including optics, electromagnetics, remote sensing, atmospheric radiation,
astrophysics, and biomedicine.

MICHAEL I. MISHCHENKO is a Senior Scientist at the NASA Goddard Institute for Space Studies
in New York City. After gaining a Ph.D. in physics in 1987, he has been principal investigator
on several NASA and DoD projects and has served as topical editor and editorial board
member of several leading scientific journals. Dr. MISHCHENKO is a recipient of the Henry G.
Houghton Award of the American Meteorological Society and an elected Fellow of the
American Geophysical Union, the Optical Society of America, The Institute of Physics, and the
American Meteorological Society. His research interests include electromagnetic scattering,
radiative transfer, and remote sensing.

LARRY D. TRAVIS is presently Associate Chief of the NASA Goddard Institute for Space
Studies. He gained a Ph.D. in astronomy at Pennsylvania State University in 1971. Dr. TRAVIS
has acted as principal investigator on several NASA projects and was awarded a NASA
Exceptional Scientific Achievement Medal. His research interests include the theoretical
interpretation of remote sensing measurements of polarization, planetary atmospheres,
atmospheric dynamics, and radiative transfer.

ANDREW A. LACIS is a Senior Scientist at the NASA Goddard Institute for Space Studies, and
teaches radiative transfer at Columbia University. He gained a Ph.D. in physics at the
University of Iowa in 1970 and has acted as principal investigator on numerous NASA and
DoE projects. His research interests include radiative transfer in planetary atmospheres, the
absorption of solar radiation by the Earth’s atmosphere, and climate modeling.

Among the numerous scientific publications by these authors is the monograph on Scattering,
Absorption, and Emission of Light by Small Particles published by Cambridge University Press
in 2002. M. I. MISHCHENKO and L. D. TRAVIS also co-edited a monograph on Light Scattering
by Nonspherical Particles: Theory, Measurements, and Applications published in 2000 by
Academic Press.






Multiple Scattering of
Light by Particles

Radiative Transfer and
Coherent Backscattering

Michael I. Mishchenko
Larry D. Travis
Andrew A. Lacis

NASA Goddard Institute for Space Studies, New York

CAMBRIDGE

UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521834902

© NASA 2006
This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2006
Printed in the United Kingdom at the University Press, Cambridge
A catalog record for this publication is available from the British Library

ISBN-13  978-0-521-83490-2 hardback
ISBN-10 0-521-83490-2 hardback

Cambridge University Press has no responsibility for the persistence

or accuracy of URLs for external or third-party internet websites referred to in

this publication, and does not guarantee that any content on such websites is, or will
remain, accurate or appropriate.



Contents

Preface xi
Dedication and acknowledgments xv

Chapter1 Introduction 1

1.1 Electromagnetic scattering by a fixed finite object 1

1.2 Actual observables 5

1.3 Foldy-Lax equations 6

1.4 Dynamic and static scattering by random groups of particles 7
1.5 Ergodicity 9

1.6 Single scattering by random particles 10

1.7 Multiple scattering by a large random group of particles 12
1.8 Coherent backscattering 14

1.9 Classification of electromagnetic scattering problems 16

1.10 Notes and further reading 18

Chapter 2 Maxwell equations, electromagnetic waves, and Stokes
parameters 20

2.1 Maxwell equations and constitutive relations 20

2.2 Boundary conditions 23

2.3 Time-harmonic fields 26

24 The Poynting vector 28

2.5 Plane-wave solution 31

2.6 Coherency matrix and Stokes parameters 37

2.7 Ellipsometric interpretation of the Stokes parameters 41



vi Multiple Scattering of Light by Particles

2.8 Rotation transformation rule for the Stokes parameters 47
2.9 Quasi-monochromatic light 48

2.10 Measurement of the Stokes parameters 54

2.11 Spherical-wave solution 58

2.12 Coherency dyad of the electric field 62

2.13 Historical notes and further reading 64

Chapter 3  Basic theory of electromagnetic scattering 66

3.1 Volume integral equation and Lippmann—Schwinger equation 67
3.2 Scattering in the far-field zone 71

33 Scattering dyadic and amplitude scattering matrix 78

34 Reciprocity 80

3.5 Scale invariance rule 84

3.6 Electromagnetic power and electromagnetic energy density 87
3.7 Phase matrix 93

3.8 Extinction matrix 99

3.9 Extinction, scattering, and absorption cross sections 102

3.10 Coherency dyad of the total electric field 105

3.11 Other types of illumination 109

3.12 Variable scatterers 110

3.13 Thermal emission 112

3.14 Historical notes and further reading 114

Chapter4  Scattering by a fixed multi-particle group 115

4.1 Vector form of the Foldy—Lax equations 115
4.2 Far-field version of the vector Foldy—Lax equations 118

Chapter 5  Statistical averaging 123

5.1 Statistical averages 124
5.2 Configurational averaging 126
53 Averaging over particle states 126

Chapter 6  Scattering by a single random particle 131

6.1 Scattering in the far-field zone of the trap volume 131
6.2 “Near-field” scattering 136

Chapter 7  Single scattering by a small random particle group 140

7.1 Single-scattering approximation for a fixed group of particles 141
7.2 Far-field single-scattering approximation for a fixed particle

group 142
7.3 Far-field uncorrelated single-scattering approximation and modified

uncorrelated single-scattering approximation 145



Contents vii

7.4
7.5
7.6

7.7
7.8

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8
8.9
8.10

8.11
8.12

8.13
8.14

8.15
8.16
8.17
8.18

Chapter 9
9.1

9.2
9.3

Forward-scattering interference 147

Energy conservation 151

Conditions of validity of the far-field modified uncorrelated
single-scattering approximation 151

First-order-scattering approximation 158

Discussion 163

Radiative transfer equation 165

The Twersky approximation 166

The Twersky expansion of the coherent field 171

Coherent field 173

Transfer equation for the coherent field 180

Dyadic correlation function in the ladder approximation 181
Integral equation for the ladder specific coherency dyadic 191
Integro-differential equation for the diffuse specific coherency
dyadic 195

Integral and integro-differential equations for the diffuse specific
coherency matrix 197

Integral and integro-differential equations for the diffuse specific
coherency column vector 198

Integral and integro-differential equations for the specific intensity
column vector 199

Summary of assumptions and approximations 200

Physical meaning of the diffuse specific intensity column vector and
the coherent Stokes column vector 203

Energy conservation 208

External observation points 209

8.14.1 Coherent field 210

8.14.2  Ladder coherency dyadic 211

8.14.3 Specific intensity column vector 213

8.14.4  Discussion 214

8.14.5  Illustrative example: first-order scattering 216
Other types of illumination 217

Phenomenological approach to radiative transfer 218

Scattering media with thermal emission 224

Historical notes and further reading 225

Calculations and measurements of single-particle
characteristics 227

Exact theoretical techniques 227
Approximations 234
Measurement techniques 237



viii Multiple Scattering of Light by Particles

9.4 Further reading 239

Chapter 10 Radiative transfer in plane-parallel scattering media 240

10.1 The standard problem 240

10.2 The propagator 243

10.3 The general problem 245

10.4 Adding equations 247

10.5 Invariant imbedding equations 255

10.6 Ambarzumian equation 258

10.7 Reciprocity relations for the reflection and transmission matrices 259
10.8 Notes and further reading 260

Chapter 11 Macroscopically isotropic and mirror-symmetric
scattering media 261

11.1 Symmetries of the Stokes scattering matrix 262

11.2 Macroscopically isotropic and mirror-symmetric scattering
medium 265

11.3 Phase matrix 266

11.4 Forward-scattering direction and extinction matrix 270

11.5 Backward scattering 273

11.6 Scattering cross section and asymmetry parameter 275

11.7 Thermal emission 276

11.8 Spherically symmetric particles 277

11.9 Effects of nonsphericity and orientation 278

11.10 Normalized scattering and phase matrices 279

11.11 Expansion in generalized spherical functions 282

11.12 Circular-polarization representation 286

11.13 Ilustrative examples 291

Chapter 12 Radiative transfer in plane-parallel, macroscopically isotropic
and mirror-symmetric scattering media 302

12.1 The standard problem 302

12.2 The general problem 304

12.3 Adding equations 306

12.4 Invariant imbedding and Ambarzumian equations 311
12.5 Successive orders of scattering 313

12.6 Symmetry relations 315

12.6.1 Phase matrix 315
12.6.2  Reflection and transmission matrices 316
12.6.3  Matrices describing the internal field 317
12.6.4  Perpendicular directions 317

12.7 Fourier decomposition 318



Contents

ix

12.8
12.9

Chapter 13
13.1

13.2
13.3
13.4
13.5

Chapter 14

14.1
14.2
14.3
14.4
14.5

14.6

14.7
14.8

14.9

Appendix A
Appendix B

Appendix C
Appendix D
Appendix E

12.7.1  Fourier decomposition of the VRTE 318
12.7.2  Fourier components of the phase matrix 319
Scalar approximation 321

Notes and further reading 322

Illustrative applications of radiative transfer theory 324

Accuracy of the scalar approximation 324

13.1.1 Rayleigh-scattering slabs 325

13.1.2 Polydisperse spherical particles and spheroids 337
Directional reflectance and spherical and plane albedos 347
Polarization as an effect and as a particle characterization tool 357
Depolarization 362

Further reading 362

Coherent backscattering 365

Specific coherency dyadic 366

Reflected light 371

Exact backscattering direction 373

Other types of illumination 379

Photometric and polarimetric characteristics of coherent

backscattering 380

14.5.1 Unpolarized incident light 380

14.5.2 Linearly polarized incident light 381

14.5.3 Circularly polarized incident light 382

14.5.4 General properties of the enhancement factors and
polarization ratios 383

14.5.5 Spherically symmetric particles 385

14.5.6 Benchmark results for Rayleigh scattering 386

Numerical results for polydisperse spheres and polydisperse,

randomly oriented spheroids 386

Angular profile of coherent backscattering 395

Further discussion of theoretical and practical aspects of coherent

backscattering 402

Applications and further reading 404

Dyads and dyadics 407

Spherical wave expansion of a plane wave in the far-field
zone 409

Euler rotation angles 411
Integration quadrature formulas 413

Stationary phase evaluation of a double integral 416



X Multiple Scattering of Light by Particles

Appendix F Wigner functions, Jacobi polynomials, and generalized
spherical functions 418

F.1 Wigner d-functions 418

F.2 Jacobi polynomials 422

F3 Orthogonality and completeness 422

F4 Recurrence relations 423

F.5 Legendre polynomials and associated Legendre functions 424
F.6 Generalized spherical functions 425

F.7 Wigner D-functions, addition theorem, and unitarity 426

F.8 Further reading 428

Appendix G Systeme International units 429
Appendix H  Abbreviations 431

Appendix I Glossary of symbols 433

References 442
Index 469



Preface

Since the seminal papers by Lommel (1887), Chwolson (1889), and Schuster (1905),
the radiative transfer equation (RTE) has been widely used in diverse areas of science
and engineering to describe multiple scattering of light and other electromagnetic
radiation in media composed of randomly and sparsely distributed particles. Analyti-
cal studies of the RTE have formed a separate branch of mathematical physics. How-
ever, despite the importance and the widespread use of the radiative transfer theory
(RTT), its physical basis had not been established firmly until quite recently.

Indeed, the traditional “phenomenological” way to introduce the RTE has been to
invoke an eclectic combination of principles borrowed from classical radiometry (i.c.,
intuitively appealing arguments of energy balance and the simple heuristic concepts
of light rays and ray pencils), classical electromagnetics (electromagnetic scattering,
Stokes parameters, and phase and extinction matrices), and even quantum electrody-
namics (“photons”). Furthermore, the phenomenological approach has always relied
on an illusive concept of an “elementary (or differential) volume element” of the dis-
crete scattering medium. To sew together these motley concepts, one needs a set of
postulates that appear to be plausible at first sight but turn out to be artificial upon
close examination.

This inconsistent approach to radiative transfer is quite deceptive since it implies
that in order to derive the RTE for media composed of elastically scattering particles
one needs postulates other than those already contained in classical electromagnetics.
The phenomenological “derivation” becomes especially questionable when one at-
tempts to include the effects of polarization described by the so-called vector RTE
and/or to take into account the effects of particle nonsphericity and orientation. Fur-
thermore, it does not allow one to determine the range of applicability of the RTE and
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xii Preface

trace the fundamental link between the RTT and the effect of coherent backscattering.

During the past few decades, there has been significant progress in studies of the
statistical wave content of the RTT. This research has resulted in a much improved
understanding of the basic assumptions leading to the RTE and has indeed demon-
strated it to be a corollary of the Maxwell equations. Hence, the main goal of this
monograph is to consistently present the RTT as a branch of classical electromagnet-
ics as applied to discrete random media and to clarify the relationship between radia-
tive transfer and coherent backscattering.

Another motivation for writing this book was the recognition of the scarcity of
comprehensive monographs describing the fundamentals of polarized radiative trans-
fer and its applications in a way intelligible to graduate students and non-expert sci-
entists.! This factor has significantly impeded the development and wide dissemina-
tion of physically-based remote sensing and particle characterization techniques.
Hence, the additional purpose of this volume is to present a broad and coherent out-
line of the subject and to make the technical material accessible to a larger audience
than those specializing in this research area. Consistent with this purpose, our pres-
entation assumes minimal prior knowledge of the subject matter and the relevant
theoretical approaches. We expect, therefore, that the book will be useful to science
professionals, engineers, and graduate students working in a broad range of disci-
plines: optics, electromagnetics, atmospheric radiation and remote sensing, radar me-
teorology, oceanography, climate research, astrophysics, optical engineering and
technology, particle characterization, and biomedical optics.

This volume is a natural continuation of our recent monograph on Scattering, Ab-
sorption, and Emission of Light by Small Particles (Mishchenko et al., 2002; herein-
after referred to as MTL?) in that it consistently uses the same general methodology
and notation system while applying them to multiple scattering by random particle
ensembles. However, the present book contains all the necessary background material
and is self-contained.

As in MTL, we usually denote vectors using the Times bold font and matrices
using the Arial bold font. Unit vectors are denoted by a caret, whereas dyads and dy-
adics are denoted by the symbol «<». The Times italic font is reserved for scalar quan-
tities, important exceptions being the square root of minus one, the differential sign,
and the base of natural logarithms, which are denoted by Times roman characters 1, d,
and e, respectively. Another exception is the relative refractive index, which is de-
noted by a sloping sans serif m. For the reader’s convenience, a glossary listing the
symbols used, their meaning and dimension, and the section where they first appear is
provided at the end of the book (Appendix I). Appendix H contains a list of abbrevia-
tions.

! The recent book by Hovenier et al. (2004) is a notable exception.
? By agreement with Cambridge University Press, MTL is now publicly available in the .pdf
format at http://www.giss.nasa.gov/~crmim/books.html.
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We did not try to compile a comprehensive and detailed reference list. Instead,
preference was given to seminal publications as well as to relevant books and reviews
where further references can be found.

We mention several relevant computer programs made publicly available on-line.
These programs have been thoroughly tested and are expected to generate reliable
results provided that they are implemented as instructed. It is not inconceivable, how-
ever, that some of these programs contain errors and/or are not platform-independent.
Also, it is possible that users could specify input parameter values that are outside the
intended range for which accurate results can be expected. For these reasons the
authors of this book and the publisher disclaim all liability for any damage that may
result from the use of the programs. Although the authors and the publisher have used
their best endeavors to ensure that the URLs for external Internet sites referred to in
this book are correct and active at the time of this book going to press, they cannot
guarantee that a site will remain live or that its content is or will remain appropriate.

Michael 1. Mishchenko
Larry D. Travis
Andrew A. Lacis

New York
September 2005
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Chapter 1

Introduction

Natural and man-made environments provide countless examples of diverse scattering
media composed of particles. The varying complexity of these media suggests multi-
ple ways of using electromagnetic scattering for particle characterization and gives
rise to a distinctive hierarchy of theoretical models that can be used to simulate spe-
cific remote-sensing or laboratory measurements. Hence the objective of this intro-
ductory chapter is to present a simple classification of scattering problems involving
small particles and to briefly outline solution approaches described in detail in later
chapters.

1.1  Electromagnetic scattering by a fixed finite object

A parallel monochromatic beam of light propagates in a vacuum without a change in
its intensity or polarization state. However, inserting an object into the beam (see Fig.
1.1.1) causes several distinct effects. First, the object extracts some of the incident
energy and spreads it in all directions at the frequency of the incident beam. This phe-
nomenon is called elastic scattering and, in general, gives rise to light with a polari-
zation state different from that of the incident beam. Second, the object may convert
some of the energy contained in the beam into other forms of energy such as heat.
This phenomenon is called absorption. The energy contained in the incident beam is
accordingly reduced by the amount equal to the sum of the scattered and absorbed
energy. This reduction is called extinction. The extinction rates for different polariza-
tion components of the incident beam can be different, which is called dichroism.

In electromagnetic terms, the parallel monochromatic beam of light is represented
by a harmonically oscillating plane electromagnetic wave. The latter propagates in a
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Figure 1.1.1. Scattering by a fixed finite object. In this case the object consists of three
disjoint, heterogeneous, stationary bodies.

vacuum without a change in its intensity or polarization state (see Fig. 1.1.2(a)).
However, the presence of a finite object, as illustrated in Fig. 1.1.2(b), changes both
the electric, £, and the magnetic, H, field that would otherwise exist in an unbounded
homogeneous space. The difference between the total fields in the presence of the
object, £(r,¢) and H(r,t), and the original fields that would exist in the absence of
the object, £™(r,#) and H™(r,?), can be thought of as the fields scattered by the
object, £°(r,t) and H**(r,t), where r is the position (radius) vector and ¢ is time
(Fig. 1.1.2(b)). In other words, the total electric and magnetic fields in the presence of
the object are equal to vector sums of the respective incident (original) and scattered
fields:

E(r,t) = EM(r,1) + E%%r, 1), (1.1.1)
H(r, 1) = H™(r,1) + H*(r, 1) (1.1.2)

The origin of the scattered electromagnetic field can be understood by recalling
that in terms of microscopic electrodynamics, the object is an aggregation of a large
number of discrete elementary electric charges. The oscillating electromagnetic field
of the incident wave excites these charges to vibrate with the same frequency and
thereby radiate secondary electromagnetic waves. The superposition of all the secon-
dary waves gives the total elastically scattered field. If the charges do not oscillate
exactly in phase or exactly in anti-phase with the incident field then there is dissipa-
tion of electromagnetic energy into the object. This means that the object is absorbing
and scatters less total energy than it extracts from the incident wave.

Electromagnetic scattering is an exceedingly complex phenomenon because a
secondary wave generated by a vibrating charge also stimulates vibrations of all other
charges forming the object and thus modifies their respective secondary waves. As a
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Figure 1.1.2. Schematic representation of the electromagnetic scattering problem.

result, all the secondary waves become interdependent. Furthermore, the computation
of the total scattered field by superposing the secondary waves must take account of
their phase differences, which change every time the incidence and/or the scattering
direction is changed. Therefore, the total scattered field depends on the way the
charges are arranged to form the object with respect to the incidence and scattering
directions.

Since the number of elementary charges forming an object can be extremely large,
solving the scattering problem directly by computing and superposing all secondary
waves is impracticable even with the aid of modern computers. Fortunately, the scatter-
ing problem can also be solved using the concepts of macroscopic electromagnetics,
which treat the large collection of charges as one or several macroscopic bodies with a
specific distribution of the refractive index. Consequently, the scattered field can be
computed by solving the Maxwell equations for the macroscopic electromagnetic field
subject to appropriate boundary conditions. It is this approach that forms the basis of the
modern theory of electromagnetic scattering by macroscopic objects.

To simplify the solution of the scattering problem, we will adhere throughout the
book to the following five well-defined restrictions:

1. We will always assume that the unbounded host medium surrounding the
scattering object is homogeneous, linear, isotropic, and nonabsorbing.

2. We will always assume that the scattering object is illuminated by either:

(i) a time-harmonic plane electromagnetic wave given, in the complex-field
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representation, by

{E(r, 1) = Egexp(ik-r —ion), %*3 (1.1.3)

H(r,?) = Hyexp(ik - r —iwt),

with constant amplitudes E, and H,, where @ is the angular frequency, k
is the real-valued wave vector, i = (=1)"2, and R* denotes the entire three-
dimensional space, or

(i1) a quasi-monochromatic parallel beam of light given by

{E(r, t) = Eo(t)exp(ik - r — iwt),

. . re R, (1.1.4)
H(r,t) = Hy(*)exp(ik - r — iw?),

where fluctuations in time of the complex amplitudes of the electric and mag-
netic fields, Ey(#) and H(¢), around their respective mean values occur
much more slowly than the harmonic oscillations of the time factor
exp(—iwt).

This restriction excludes other types of illumination such as a focused laser
beam of finite lateral extent or a pulsed beam.

We will exclude nonlinear optics effects by assuming that the conductivity,
permeability, and electric susceptibility of both the scattering object and the
surrounding medium are independent of the electric and magnetic fields.

We will assume that electromagnetic scattering occurs without frequency re-
distribution, i.e., the scattered light has the same frequency as the incident
light. This restriction excludes inelastic scattering phenomena such as Raman
and Brillouin scattering and fluorescence. It also excludes the specific consid-
eration of the small Doppler shift of frequency of the scattered light relative
to that of the incident light due the movement of the scatterer with respect to
the source of illumination.

We will largely exclude from consideration the phenomenon of thermal emis-
sion. The latter is caused by electron transitions from one energy level to a
lower level in macroscopic bodies with absolute temperature different from
zero. A macroscopic object is a complex system of molecules with a large
number of degrees of freedom. Therefore, many different electron transitions
produce spectral emission lines so closely spaced that the resulting radiation
spectrum becomes effectively continuous and includes emitted energy at all
frequencies. By neglecting thermal emission, we will implicitly assume that
the temperature of the object is low enough that the intensity of the emitted
radiation at the frequency of the incident light is much smaller that the elasti-
cally scattered intensity. This assumption is usually valid for objects at room
or lower temperature and for short-wave infrared and shorter wavelengths.
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The theoretical and numerical techniques for computing the electromagnetic field
elastically scattered by a finite fixed object composed of one or several physical bod-
ies are many and are reviewed thoroughly in Mishchenko et al. (2000a), MTL, and
Kahnert (2003). Since all of these techniques have certain limitations in terms of the
object morphology and object size relative to the incident wavelength, a practitioner
should analyze carefully the relative strengths and weaknesses of the available solu-
tion techniques before attempting to address the specific problem in hand.

1.2  Actual observables

Because of high frequency of time-harmonic oscillations, traditional optical instru-
ments cannot measure the electric and magnetic fields associated with the incident
and scattered waves. Indeed, accumulating and averaging a signal proportional to the
electric or the magnetic field over a time interval long compared with the period of
oscillations would yield a zero net result:

T>2rxlw

1 t+T
FJ. dt’ exp(-iwt’) = 0. (1.2.1)
t

Therefore, the majority of optical instruments measure quantities which have the di-
mension of energy flux and are defined in such a way that the time-harmonic factor
exp(—iwt) vanishes upon multiplication by its complex-conjugate counterpart:
exp(—iwt)[exp(—iwt)]* = 1. This means that in order to make the theory applicable to
analyses of actual optical observations, the scattering process must be characterized in
terms of carefully chosen derivative quantities that can be measured directly. This
explains why the concept of an actual observable is central to the discipline of light
scattering by particles.

Although one can always define the magnitude and the direction of the electro-
magnetic energy flux at any point in space in terms of the Poynting vector, the latter
carries no information about the polarization state of the incident and scattered fields.
The conventional approach to ameliorate this problem dates back to Sir George
Gabriel Stokes. He proposed using four real-valued quantities which have the dimen-
sion of monochromatic energy flux and fully characterize a transverse electromag-
netic wave' inasmuch as it is subject to practical optical analysis (Stokes, 1852).
These quantities, called the Stokes parameters, form the so-called four-component
Stokes column vector and carry information about both the intensity and the polariza-
tion state of the wave.

In the so-called far-field zone of a fixed object, the propagation of the scattered
electromagnetic wave is away from the object (Fig. 1.1.2(b)). Furthermore, the elec-

! By definition, the electric and magnetic field vectors of a transverse electromagnetic wave
vibrate in the plane perpendicular to the propagation direction.
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tric and magnetic field vectors vibrate in the plane perpendicular to the propagation
direction and their amplitudes decay inversely with distance from the object. The
tranversality of both the incident plane wave and the scattered spherical wave allows
one to define the corresponding sets of Stokes parameters and to describe the re-
sponse of a well-collimated polarization-sensitive detector of light in terms of the
4x4 so-called phase and extinction matrices. Specifically, detector 2 in Fig. 1.1.1
collects only the scattered light, and its response is fully characterized by the product
of the phase matrix and the Stokes column vector of the incident wave. Thus the
phase matrix realizes the transformation of the Stokes parameters of the incident wave
into the Stokes parameters of the scattered wave. The response of detector 1 consists
of three parts:

1. The one due to the incident light.

2. The one due to the forward-scattered light.

3. The one due to the interference of the incident wave and the wave scattered
by the object in the exact forward direction.

The third part is described by minus the product of the extinction matrix and the
Stokes column vector of the incident wave and accounts for both the total attenuation
of the detector signal due to extinction of light by the object and the effect of dichro-
ism.

The phase and extinction matrices depend on object characteristics such as size,
shape, refractive index, and orientation and can be readily computed provided that the
scattered field is known from the solution of the Maxwell equations.

The main convenience of the far-field approximation is that it allows one to treat
the object essentially as a point source of scattered radiation. However, the criteria
defining the far-field zone are rather stringent and are often violated in practice. A
good example is remote sensing of water clouds in the terrestrial atmosphere using
detectors of electromagnetic radiation mounted on aircraft or satellite platforms. Such
detectors typically measure radiation coming from a small part of a cloud and do not
“perceive” the entire cloud as a single point-like scatterer. Furthermore, the notion of
the far-field zone of the cloud becomes completely meaningless if a detector is placed
inside the cloud. It is thus clear that to characterize the response of such “near-field”
detectors one must define quantities other than the Stokes parameters and the extinc-
tion and phase matrices. Still the actual observables must be defined in such a way
that they can be measured by an optical device ultimately recording the flux of elec-
tromagnetic energy.

1.3  Foldy-Lax equations

Many theoretical techniques based on directly solving the differential Maxwell equa-
tions or their integral counterparts are applicable to an arbitrary fixed finite object, be
it a single physical body or a cluster consisting of several distinct components, either
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touching or spatially separated. These techniques are based on treating the object as a
single scatterer and yield the total scattered electric and magnetic fields. However, if
the object is a multi-particle cluster then it is often convenient to represent the total
scattered field as a vector superposition of partial fields scattered by the individual
cluster components. This means, for example, that the total electric field at a point r is
written as follows:

N
Er,¢) = E™(r,{) + ZE,?C"‘(r, H, re%xR, (1.3.1)

i=1

where N is the number of particles in the cluster and E;(r, ¢) is the ith partial scat-
tered electric field. The total magnetic field is given by a similar expression. The par-
tial scattered fields can be found by solving vector so-called Foldy—Lax equations
which follow directly from the volume integral equation counterpart of the Maxwell
equations and are exact. By iterating the Foldy—Lax equations, one can derive an or-
der-of-scattering expansion of the scattered field which, in combination with statisti-
cal averaging, forms the basis of the modern theory of multiple scattering by random
particle ensembles.

14  Dynamic and static scattering by random groups of
particles

Solving the Maxwell equations yields the field scattered by a fixed object. This ap-
proach can be used directly in analyses of microwave analog measurements (e.g.,
Gustafson, 2000; Section 8.2 of MTL), in which the scattering object is held fixed
relative to the source of electromagnetic radiation during the measurement cycle.
However, it is inapplicable in the majority of laboratory and remote-sensing observa-
tions. Even if the scattering object is a single microparticle trapped inside an electro-
static or optical levitator (e.g., Chapter 2 of Davis and Schweiger, 2002), it rapidly
changes its position and orientation during the time necessary to take a measurement.
Furthermore, one often encounters situations in which light is scattered by a very
large group of particles forming a constantly varying spatial configuration. A typical
example is a cloud of water droplets or ice crystals in which the particles are con-
stantly moving, spinning, and even changing their shapes and sizes due to oscillations
of the droplet surface, evaporation, condensation, sublimation, and melting. Although
such a particle collection can be treated at each given moment as a fixed cluster, a
typical measurement of light scattering takes a finite amount of time over which the
spatial configuration of the component particles and their sizes, orientations, and/or
shapes continuously and randomly change. Therefore, the registered signal is in effect
an average over a large number of distinct clusters.

When a fixed group of particles is illuminated by a monochromatic, spatially co-
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Figure 1.4.1. (a) Speckle pattern produced by laser light reflected by a fixed particulate
sample. (b) Moving the scattering sample during the measurement averages the speckle pattern
out. (After Lenke and Maret, 2000a.)
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herent plane wave (e.g., laser light), the light scattered by the group onto a distant
screen generates a characteristic speckle pattern consisting of randomly located bright
spots of various sizes and shapes (see Fig. 1.4.1(a)). This pattern is the result of con-
structive or destructive interference of the partial waves scattered by different parti-
cles towards a point on the screen. When the particles move, the phase relations be-
tween the partial waves constantly change, thereby causing rapid fluctuations of the
speckle pattern. Accumulating the signal over a sufficiently long period of time aver-
ages the speckle pattern out and results in a rather smooth “incoherent” distribution of
the scattered intensity (Fig. 1.4.1(b)).

It has been shown that measurements of the temporal and/or spatial fluctuations of
the speckle pattern contain useful information about the particles, in particular about
their motion. Statistical analyses of light scattered by dilute and dense particle sus-
pensions, respectively, are the subject of the disciplines called photon correlation
spectroscopy (PCS) and diffusing wave spectroscopy (DWS) and form the basis of
many well-established experimental techniques for the measurement of various parti-
cle characteristics such as velocity, size, and dispersity (e.g., Berne and Pecora, 1976;
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Pine et al., 1990). The recent extension of PCS to account for particles changing the
polarization state of the incident coherent beam, so-called polarization fluctuation
spectroscopy, enables the shapes in addition to the sizes of particles to be sensed
(Hopcraft et al., 2004).

Photon correlation spectroscopy and diffusing wave spectroscopy study dynamic
aspects of light scattering by groups of randomly moving particles and as such will
not be discussed in this volume. Instead, we will assume that the effect of temporal
fluctuations is eliminated by averaging the speckle pattern over a period of time much
longer than the typical period of the fluctuations. In other words, we will deal with the
average, static component of the scattering pattern. Therefore, the subject of this book
can be called static light scattering.

1.5  Ergodicity

Quantitative analyses of static scattering measurements require the use of a theoretical
averaging procedure. Let us consider, for example, the measurement of a scattering
characteristic 4 of a cloud of spherical water droplets. This characteristic depends on
time implicitly by being a function of time-dependent physical parameters of the
cloud such as the coordinates and sizes of all the constituent particles. The full set of
particle positions and sizes will be denoted collectively by ¥ and determines the
state of the entire cloud at a moment in time. In order to interpret the measurement of
Alw(t)] accumulated over a period of time extending from ¢ = ¢, to t = t, + T, one
needs a way of predicting theoretically the average value

to+T
A4 = %J. dt Al (1)]. (1.5.1)

Quite often the temporal evolution of a complex scattering object such as the
cloud of water droplets is controlled by several physical processes and is described by
an intricate system of equations. To incorporate the solution of this system of equa-
tions for each moment of time into the theoretical averaging procedure (1.5.1) can be
a formidable task and is rarely, if ever, done. Instead, averaging over time is replaced
by ensemble averaging based on the following rationale.

Although the coordinates and sizes of water droplets in the cloud change with
time in a specific way, the range of instantaneous states of the cloud captured by the
detector during the measurement becomes representative of that captured over an in-
finite period of time provided that 7 is sufficiently large. We thus have

T T

7~ lim & I 0 dt Aly (1)] = (A4),. (1.5.2)

0

Notice now that the infinite integral in Eq. (1.5.2) can be expected to “sample” every
physically realizable state y of the cloud. Furthermore, this sampling is statistically
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representative in that the number of times each state is sampled is large and tends to
infinity in the limit 7 — oo. Most importantly, the cumulative contribution of a cloud
state i to (A4), is independent of the specific moments of time when this state actu-
ally occurred in the process of the temporal evolution of the cloud. Rather, it depends
on how many times this state was sampled. Therefore, this cumulative contribution
can be thought of as being proportional to the probability of occurrence of the state
v at any moment of time. This means that instead of specifying the state of the cloud
at each moment ¢ and integrating over all ¢, one can introduce an appropriate time-
independent probability density function p(y) and integrate over the entire physi-
cally realizable range of cloud states:

(4), = Idl//p(l//)A(W) = (A)y, (1.5.3)
where

Ide(W) = 1. (1.5.4)

The assumption that averaging over time for a “sufficiently random” object can be
replaced by ensemble averaging is called the ergodic hypothesis. Although it has not
been possible to establish mathematically the full ergodicity of real dynamical sys-
tems, more restricted versions of the ergodic theorem have been proven. Physical
processes such as Brownian motion and turbulence often help to establish a signifi-
cant degree of randomness of particle positions and orientations, which seems to ex-
plain why many theoretical predictions based on the ergodic hypothesis have agreed
very well with experimental data (e.g., Berne and Pecora, 1976). Therefore, we will
assume throughout this book that the scattering system in question is ergodic and,
thus, Eq. (1.5.3) is applicable.

1.6  Single scattering by random particles

The simplest stochastic scattering object is a single particle undergoing random
changes of position, orientation, size, and/or shape during the measurement. A good
example is a solid or liquid particle trapped inside an electrostatic or optical levitator.
In this case particle positions are confined to a small volume with diameter often
much smaller than the distance from the volume center to the detector (Fig. 1.6.1). It
is then rather straightforward to show that the detector signal accumulated over a pe-
riod of time is independent of particle positions and can be described in terms of
phase and extinction matrices averaged over appropriate ranges of particle orienta-
tions, sizes, and shapes. The formalism remains largely the same as in the case of far-
field scattering by a fixed object.

A more difficult case is the scattering by a small random group of particles (Fig.
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Figure 1.6.1. Scattering by a single random particle.

1.6.2). Still most of the far-field-scattering formalism can be preserved if the group is
observed from a large distance and is sufficiently tenuous. Specifically, if the number
of particles is sufficiently small and the separation between them is sufficiently large
then one can neglect the response of each particle to the fields scattered by all other
particles and assume that each particle is excited only by the external field. This is the
essence of the so-called single-scattering approximation, which leads to a significant
simplification of the Foldy—Lax equations. Another assumption is that particle posi-
tions are uncorrelated and sufficiently random and are independent of particle states
(i.e., combinations of particle sizes, refractive indices, shapes, and orientations). One
can then show that the signal accumulated by a distant detector over a period of time
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Figure 1.6.2. Scattering by a small random particle group.
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Figure 1.7.1. Scattering by a large random particle group.

can be directly described in terms of single-particle phase and extinction matrices
averaged over the states (but not the positions!) of all the particles and multiplied by
the number of particles.

1.7  Multiple scattering by a large random group of
particles

The problem of utmost complexity is electromagnetic scattering by a very large ran-
dom group of particles occupying a large volume of space (Fig. 1.7.1). The far-field-
scattering formalism becomes totally inapplicable since the angular aperture of an
external detector may subtend only a small fraction of the scattering volume (detector
1) or, worse, the detector may be placed inside the scattering medium (detector 2).
Furthermore, the field created by a particle in response to the fields scattered by all
the other particles forming the medium can be comparable to or even greater than that
created in response to the incident field, which means that the single-scattering ap-
proximation is no longer valid.

To deal with this problem, one has to make several crucial assumptions. The first
is to assume that each particle is located in the far-field zones of all the other particles



Introduction 13

and that the observation point is also located in the far-field zones of all the particles
forming the scattering medium. This assumption leads to a dramatic simplification of
the Foldy—Lax equations wherein the latter are converted from a system of volume
integral equations into a system of linear algebraic equations. However, it limits the
applicability of the final result by requiring that the particles in the scattering medium
are not closely spaced, a condition that is nonetheless met in many natural circum-
stances.

The algebraic system of the far-field Foldy—Lax equations can be cast into an or-
der-of-scattering form, in which the total electric field at a point in space is repre-
sented as a sum of contributions arising from light-scattering paths going through all
possible particle sequences. The second major assumption, called the Twersky ap-
proximation, is that all paths going through the same particle more than once can be
neglected. It can be demonstrated that doing this is justified provided that the total
number of particles in the scattering volume is very large.

The third major assumption is that of full ergodicity, which allows one to replace
averaging over time by averaging over particle positions and states.

The fourth major assumption is that (i) the position and state of each particle are
statistically independent of each other and of those of all the other particles and (ii)
the spatial distribution of the particles throughout the medium is random and statisti-
cally uniform. As one might expect, this assumption leads to a major simplification of
all analytical derivations.

The next major step is the characterization of the multiply scattered radiation by
the coherency dyadic

C(r) = (E(r,t) ® E(r, 1)), (1.7.1)

followed by the angular decomposition
Cr) = I dqZ(r,q) (1.7.2)
4

in terms of the so-called specific coherency dyadic Z(r,q), where ® denotes the
dyadic product of two vectors and the integration is performed over all propagation
directions as specified by the unit vector . The introduction of these quantities of-
fers three decisive benefits. First, one can sum the so-called ladder diagrams appear-
ing in the diagrammatic representation of the coherency dyadic and show that the
ladder component of the specific coherency dyadic satisfies a radiative transfer equa-
tion. Second, the ladder component of the specific coherency dyadic can be used to
define the so-called specific intensity column vector which also satisfies an RTE.
Third, one can use the integral form of the RTE to show that the specific intensity
column vector directly describes the radiometric and polarimetric response of detec-
tors 1 and 2 in Fig. 1.7.1 averaged over a period of time.

The fact that the specific intensity column vector can be both computed theoreti-
cally by solving the RTE and measured with a suitable optical device explains the
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Figure 1.8.1. Schematic explanation of coherent backscattering.

practical usefulness of the radiative transfer theory in countless applications in
various branches of science and engineering. Furthermore, the microphysical deriva-
tion of the RTE outlined above and described in detail in Chapter 8 gives the RTT the
firm footing that it had needed for many decades in order to refute the criticism on the
part of physicists (Apresyan and Kravtsov, 1996).

1.8  Coherent backscattering

Despite the restrictions of the RTT, it provides a powerful and reasonably general
prescription for the treatment of the interaction of light with particulate media and is
accordingly applicable to a broad range of practical situations. However, owing to
some of the basic assumptions in the derivation of the RTE, there are circumstances
for which it is not sufficient. An important example is the so-called coherent back-
scattering (CB) effect (otherwise known as weak localization of electromagnetic
waves).

To trace the physical origin of this effect, let us consider a layer composed of ran-
domly positioned particles and illuminated by a plane electromagnetic wave incident
in the direction n;; (Fig. 1.8.1). The (infinitely) distant observer measures the inten-
sity of light reflected by the layer in the direction fi,,. The reflected signal is com-
posed of the contributions made by waves scattered along various paths inside the
layer involving different combinations of particles. Let us consider the two conjugate
scattering paths shown in Fig. 1.8.1 by solid and broken lines. These paths go through
the same group of N particles, denoted by their positions ry, 1, ...,Ty, but in oppo-
site directions. The waves scattered along the two conjugate paths interfere, the inter-
ference being constructive or destructive depending on the phase difference

A = k(ry — 1) (R + Agy), (1.8.1)

where £, is the wave number in the surrounding medium. If the observation direction
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Figure 1.8.2. Angular profile of the coherent backscattering peak produced by a 1500 um-
thick slab of 9.6 vol% of 0.215 pm-diameter polystyrene spheres suspended in water. The slab
was illuminated by a linearly polarized laser beam propagating normally to the slab surface.
The incident wavelength was 633 nm. The scattering plane (i.e., the plane through the vectors
N, and ny;) was fixed in such a way that the electric field vector of the incident beam
vibrated in this plane. The detector measured the component of the backscattered intensity
polarized parallel to the scattering plane. The curve shows the profile of the backscattered
intensity normalized by the intensity of the incoherent background as a function of the phase
angle. The latter is defined as the angle between the vectors f,, and —fy;. (After van Albada
etal.,1987.)

is far from the exact backscattering direction given by —ii;;, then the waves scattered
along conjugate paths involving different groups of particles interfere in different
ways, and the average effect of the interference is zero owing to the randomness of
particle positions. Consequently, the observer measures some average, incoherent
intensity that is well described by the RTE. However, at exactly the backscattering
direction (f,,, = —nfy;), the phase difference between conjugate paths involving any
group of particles is identically equal to zero, Eq. (1.8.1), and the interference is al-
ways constructive, thereby resulting in a coherent intensity peak superposed on the
incoherent background (Fig. 1.8.2).

The failure of the RTE to reproduce the CB peak is explained by the fact that of
all kinds of diagrams in the diagrammatic representation of the coherency dyadic it
keeps only the ladder diagrams, whereas CB is caused by so-called cyclical (or
maximally crossed) diagrams. The inclusion of the cyclical diagrams makes the com-
putation of the coherency dyadic much more involved and limits the range of prob-
lems that can be solved accurately. However, the reciprocal nature of each single-
scattering event leads to an interesting exact result: the characteristics of the CB effect
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at the exact backscattering direction can be rigorously expressed in terms of the solu-
tion of the RTE. This result will be discussed in detail in Chapter 14.

The ladder and cyclical diagrams are the dominant but not the only types of dia-
grams in the diagrammatic representation of the coherency dyadic. However, to in-
clude all the other diagrams in the calculation of multiply scattered radiation is a for-
midable task that goes beyond the scope of this book.

1.9 Classification of electromagnetic scattering problems

To develop a comprehensive and universal classification of electromagnetic scattering
problems borders on being impossible. This chapter provides only an outline tailored
to the specifics of radiative transfer and coherent backscattering, whereas those
working on another aspect of electromagnetic scattering might prefer a modified clas-
sification with somewhat different emphases. We hope, however, that our outline,
summarized graphically in Fig. 1.9.1, fulfills its limited objective and explains ade-
quately the place of the RTT and CB within the broader context of classical macro-
scopic electromagnetics.

As is obvious from the diagram in Fig. 1.9.1, there are two broad classes of prob-
lems that we have not touched upon so far and which, in fact, will not be discussed
specifically in this book. We have emphasized several times that the main theme of
this book is multiple scattering by randomly positioned discrete particles with refrac-
tive index distinctly different from that of the surrounding medium. However, one can
also consider multiple scattering in continuous media with random fluctuations of the
refractive index. This class of problems requires special solution approaches that are
beyond the scope of this book. The reader can find relevant information in the mono-
graphs by Fabelinskii (1968), Crosignani et al. (1975), Kuz’min ef al. (1994), Apre-
syan and Kravtsov (1996), and Tsang and Kong (2001) as well as in the recent re-
views by van Tiggelen and Stark (2000) and Klyatskin (2004).

Another important problem is electromagnetic scattering by an infinite random
rough surface separating two half-spaces with different refractive indices. Although
some rough surfaces, such as the ocean surface, indeed change randomly in time,
many rough interfaces do not change and are deterministic rather than random. How-
ever, quite often their position relative to the source of light and/or the detector is not
fixed during the measurement and their vertical profile is described by a highly ir-
regular function of lateral coordinates. Even minute displacements of the source of
light and/or the detector change phase differences entirely, thereby destroying the
speckle pattern. Furthermore, the detector may view different parts of the surface at
different moments in time, thereby in effect recording an average over a temporally
varying surface profile. These two factors make the concept of a random rough sur-
face a good model for describing the results of many actual static measurements. De-
tailed information on this subject can be found in the books by Fung (1994), Tsang
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and Kong (2001), and Tsang et al. (2001) as well as in the recent reviews by Saillard
and Sentenac (2001), Elfouhaily and Guérin (2004), and Shchegrov et al. (2004) and

in the numerous publications cited therein.
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One can also think of more complex problems involving different types of volume
and/or surface scattering. A good example is electromagnetic scattering by a layer of
continuous fluctuating medium comprising randomly positioned discrete particles and
bounded by random rough surfaces. Although problems like this one are important in
practice and have been treated using various phenomenological approaches, micro-
physical treatments based on consistent application of the Maxwell equations have
been extremely scarce.

110 Notes and further reading

A useful analytical modification of the Foldy—Lax approach to split the total field
scattered by a cluster into partial fields scattered by the individual components is the
so-called superposition 7-matrix method. This technique, pioneered by Bruning and
Lo (1971a,b) and Peterson and Strém (1973), is based on expanding the fields enter-
ing the Foldy—Lax equations in appropriate sets of vector spherical wave functions
(see, e.g., Section 5.9 of MTL and Borghese et al., 2003). The fundamentals of the
superposition 7-matrix method and its applications to various multiple-scattering
problems are described in Part 2 of Varadan and Varadan (1980), Chapter 6 of Tsang
and Kong (2001), and Section 10.4 of Tsang et al. (2001). This method becomes es-
pecially useful when one considers multiple scattering by densely packed media in
which particles are not located in each other’s far-field zones. A detailed list of rele-
vant publications can be found in the database compiled by Mishchenko et al.
(2004a). This database also cites publications in which the 7-matrix method has been
applied to electromagnetic scattering by configurations involving a particle and an
infinite interface, either plane or rough.

The optics of laser speckles is discussed in the book edited by Dainty (1984). Dif-
fusing wave spectroscopy was pioneered by Maret and Wolf (1987) and Pine et al.
(1988). Detailed information about PCS and DWS and their diverse applications can
be found in the books by Cummins and Pike (1974, 1977), Crosignani et al. (1975),
Pecora (1985), Schmitz (1990), Chu (1991), Brown (1993, 1996), Pike and Abbiss
(1997), Sebbah (2001), Tuchin (2002, 2004), Albrecht et al. (2003), and van Tiggelen
and Skipetrov (2003) as well as in the recent feature issues of Applied Optics edited
by Meyer et al. (1997, 2001). An overview of the polarization-sensitive speckle spec-
troscopy can be found in Zimnyakov et al. (2004). The particle-shape sensitivity of
polarization PCS measurements has been studied by Pitter et al. (1999), Jakeman
(2000), Smith et al. (2001), Kusmartseva and Smith (2002), and Chang et al. (2002).

A review of inelastic scattering processes and their applications to optical particle
characterization can be found in Chapter 8 of Davis and Schweiger (2002). A good
number of particle characterization techniques are based on measurements of fre-
quency shifts due to the Doppler effect caused by nonzero particle velocities. Since
the scattering of the laser beam in the particle reference frame is still elastic and since
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the frequency changes measured in the laboratory reference frame are usually minute,
the underlying phenomenon is often referred to as quasi-elastic light scattering. A
comprehensive overview of various laser Doppler methods (LDMs) for measuring
particle velocities, sizes, and concentrations was published recently by Albrecht ef al.
(2003).

Unlike the PCS, DWS, RTT, CB, and LDMs, which deal with groups of randomly
moving particles, the technique of optical coherence tomography (OCT) was specifi-
cally designed as a means of noninvasive optical characterization of stationary objects
with complex morphology such as biological tissues (see, e.g., the reviews by Schmitt
(1999) and Fercher et al. (2003) as well as the recent books edited by Bouma and
Tearney (2002) and Tuchin (2004)). This technique uses a spectrally broadband
source of light and a two-beam Michelson interferometer with the mirror in one arm
replaced by a turbid sample. By measuring the interference between the beams back-
scattered from the sample and from the moving reference mirror, one can measure the
depth and magnitude of optical scattering within the sample with micrometer-scale
precision (limited by the coherence length of the source). Scanning the light beam
across the sample produces a two-dimensional representation of the optical backscat-
tering of the sample’s cross section, which is often displayed as a gray-scale or false-
color image. Polarization-sensitive OCT uses the information contained in the polari-
zation state of the recorded interference fringe intensity to provide additional contrast
in the sample cross-sectional images (Schmitt and Xiang, 1998; de Boer and Milner,
2002).

The ergodic hypothesis was introduced by James Clerk Maxwell (1831-79) and
Ludwig Boltzmann (1844-1906) as a basic underlying principle of statistical me-
chanics. The details of the ergodic theory, its relation to the famous Poincaré recur-
rence theorem (Poincaré, 1890), and its applications to statistical mechanics and ki-
netic theory are described by Khinchin (1949), Uhlenbeck and Ford (1963), and Far-
quhar (1964). Interesting discussions of the ergodic hypothesis and specific examples
of nonergodic scattering media can be found in Pusey and van Megen (1989), Joosten
et al. (1990), Xue et al. (1992), Nisato et al. (2000), and Scheffold ez al. (2001).
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Maxwell equations, electromagnetic waves,
and Stokes parameters

The theoretical basis for describing single and multiple scattering of light by particles
is formed by classical electromagnetics. In order to make the book sufficiently self-
contained, this chapter provides a summary of those concepts and equations of elec-
tromagnetic theory that will be used extensively in later chapters and introduces the
necessary notation. We start by formulating the macroscopic Maxwell equations and
constitutive relations and discuss the fundamental time-harmonic plane-wave solution
that underlies the basic optical idea of a monochromatic parallel beam of light. This is
followed by the introduction of the Stokes parameters and a discussion of their ellip-
sometric content. Then we consider the concept of a quasi-monochromatic beam of
light and its implications and briefly discuss how the Stokes parameters of mono-
chromatic and quasi-monochromatic light can be measured in practice. In the final
two sections, we discuss another fundamental solution of the Maxwell equations in
the form of time-harmonic outgoing and incoming spherical waves and introduce the
concept of the coherency dyad of the electric field. The latter plays a vital role in the
theory of single and multiple light scattering by random particle ensembles.

21 Maxwell equations and constitutive relations

The theory of classical optics phenomena is based on the set of four Maxwell equa-
tions for the macroscopic electromagnetic field at interior points in matter, which in
SI units read:

V- -D(r,t) = p(r,1), (2.1.1)

20
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oB(r, 1)

VXE@r,) = -T2, (2.1.2)
V.B(r,t) = 0, (2.1.3)
VX H(r,0) = T(r,10) + 9D, 1) (2.1.4)

o

where & is the electric and H the magnetic field, B the magnetic induction, D the
electric displacement, and p and J the macroscopic (free) charge density and cur-
rent density, respectively. All quantities entering Eqgs. (2.1.1)—(2.1.4) are functions of
time, ¢, and spatial coordinates, r. Implicit in the Maxwell equations is the continuity
equation

M+V~J(r,t) =0, (2.1.5)

ot

which is obtained by combining the time derivative of Eq. (2.1.1) with the divergence
of Eq. (2.1.4) and taking into account the vector identity V-(Vxa) = 0. The vector
fields entering Egs. (2.1.1)—(2.1.4) are related by

D(r,1) = €,E,1) + P(r,1), (2.1.6)

H(r,t) = /%B(r, t) — M(r,t), 2.1.7)
0

where P is the electric polarization (average electric dipole moment per unit vol-
ume), M is the magnetization (average magnetic dipole moment per unit volume),
and €, and K, are the electric permittivity and the magnetic permeability of free
space, respectively.

Equations (2.1.1)—(2.1.7) are insufficient for a unique determination of the electric
and magnetic fields from a given distribution of charges and currents and must be
supplemented with so-called constitutive relations:

P(r,t) = €y x(r)E(r, 1), (2.1.8)
B(r,t) = u(r)H(r,1), (2.1.9)
J(r,1) = o(r)&(r,1), (2.1.10)

where y is the electric susceptibility, 4 the magnetic permeability, and o the con-
ductivity. Equations (2.1.6) and (2.1.8) yield

D(r,t) = e(r)&(r,1), (2.1.11)
where
€(r) = €o[1+ x(r)] (2.1.12)

is the electric permittivity. For linear and isotropic media, }, i, o, and € are sca-
lars independent of the fields. The microphysical derivation and the range of validity
of the macroscopic Maxwell equations are discussed in detail by Jackson (1998).
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dl

ds

Figure 2.1.1. A finite surface S bounded by a closed contour C.

The constitutive relations (2.1.9)—(2.1.11) connect the field vectors at the same
moment of time ¢ and are valid for electromagnetic fields in a vacuum and also for
electromagnetic fields in macroscopic material media provided that the fields are con-
stant or vary in time rather slowly. For a rapidly varying field in a material medium,
the state of the medium depends not only on the current value of the field but also on
the values of the field at all previous times. Therefore, for a linear, time-invariant me-
dium, the constitutive relations (2.1.9)—(2.1.11) must be replaced by the following
general causal relations that take into account the effect of the prior history on the
electromagnetic properties of the medium:

D(r,t) = I dt’' &(r,t—t)E, 1), (2.1.13)
B(r,f) = j A’ fi(r, 1 — 1) H(r, 1), (2.1.14)
J(r,t) = I dt'G(r,t—t)E(, ). (2.1.15)

The medium characterized by the constitutive relations (2.1.13)—(2.1.15) is called
time-dispersive.

It is straightforward to rewrite the Maxwell equations and the continuity equation
in an integral form. Specifically, integrating Eqs. (2.1.2) and (2.1.4) over a surface S
bounded by a closed contour C (see Fig. 2.1.1) and applying the Stokes theorem,

I dS(VXA)-f = i dl-A, (2.1.16)
S C

yields

45 d-& = —3_[ dSB-h, @2.1.17)
c at Js
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Figure 2.1.2. A finite volume /" bounded by a closed surface S.

4; d-H = IdSJ~ﬁ+iJ. dSD -4, 2.1.18)
c s ot Jg

where we employ the usual convention that the direction of the differential length
vector dl is related to the direction of the unit vector along the local normal to the
surface n according to the right-hand rule.

Similarly, integrating Eqgs. (2.1.1), (2.1.3), and (2.1.5) over a finite volume V
bounded by a closed surface S (see Fig. 2.1.2) and using the Gauss theorem,

I drV-A = § dS A -n, (2.1.19)
14 s
we derive
§ dSD-n = J‘ drp, (2.1.20)
S 4
45 dSB-n =0, (2.1.21)
s
. 0
dSJ -n=—-—— | drp, (2.1.22)
S at 4

where the unit vector n is directed along the outward local normal to the surface.

2.2  Boundary conditions

The Maxwell equations are strictly valid only for points in whose neighborhood the
physical properties of the medium, as characterized by the constitutive parameters y,
U, and o, vary continuously. However, across an interface separating one medium
from another the constitutive parameters may change abruptly, and one may expect
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Medium 2

Figure 2.2.1. Pillbox used in the derivation of the boundary conditions for B and D.

similar discontinuous behavior of the field vectors £, D, H, and B. The boundary
conditions at such an interface can be derived from the integral form of the Maxwell
equations as described below.

Consider two different continuous media separated by an interface S as shown in
Fig. 2.2.1. Let i be a unit vector along the local normal to the interface, pointing
from medium 1 toward medium 2. Let us take the integral in Eq. (2.1.21) over the
closed surface of a small cylinder with bases parallel to a small surface element AS
such that half of the cylinder is in medium 1 and half in medium 2. The contribution
from the curved surface of the cylinder vanishes in the limit A2 — 0, and we thus
obtain

(B,-B) h =0, (2.2.1)

which means that the normal component of the magnetic induction is continuous
across the interface.

Similarly, evaluating the integrals on the left- and right-hand sides of Eq. (2.1.20)
over the surface and volume of the cylinder, respectively, we derive

(D, -D))-h = lim Ahp = pg, (2.2.2)
Ah—0

where pg is the surface charge density (the charge per unit area) measured in cou-
lombs per square meter. Thus, there is a discontinuity in the normal component of D
if the interface carries a layer of surface charge density.

Let us now consider a small rectangular loop of area A4 formed by sides of
length A/ perpendicular to the local normal and ends of length A/ parallel to the
local normal, as shown in Fig. 2.2.2. The surface integral on the right-hand side of Eq.
(2.1.17) vanishes in the limit AZ — 0,

lim j dSB-(axl) = lim AIARB-(axl) = 0,
A Ah—0

Ah—0
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Medium 2

Contour C

Interface S

Medium 1

Figure 2.2.2. Rectangular loop used in the derivation of the boundary conditions for £
and H.

so that
1-(£,-&) =0. (2.2.3)

Since the orientation of the rectangle — and hence also of 1 —is arbitrary, Eq. (2.2.3)
means that the vector £, — £, must be perpendicular to the interface. Thus,

ﬁx(gz—gl) = 0, (224)

where 0 is a zero vector. This implies that the tangential component of £ is continu-
ous across the interface.
Similarly, Eq. (2.1.18) yields

1-(H,-H) = AlhiIBOAh(ﬁxi)-j = (ax1)- T, (2.2.5)

where J g is the surface current density measured in amperes per meter. Since

1 =@x)xa, (2.2.6)
we can use the vector identity

(axb)-c =a-(bxec) (2.2.7)
to derive

[((AxD)xA]-(H,—H,) = (ax]D)-[Ax(H, -H)] = (ax])- Ts. (22.8)

Taking into account that this equality must be valid for any orientation of the rectan-
gle and, thus, of the tangent unit vector 1 finally yields

Ax(H,-H,) = Ts, (2.2.9)
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which means that there is a discontinuity in the tangential component of H if the in-
terface can carry a surface current. Media with finite conductivity cannot support sur-
face currents, so that

Aix(H,—H,) =0 (finite conductivity). (2.2.10)

The boundary conditions (2.2.1), (2.2.2), (2.2.4), (2.2.9), and (2.2.10) are useful in
solving the differential Maxwell equations in different adjacent regions with continu-
ous physical properties and then linking the partial solutions to determine the fields
throughout all space.

2.3 Time-harmonic fields

Let us now assume that all fields and sources are time harmonic (or monochromatic),
which means that their time dependence can be fully described by expressing them as
sums of terms proportional to either coswt or sinw¢?, where @ is the angular fre-
quency. It is standard practice to represent real monochromatic fields as real parts of
the respective complex fields, e.g.,

E(r,t) = ReE(r,t) = Re[E(r)exp(—iwt)]

T[E(r)exp(—imr) + E*(r)exp(io?)] (2.3.1)

and analogously for D, 'H, B, J, p, P, and M, where E(r) is complex, and the
asterisk denotes a complex-conjugate value.' Equations (2.1.1)—(2.1.5) then yield the
following frequency-domain Maxwell equations and continuity equation for the time-
independent components of the complex fields:

V-D(r) = p(r), (2.3.2)
VXE(r) = ioB(r), (2.3.3)
V-B(r) = 0, (2.3.4)
VxH(r) = J(r) — ioD(r), (2.3.5)
—iwp(r) + V-J(r) = 0, (2.3.6)

where we emphasize the typographical distinction between the symbols for the real
quantities £, D, H, B, J, and p and for their complex counterparts E, D, H, B, J,
and p.

' A complex vector is formally defined as a = b + ic, where b and ¢ are usual real vectors. All
operations with complex vectors are defined in a way analogous to the definition of operations
with complex numbers and real vectors. For example, the complex conjugate a* is defined as
the complex vector b — ic, the scalar product of two complex vectors a=b +ic and d = e + if
with real b, ¢, e, and fis definedasa-d=b-e—c-f+i(b-f+c-e),ectc.
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The constitutive relations remain unchanged in the frequency domain for a non-
dispersive medium:

D(r) = e(r)E(r), (2.3.7)
B(r) = u(r)H(r), (2.3.8)
J(r) = o(r)E(r). (2.3.9)

For a time-dispersive medium, we can substitute the monochromatic fields of the
form (2.3.1) into Egs. (2.1.13)—(2.1.15), which yields

D(r) = €(r, w)E(r), (2.3.10)

B(r) = w(r, ®)H(r), (2.3.11)

J(r) = o(r, ®)E(r), (2.3.12)

where

e(r,w) = mdt €(r,t)exp(imt), (2.3.13)
J0

ur, w) = mdtﬁ(r, t)exp(iwt), (2.3.14)
Jo

o(r,w) = mdt&(r, t)exp(iwt) (2.3.15)
J0

are complex functions of the angular frequency. Note that we use sloping Greek let-
ters in Egs. (2.3.7)~(2.3.9) and upright Greek letters in Egs. (2.3.10)—(2.3.12) to dif-
ferentiate between the frequency-independent and the frequency-dependent constitu-
tive parameters, respectively. Equations (2.3.2) and (2.3.5) can be rewritten in the
form

V- [e(r,w)E(r)] = 0, (2.3.16)

VxH(r) = —iwe(r, w)E(r), (2.3.17)
where

&(r, ) = e(r,w) + i@ (2.3.18)

is the so-called complex permittivity. Again, the reader should note the typographical
distinction between the frequency-dependent electric permittivity € (which can, in
principle, be complex-valued for a dispersive medium) and the complex permittivity
£. We will show later that a direct consequence of a complex-valued £ and/or p is a
non-zero imaginary part of the refractive index (Eq. (2.5.19)), which causes absorp-
tion of electromagnetic energy (Eq. (2.5.20)) by converting it into other forms of en-
ergy, e.g., heat.

It is straightforward to verify that the frequency-domain form of the integral
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counterparts of the Maxwell equations (2.1.17), (2.1.18), (2.1.20), and (2.1.21) is as
follows:

#CdlvE(r) ) J.S dS u(r, ®)H(r) - f, (2.3.19)
§Cd1~H(r) = —iw Lng(r, ®)E(r) - h, (2.3.20)
gr)S dS e(r, @)E(r) - = 0, (2.3.21)
988 dS u(r, @)H(r) - & = 0. (2.3.22)

The linearity of these equations with respect to E(r) and H(r) leads to the fundamen-
tal principle of superposition: if the electromagnetic fields [E(r), H;(r)] and [Ex(r),
H,(r)] are solutions of the Maxwell equations, then the electromagnetic field [E(r) +
E,(r), Hy(r) + Hy(r)] is also a solution.

Neither the scalar nor the vector product of two real vector fields is equal to the
real part of the respective product of the corresponding complex vector fields. Instead,

C(r,t) = A(r,1)-G(r, 1)
= L[A(r)exp(-iwt) + A" (r)exp(iw?)]
[G(r)exp(—iwr) + G™(r)exp(iwn)]
= 1Re[A(r) - G™(r) + A(r) - G(r) exp(=2im1)], (2.3.23)
and similarly for a vector product. Usually the angular frequency @ is so high that

traditional optical measuring devices are not capable of following the rapid oscilla-
tions of the instantaneous product values but rather respond to a time average

t+T

(C(r, 1)), = % I dec(r,t), (2.3.24)

t

where 7 is a time interval long compared with the period of the time-harmonic oscil-
lations, 27z/@. Therefore, Eqs. (2.3.23) and (2.3.24) imply that the time average of a
product of two real fields is equal to one half of the real part of the respective product
of one complex field with the complex conjugate of the other, e.g.,

(€(r,0), = LRe[A(r)-B(r)]. (2.3.25)

24  The Poynting vector

Both the value and the direction of the electromagnetic energy flow are described by
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the so-called Poynting vector S (Jackson, 1998). The expression for S can be de-
rived by considering conservation of energy and taking into account that the magnetic
field does no work and that for a local charge ¢ the rate of doing work by the electric
field is g(r,t) v(r,?)- E(r,t), where v is the velocity of the charge.

Indeed, the total rate of work done by the electromagnetic field in a finite volume
V is given by

I dr I (r,1)- E(x, 1) 2.4.1)
,

and represents the rate of conversion of electromagnetic energy into mechanical or
thermal energy. This power must be balanced by the corresponding rate of decrease of
the electromagnetic field energy within the volume V. Using Egs. (2.1.2) and (2.1.4)
and the vector identity

V-(axb) = b-(Vxa) —a-(Vxb), (2.4.2)
we derive
I drJ-€ = J. drf)(Vx’H - 8_’1))
v v ot
:—Idr[v-(SxH)+£-a—D+H~a—B} (2.4.3)
" ot ot

Let us first consider a linear medium without dispersion and introduce the total elec-
tromagnetic energy density,

U(r,t) = L[E, 1) - D(r,1) + H(r,1)- B(r,1)], (2.4.4)
and the Poynting vector,
S(r,t) = Ex, t) X H(r,1). (2.4.5)

The latter represents electromagnetic energy flow and has the dimension [en-
ergy/(area x time)]. Using also the Gauss theorem (2.1.19), we finally obtain

I rg-€ +§ﬁ dSS-h + j a4 _ o, (2.4.6)
v s y ot

where the closed surface S bounds the volume ¥ and n is a unit vector in the direc-
tion of the local outward normal to the surface. Equation (2.4.6) manifests the conser-
vation of energy by requiring that the rate of the total work done by the fields on the
sources within the volume, the rate of change of electromagnetic energy within the
volume, and the electromagnetic energy flowing out through the volume boundary per
unit time add up to zero. Since the volume V is arbitrary, Eq. (2.4.3) can also be writ-
ten in the form of a differential continuity equation:
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%*V"g:‘j'& (2.4.7)

Owing to the vector identity V- (V xa) = 0, it is clear from Eq. (2.4.7) that add-
ing the curl of a vector field to the Poynting vector will not change the energy bal-
ance. This seems to suggest that there is a degree of arbitrariness in the definition of
the Poynting vector. However, relativistic considerations discussed in Section 12.10
of Jackson (1998) show that the definition (2.4.5) is, in fact, unique.

Let us now allow the medium to be dispersive. Instead of Eq. (2.4.1), we now
consider the integral

% I drJ*(r) - E(r) (2.4.3)

whose real part gives the time-averaged rate of work done by the electromagnetic
field (cf. Eq. (2.3.25)). Using Egs. (2.3.3), (2.3.5), and (2.4.2), we derive

% I drJ*(r)-E(r) = % J‘ drE(r) - [VXH'(r) — ioD*(r)]
Vv

Vv
N J. dr{V -[E(r)x H"(r)]
2 )y

+iw[E(r)-D*(r)-B(r)- H'(r)]}. (2.4.9)
If we now define the complex Poynting vector by
S(r) = 1[E(r)xH'(r)] (2.4.10)
and the complex electric and magnetic energy densities by
we(r) = +[E(r)-D*(r)], (2.4.11)
Wi(r) = £[B(r)- H(r)], (24.12)
respectively, and apply the Gauss theorem, we then have

1 I drJ*(r)-E(r) + # dSS(r)-n + 2iw I dr[w.(r) — wy(r)] = 0.
2 V N 14

(2.4.13)

Obviously, the real part of Eq. (2.4.13) manifests the conservation of energy for the
corresponding time-averaged quantities. In particular, the time-averaged Poynting
vector (S(r, 1)), is equal to the real part of the complex Poynting vector,

(8(r, 1), = Re[S(r)]. (2.4.14)

The net rate W at which the electromagnetic energy crosses the closed surface S is
given by
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W= —gﬁ dS(S(r, 1)), - h. (2.4.15)
S

The rate is defined such that it is positive if there is a net transfer of electromagnetic
energy into the volume 7 and is negative otherwise.

2.5 Plane-wave solution

Consider an infinite homogeneous medium without sources. The use of the formulas

V-(fa)= fV-a+a-Vf, (2.5.1)
Vx(fa) = fVxa + (Vf)Xa, (2.5.2)
Vexp(ik - r) = ikexp(ik - r) (2.5.3)

in Egs. (2.3.3), (2.3.4), (2.3.16), and (2.3.17) shows that the complex field vectors
E(r,?) = Ejexp(ik - r —iwt), (2.5.4)
H(r,t) = Hyexp(ik - r —iwt), (2.5.5)

where E,, H,, and k are constant complex vectors, are a solution of the Maxwell
equations provided that

k-E, =0, (2.5.6)
k-H, =0, (2.5.7)
kxE, = opH,, (2.5.8)
kxH, = —weE,. (2.5.9)

The so-called wave vector k is usually expressed as
k = kg + ik, (2.5.10)

where kr and Kk are real vectors. Thus

E(r,?) = Ejexp(—k; -r)exp(iky - r —iwt), (2.5.11)
H(r,?) = Hyexp(—k; - r)exp(iky - r —iw?). (2.5.12)

E,exp(—k;-r) and H,exp(—k;-r) are the complex amplitudes of the electric and
magnetic fields, respectively, and ¢ = ki - r — wt is their phase.

The vector ki is normal to the surfaces of constant phase, whereas k; is normal
to the surfaces of constant amplitude. Indeed, a plane surface normal to a real vector
K is described by r-K = constant, where r is the radius vector drawn from the ori-
gin of the reference frame to any point in the plane (see Fig. 2.5.1). Also, it is easy to
see that surfaces of constant phase propagate in the direction of ky with the phase
velocity
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Plane surface normal to K:
rn-K=r,-K=r-K

Figure 2.5.1. Plane surface normal to a real vector K.

¢ = s(t+An|kg| — 0@ +Ar)

¢ = s(t)|kg| - @t

t+At

Figure 2.5.2. The plane of constant phase ¢ = constant travels a distance As over the time
period Atz. The s-axis is drawn from the origin of the coordinate system along the vector ky.

v=—. (2.5.13)

Indeed, the planes corresponding to the instant times ¢ and ¢+ A¢ are separated by the
distance As = wAt/|kyg| (see Fig. 2.5.2), which gives Eq. (2.5.13). Thus Egs. (2.5.4)
and (2.5.5) describe a plane electromagnetic wave propagating in a homogeneous
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=>

Plane of constant phase
and constant amplitude

X

Figure 2.5.3. Plane wave propagating in a homogeneous medium with no dispersion and
losses.

medium without sources. This is a very important solution of the Maxwell equations
because it embodies the concept of a perfectly monochromatic parallel beam of light
of infinite lateral extent and represents the transport of electromagnetic energy from
one point to another.

Equations (2.5.4), (2.5.5), and (2.5.8) yield

H(r,{) = wiuk X E(r, £). (2.5.14)

Therefore, a plane electromagnetic wave always can be considered in terms of only
the electric (or only the magnetic) field.

The electromagnetic wave is called homogeneous if kr and k; are parallel (in-
cluding the case k;= 0); otherwise it is called inhomogeneous. When kR" k;, the
complex wave vector can be expressed as k = (kg + ik;)n, where f is a real unit
vector in the direction of propagation and both kr and k; are real and nonnegative.

According to Egs. (2.5.6) and (2.5.7), the plane electromagnetic wave is trans-
verse: both E, and H, are perpendicular to k. Furthermore, it is evident from either
Eq. (2.5.8) or Eq. (2.5.9) that E;, and H, are mutually perpendicular: E,-H, = 0.
Since Eq, Hy, and k are, in general, complex vectors, the physical interpretation of
these facts can be far from obvious. It becomes most transparent when both &, p,
and k are real. The reader can verify that in this case the real field vectors £ and H
are mutually perpendicular and lie in a plane normal to the direction of wave propa-
gation n (see Fig. 2.5.3).
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Taking the vector product of k with the left-hand side and the right-hand side of
Eq. (2.5.8) and using Eq. (2.5.9) and the vector identity

ax(bxc) =b(a-c) —c(a-b) (2.5.15)
together with Eq. (2.5.6) yields
k-k = o’epn. (2.5.16)

In the practically important case of a homogeneous plane wave, we obtain from Eq.
(2.5.16)

k = ke + ik; = anfen = 27, (2.5.17)
c
where £ is the wave number,
1
c= (2.5.18)

V€oko

is the speed of light in a vacuum, and

ck . Ep
m=—=myg+im; = = cyEp (2.5.19)
(2] N l €olo

is the complex refractive index with a nonnegative real part mg and a nonnegative
imaginary part m;. Thus, the complex electric field vector of the homogeneous plane
wave has the form

E(r,t) = E, exp(—%mlﬁ : r] exp[i%mRﬁ-r - ia)tj. (2.5.20)

If the imaginary part of the refractive index is nonzero then it determines the decay of
the amplitude of the wave as it propagates through the medium, which is thus ab-
sorbing. On the other hand, a medium is nonabsorbing if it is nondispersive (€ = €
and p = u) and lossless (o = 0), which causes the refractive index m= my =
c(€u)"? to be real-valued. The real part of the refractive index determines the phase
velocity of the wave:

v=- (2.5.21)
mg
Inavacuum, m = my =1l and v = c.
As follows from Egs. (2.4.10), (2.4.14), (2.5.4), (2.5.5), (2.5.8), and (2.5.15), the

time-averaged Poynting vector of a plane wave is

K'[E() E'(n)] - E'(n)[k" - E(r)]}

(2.5.22)

(S(r, 1)), = Re( .
20p

If the wave is homogeneous then k- E(r) = 0 and so k™ - E(r) = 0. Therefore,
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(8(r,p)), = %Re{\/E}EOZ exp(—Zlefrrj fl. (2.5.23)
n c

Thus, (S(r,?)), is in the direction of propagation and its absolute value, called the

intensity, is attenuated exponentially provided that the medium is absorbing:
I(r) = (8(r,0),| = I, exp(-an 1), (2.5.24)

where /, is the intensity at r = 0. The absorption coefficient & is

o =2%m = M (2.5.25)
C /10
where
PR (2.5.26)
[0

is the free-space wavelength. The intensity has the dimension of monochromatic en-
ergy flux, [energy/(areax time)], and is equal to the amount of electromagnetic energy
crossing a unit surface element normal to i per unit time.

The expression for the time-averaged energy density of a time-harmonic electro-
magnetic field existing in a medium without dispersion follows from Egs. (2.3.7),
(2.3.8), (2.3.25), and (2.4.4):

(U(r, 1)), = [€E(r)-E"(r) + uH(r)-H(r)]. (2.5.27)

Assuming further that the medium is lossless and recalling Egs. (2.5.6), (2.5.8), and
(2.5.16) as well as the vector identity

(axb)-(exd) = (a-c)(b-d) — (a-d)(b-c), (2.5.28)
we derive for a plane electromagnetic wave

U(r, b)), = %€|E0|2. (2.5.29)
Comparison of Egs. (2.5.23), (2.5.24), and (2.5.29) shows that

I(r) = ;U/l(r, 1)y, = v{U(r, 1)), (2.5.30)

Tt

where v is the speed of light in the nonabsorbing material medium. The physical in-
terpretation of this result is quite clear: the amount of electromagnetic energy crossing
a surface element of unit area normal to the direction of propagation per unit time is
equal to the product of the speed of light and the amount of electromagnetic energy
per unit volume.

Figure 2.5.4 gives a simple example of a plane electromagnetic wave propagating
along the y-axis in a nonabsorbing homogeneous medium and described by the fol-
lowing real electric and magnetic field vectors:
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X (b)

Figure 2.5.4. Plane electromagnetic wave described by Egs. (2.5.31) and (2.5.32).

E(r,1) = Ecos(ky — wt —1/2)2, 2.531)
H(r,1) = Hcos(hy — ot —/2)R, (2.5.32)

where £, H, and k are real and X and Z are the unit vectors along the x-axis and the
z-axis, respectively. Panel (a) shows the electric and magnetic fields as a function of y
at the moment ¢ = 0, while panel (b) depicts the fields as a function of time at any
point in the plane y = 0. The period of the sinusoids in panel (a) is given by

o
k

yl (2.5.33)

and defines the wavelength of light in the nonabsorbing material medium, whereas
the period of the sinusoids in panel (b) is equal to 27/®.

It is straightforward to verify that a choice of the time dependence exp(iwt)
rather than exp(—iw?) in the complex representation of time-harmonic fields in Eq.
(2.3.1) would have led to m = mg —im; with a nonnegative m;. The exp(—iwt)
time-factor convention adopted here has been used in many books on optics and light
scattering (e.g., Born and Wolf, 1999; Bohren and Huffman, 1983; Barber and Hill,
1990; MTL), electromagnetics (e.g., Stratton, 1941; Jackson, 1998; Tsang et al.,
2000; Kong, 2000), and solid-state physics (e.g., Kittel, 1963). However, van de Hulst
(1957), Kerker (1969), and Hovenier et al. (2004) used the time factor exp(iwt),
which implies a nonpositive imaginary part of the complex refractive index. It does
not matter in the final analysis which convention is chosen because all measurable
quantities of practical interest are always real. However, it is important to remember
that once a choice of the time factor has been made, its consistent use throughout all
derivations is imperative.
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X

Figure 2.6.1. Local coordinate system used to describe the direction of propagation and the
polarization state of a plane electromagnetic wave at the observation point O.

2.6  Coherency matrix and Stokes parameters

Traditional optical devices cannot measure the electric and magnetic fields associated
with a beam of light; rather they measure quantities that are time averages of real-
valued linear combinations of products of field vector components and have the di-
mension of the intensity. In order to define these quantities, we use polar spherical
coordinates associated with the local right-handed Cartesian coordinate system with
origin at the observation point, as shown in Fig. 2.6.1. Assuming that the medium is
homogeneous and has no dispersion and losses, we specify the direction of propaga-
tion of a plane electromagnetic wave by a unit vector n or, equivalently, by a couplet
{0, ¢}, where @€ [0, ] is the polar (zenith) angle measured from the positive z-axis
and @€ [0,27) is the azimuth angle measured from the positive x-axis in the clock-
wise direction when looking in the direction of the positive z-axis. Since the compo-
nent of the electric field vector along the direction of propagation n is equal to zero,
the electric field at the observation point can be expressed as

E=E, +E,

where E, and E, are the 8- and ¢-components of the electric field vector, respec-
tively. The component

A

E@ = Ege

lies in the meridional plane (i.e., the plane through n and the z-axis), whereas the
component
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E, = E,
is perpendicular to this plane.’ 0 and ¢ are the corresponding unit vectors such that
i =0x¢.

The specification of a unit vector n uniquely determines the meridional plane of
the propagation direction except when n is oriented along the positive or negative
direction of the z-axis. Although it may seem redundant to specify ¢ in addition to 6
when € = 0 or m, the unit 8- and ¢-vectors and, thus, the electric-field vector
components E, and E, still depend on the orientation of the meridional plane.
Therefore, we will always assume that the specification of i implicitly includes the
specification of the appropriate meridional plane in cases when n is parallel to the z-
axis. To minimize confusion, we often will specify explicitly the direction of propa-
gation using the angles € and ¢@; the latter uniquely defines the meridional plane
when 6 = 0 or 7.

Consider a plane electromagnetic wave propagating in a homogeneous medium
without dispersion and losses and given by

E(r,t) = Ejexp(ikh-r — iwt) (2.6.1)
with a real k. The simplest complete set of linearly independent quadratic combina-

tions of the electric field vector components with nonzero time averages consists of
the following four quantities:

Eo(r, [ Ep(r, )]
Ego(h DEy(r, Nl = EO(p Ego, E(p(rs t)[Erp(ra NI = EO(p Eé(p~

Eg Ee, Ep(r,)[E,y(r, )] = Egg Epps

1/2

The products of these quantities and 1 (€/4)"" have the dimension of monochromatic

energy flux and form the 2x2 coherency (or density) matrix p (Born and Wolf,

1999):
o= {Pn P12} _ 1 /E EwwEoe  EogEo, (2.62)
P2 Pn 2\u EOszge E0¢E5¢
The completeness of the set of the four coherency matrix elements means that any
plane-wave characteristic directly observable with a traditional optical instrument is a
real-valued linear combination of these quantities.
Since p, and p,; are, in general, complex, it is convenient to introduce an alter-
native complete set of four real, linearly independent quantities called Stokes pa-

rameters. We first group the elements of the 2x2 coherency matrix into a 4x1 co-
herency column vector:

2 In the microwave remote-sensing literature, E, and E, are often denoted as E, and E, and
called the vertical and horizontal electric-field vector components, respectively (e.g., Ulaby and
Elachi, 1990; Tsang et al., 2000).
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P Egg Egg
EE,

J=|Pe =l\/E 00 (2.6.3)
P21 2V U | EyyEp
P2 EO(pEg(p

The Stokes parameters I, O, U, and V are then defined as the elements of a 4xl1
Stokes column vector | as follows:

EOH E;H + EO(p quj

- DJ l\/z EoppEgg — E0¢Eg¢
2\ u | —EwEo, — EopEoe

_i(EO(p Ege - EOB qu;)

< QT QO ~

EwEge + EopEoyp

1 F EngEgo — EopEsp 26.4)
2\ 1| —2Re(EppEgy) |

2Im(Eog Eo,)

where

(2.6.5)

o O — —_
|
—_
|
—_

Conversely,
J=D"l, (2.6.6)

where the inverse of D is given by

1 1 0 0

4 110 0 -1 1
D! = — (2.6.7)

210 0 -1 -i

1 -1 0 0

By virtue of being real-valued and having the dimension of energy flux, the
Stokes parameters form a complete set of quantities needed to characterize a plane
electromagnetic wave, inasmuch as it is subject to practical analysis. This means that:

e Any other observable quantity is a linear combination of the four Stokes pa-
rameters.

e It is impossible to distinguish between two plane waves with the same values
of the Stokes parameters using a traditional optical device (the so-called prin-
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ciple of optical equivalence).

Indeed, the two complex amplitudes Eyy = ag exp(idy) and Eo, = a,exp(id,) are
characterized by four real numbers: the nonnegative amplitudes ay and a, and the
phases A, and 4, = A¢ —A. The Stokes parameters carry information about the am-
plitudes and the phase difference 4, but not about 4,. The latter is the only quantity
that could be used to distinguish different waves with the same a4, a,, and 4 (and
thus the same Stokes parameters), but it vanishes when a field vector component is
multiplied by the complex conjugate value of the same or another field vector com-
ponent.

The first Stokes parameter, /, is the intensity introduced in the previous section,
with the explicit definition here applicable to a homogeneous, nonabsorbing medium
(cf. Egs. (2.5.23), (2.5.24), and (2.6.4)). The Stokes parameters Q, U, and V describe
the polarization state of the wave. The ellipsometric interpretation of the Stokes pa-
rameters will be the subject of the next section. It is easy to verify that the Stokes pa-
rameters of a plane monochromatic wave are not completely independent but rather
are related by the quadratic so-called Stokes identity

2= Q*+U*+V?2 (2.6.8)

We will see later, however, that this identity may not hold for a quasi-monochromatic
beam of light.

The coherency matrix and the Stokes column vector are not the only representa-
tions of polarization and not always the most convenient ones. Two other frequently
used representations are the real so-called modified Stokes column vector given by

I, 3 +0)
I -
M = J =Bl = Z(UQ) (2.6.9)
V V
and the complex circular-polarization column vector defined as
I, [0+iU
1 1+V
IP = 10 = Al =% vl (2.6.10)
-0 -
I, l0-iU
where
/2 1/2 0 0]
/2 =12 0 0
B = {) 0/ ol 2.6.11)
0 0 0 1]
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01 i O
111 0 0 1
A== (2.6.12)
2/1 0 0 -1
01 -1 O
It is easy to verify that
=B IS (2.6.13)
and
= A7, (2.6.14)
where
1 1 00
1 -1 00
B! = (2.6.15)
0 1 0
0 01
and
1 1 0
» 0 0 1
A" = | (2.6.16)
-1 0 i
0 1 -1 0

The usefulness of the modified Stokes and circular-polarization column vectors will
be illustrated in the following section.

We conclude this section with a caution. It is important to remember that whereas
the Poynting vector can be defined for an arbitrary electromagnetic field, the Stokes
parameters can only be defined for transverse fields such as plane waves discussed in
the previous section or spherical waves discussed in Section 2.11. Quite often the
electromagnetic field at an observation point is not a well-defined transverse electro-
magnetic wave, in which case the Stokes vector formalism cannot be applied directly.

2.7  Ellipsometric interpretation of the Stokes parameters

In this section we show how the Stokes parameters can be used to derive the ellip-
sometric characteristics of the plane electromagnetic wave given by Eq. (2.6.1).
Writing

Eo‘g = dyg eXp(lAe), (2.7.1)
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Ey, = a,exp(id,) (2.7.2)

with real nonnegative amplitudes ap and a, and real phases A4, and 4, and re-
calling the definition (2.6.4), we obtain for the Stokes parameters

1 |e
I = 5\/;(@3 + a(f,), (2.7.3)

1 e, ,
- |= —al), 2.7.4
0 21/!1 (a5 —ay) (2.7.4)
fe
U=-,—aga,cos4, (2.7.5)
y7,
fe .
V = |—aza,sin4, (2.7.6)
y7,
where
A4 =A44-A, 2.7.7)

Substituting Egs. (2.7.1) and (2.7.2) in Egs. (2.3.1) and (2.6.1), we have for the
real electric field vector components

Eo(r,t) = agcos(dy — wt), (2.7.8)

Ey(r,t) = a,cos(d, — wt), (2.7.9)
where

Sy = Ap + ki T, (2.7.10)

8, = A, +ki-r. 2.7.11)

At any fixed point O in space, the endpoint of the real electric field vector given by
Egs. (2.7.8)—(2.7.11) describes an ellipse with specific major and minor axes and ori-
entation (see the top panel of Fig. 2.7.1). The major axis of the ellipse makes an angle
¢ with the positive direction of the @-axis such that { € [0, 7). By definition, this
orientation angle is obtained by rotating the @-axis in the clockwise direction when
looking in the direction of propagation, until it is directed along the major axis of the
ellipse. The ellipticity is defined as the ratio of the minor to the major axes of the el-
lipse and is usually expressed as |tan 3|, where B € [-7/4, z/4]. By definition, 3
is positive when the real electric field vector at O rotates clockwise, as viewed by an
observer looking in the direction of propagation (Fig. 2.7.1(a)). The polarization for
positive S is called right-handed, as opposed to the left-handed polarization corre-
sponding to the anti-clockwise rotation of the electric field vector.

To express the orientation ¢ of the ellipse and the ellipticity [tan £| in terms of
the Stokes parameters, we first write the equations representing the rotation of the real
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(a) Polarization ellipse

(b) Elliptical polarization (V #0)

TN
N

0<0 U=0V<0 0>0U=0V>0 Q0=0U>0V<0 0=0U<0V>0

(c) Linear polarization (V= 0)

NG
B

Q0=-1 U=0 0=1 U=0 0=0 U=1 0=0 U=-I

(d) Circular polarization (Q = U =0)

V=1

Figure 2.7.1. Ellipse described by the tip of the real electric vector at a fixed point O in space
(top panel) and particular cases of elliptical, linear, and circular polarization. The plane
electromagnetic wave propagates towards the reader.



44 Chapter 2

electric field vector at O in the form
E,(r,t) = asin B sin(é - wt), (2.7.12)
E,(r,t) = acos B cos(é — wt), (2.7.13)
where £, and &, are the electric field components along the major and minor axes
of the ellipse, respectively, Fig. 2.7.1(a). One easily verifies that a positive (negative)
[ indeed corresponds to the right-handed (left-handed) polarization. The connection

between Egs. (2.7.8)—(2.7.11) and Egs. (2.7.12)—(2.7.13) can be established by using
the simple transformation rule for rotation of a two-dimensional coordinate system:

Ep(r,t) = =& (r,t)cos{ + £ ,(r,1)sin{, (2.7.14)
Epr,t) = =&,(r,t)sin{ — £ (r,1) cosg. (2.7.15)

By equating the coefficients of cosw?¢ and sinwt in the expanded Eqgs. (2.7.8) and
(2.7.9) with those in (2.7.14) and (2.7.15), we obtain

ag 080y = —asinfsind cos{ + acosfB cosd sin, (2.7.16)
aysind, = asinfB cosd cos{ + acosf sind sin(, (2.7.17)
a,cosd, = —asinfsindsin{ — acosff cosd cos{, (2.7.18)
a,sind, = asinff cosd sin{ — acos B sind cosg. (2.7.19)

Squaring and adding Eqgs. (2.7.16) and (2.7.17) and Egs. (2.7.18) and (2.7.19) gives
a} = a*(sin?B cos* + cos? B sin?{), (2.7.20)
a®(sin* B sin?¢ + cos? B cos ). (2.7.21)

ag
Multiplying Egs. (2.7.16) and (2.7.18) and Egs. (2.7.17) and (2.7.19) and adding
yields

aga,cosA = —La®cos2 B sin2{. (2.7.22)
Similarly, multiplying Eqgs. (2.7.17) and (2.7.18) and Egs. (2.7.16) and (2.7.19) and
subtracting gives

aga,sind = —La*sin2p. (2.7.23)

Comparing Egs. (2.7.3)—(2.7.6) with Egs. (2.7.20)—(2.7.23), we finally derive

=1 \/E a, (2.7.24)
2\u

Q = —1Icos2f cos2(, (2.7.25)
U = Icos2fsin2¢, (2.7.26)
V = —Isin2. (2.7.27)



Maxwell equations, electromagnetic waves, and Stokes parameters 45

The parameters of the polarization ellipse are thus expressed in terms of the
Stokes parameters as follows. The major and minor axes are given by

1/21Mcosﬁ

and

J21yu/e sinf,

respectively (cf. Egs. (2.7.12) and (2.7.13)). Equations (2.7.25) and (2.7.26) yield

U
tan2f = ——. 2.7.28
an2{ 0 ( )

Because || < 7/4, we have cos2f8 > 0 so that cos2{ has the same sign as —Q.
Therefore, from the different values of ¢ that satisfy Eq. (2.7.28) but differ by 7/2,
we must choose the one that makes the sign of cos2{ to be the same as that of —Q.
The ellipticity and handedness follow from

v
,Q2+U2.

Thus, the polarization is left-handed if V is positive and is right-handed if V" is nega-
tive (Fig. 2.7.1(b)).

The electromagnetic wave becomes linearly polarized when S vanishes; then the
electric field vector vibrates along the line making the angle { with the @-axis (Fig.
2.7.1(a)) and ¥ = 0. Furthermore, if { =0 or { =x/2 then U vanishes as well. This
explains the usefulness of the modified Stokes representation of polarization given by

tan2f = — (2.7.29)

Eq. (2.6.9) in situations involving linearly polarized light as follows. The modified
Stokes column vector has only one nonzero element and is equal to [/ 0 0 0]" if
¢ =n/2 (the electric field vector vibrates along the @-axis, i.e., in the meridional
plane) or [0 7 0 0]" if { =0 (the electric field vector vibrates along the @-axis, i.e.,
in the plane perpendicular to the meridional plane), where T indicates the transpose of
a matrix (see Fig. 2.7.1(c)).

If, however, § = £7x/4, then both Q and U vanish, and the electric field vector
describes a circle in the clockwise (8 = z/4, V = —1) or anti-clockwise (f =
—r/4, V = I) direction, as viewed by an observer looking in the direction of propa-
gation (Fig. 2.7.1(d)). In this case the electromagnetic wave is circularly polarized;
the circular-polarization column vector I has only one nonzero element and takes
the values [0 0 7 0]" and [0 7 0 0]", respectively (see Eq. (2.6.10)).

The polarization ellipse, along with a designation of the rotation direction (right-
or left-handed), fully describes the temporal evolution of the real electric field vector
at a fixed point in space. This evolution can also be visualized by plotting the curve in
(8, p,t) coordinates described by the tip of the electric field vector as a function of
time. For example, in the case of an elliptically polarized plane wave with right-
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6

Figure 2.7.2. (a) The helix described by the tip of the real electric field vector of a plane
electromagnetic wave with right-handed polarization in the (€, ¢,¢) coordinates at a fixed
point in space. (b) As in (a), but in the (6, ¢, s) coordinates at a fixed moment in time.
(c) As in (b), but for a linearly polarized wave.

handed polarization the curve is a right-handed helix with an elliptical projection onto
the O¢-plane centered around the 7-axis (see Fig. 2.7.2(a)). The pitch of the helix is
simply 27z/@, where @ is the angular frequency of the wave.

Another way to visualize a plane wave is to fix a moment in time and draw a
three-dimensional curve in (6, ¢@,s) coordinates described by the tip of the electric
field vector as a function of a spatial coordinate s = fi-r oriented along the direction
of propagation n. According to Egs. (2.7.8)—(2.7.11), the electric field is the same for
all position—time combinations with constant ks — w¢. Therefore, at any instant of
time (say, ¢ = 0) the locus of the points described by the tip of the electric field vector
originating at different points on the s axis is also a helix, with the same projection
onto the Op-plane as the respective helix in the (6, ¢,t) coordinates but with
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=N

Figure 2.8.1. Rotation of the 8- and @-axes through an angle 77 > 0 around n in the

D
D

clockwise direction when looking in the direction of propagation.

opposite handedness. For example, for the wave with right-handed elliptical polariza-
tion shown in Fig. 2.7.2(a), the respective curve in the (€, @,s) coordinates is a left-
handed elliptical helix, shown in Fig. 2.7.2(b). The pitch of this helix is the wave-
length A. It is now clear that the propagation of the wave in time and space can be
represented by progressive movement in time of the helix shown in Fig. 2.7.2(b) in
the direction of n with the speed of light. With increasing time, the intersection of the
helix with any plane s = constant describes a right-handed vibration ellipse.

In the case of a circularly polarized wave, the elliptical helix becomes a helix with
a circular projection onto the O¢-plane. If the wave is linearly polarized, then the
helix degenerates into a simple sinusoidal curve in the plane making an angle { with
the @-axis (Fig. 2.7.2(c)).

2.8 Rotation transformation rule for the Stokes
parameters

The Stokes parameters of a plane electromagnetic wave are always defined with re-
spect to a reference plane containing the direction of wave propagation. If the refer-
ence plane is rotated about the direction of propagation then the Stokes parameters are
modified according to a rotation transformation rule, which can be derived as follows.
Consider a rotation of the coordinate axes 8 and ¢ through an angle 0 < 17 < 27 in
the clockwise direction when looking in the direction of propagation (Fig. 2.8.1). The
transformation rule for rotation of a two-dimensional coordinate system yields

Egp = Eggcosn + Eg,sin1, (2.8.1)
Ey, = —Eggsinn + E,, cos1, (2.8.2)

where the primes denote the electric-field vector components with respect to the new
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reference frame. It then follows from Eq. (2.6.4) that the rotation transformation rule
for the Stokes column vector is

=L, (2.8.3)
where
1 0 0 0
0 cos2n —sin2n O
L(n) = ] (2.8.4)
0 sin2p cos2n O
0 0 0 1

is the so-called Stokes rotation matrix for angle 7. It is obvious that a 7 = 7 rota-
tion does not change the Stokes parameters.
Because

(M) = BI' = BL(m)I = BL(mB™'I™, (2.8.5)

the rotation matrix for the modified Stokes column vector is given by

cos’n sin’n  —Lsin2p 0
L¥S(7) = BL)B = sinn  cos’n  Lsin2p 0 ' 2.86)
sin2n —sin2n  cos2n 0O
0 0 0 1
Similarly, for the circular-polarization representation,
A"y = Al = ALl = AL A, (2.8.7)
and the corresponding rotation matrix is diagonal:
exp(i2n) 0 0 0
L () = AL()A™ = Lo 0 (2.8.8)
0 0 1 0
0 0 0 exp(—i2n)

(Hovenier and van der Mee, 1983).

2.9  Quasi-monochromatic light

The definition of a monochromatic plane electromagnetic wave given by Eqgs. (2.5.4)
and (2.5.5) implies that the complex amplitudes E, and H,, are constant. In reality,
both amplitudes often fluctuate in time, albeit much more slowly than the time-
harmonic factor exp(—i@t). The fluctuations of the complex amplitudes include, in
general, fluctuations of both the amplitude and the phase of the real electric and mag-
netic field vectors.
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It is straightforward to verify that the electromagnetic field given by
E(r,t) = Eo(¢)exp(ik -r — iwt), (2.9.1)
H(r,?) = Hy(¢)exp(ik - r — iwt) (2.9.2)

still satisfies the Maxwell equations (2.1.1)—(2.1.4) at any moment in time provided
that the medium is homogeneous and source-free and that

k-Ey ) = 0, (2.9.3)

k-Hy() =0, (2.9.4)

kXE (1) = wpH(?), (2.9.5)

kxHy(7) = —weE(?), (2.9.6)

‘M < w|Eq(1), (2.9.7)
ot

‘% < oH@). (2.9.8)

Equations (2.9.1)—-(2.9.8) collectively define a parallel quasi-monochromatic beam of
light. The latter can be thought of as a superposition of a large number of monochro-
matic plane electromagnetic waves which propagate in the same direction and are
randomly distributed over a range of angular frequencies [@ — Aw, ® + Aw] such
that

A0 (2.9.9)
[0)]

(see, e.g., Subsection 7.3.3 of Born and Wolf, 1999).

Although the typical frequency of the fluctuations of the complex electric and
magnetic field amplitudes is much smaller than the angular frequency w, it is still so
high that most optical instruments are incapable of tracing the instantaneous values of
the Stokes parameters but rather respond to an average of the Stokes parameters over
a relatively long period of time. Therefore, the definition of the Stokes parameters for
a quasi-monochromatic beam of light propagating in a homogeneous nonabsorbing
medium must be modified as follows:

I= %\/% KEwO[Egp(] ), + (EopO[Eg(O]),3, (29.10)
0= %\/% KEaoO[Eop): — (EopO[Eg (O]}, 29.11)
U= —é\/% KEooO[EggO ), + (EopO[EggOT) 3, (29.12)

V= i%\/%KEo(o(f)[Eoe(t)]*% = (Eog(D[Eop(D]) i} (2.9.13)
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where
1 t+T
f@®), = T I de’ f(¢") (2.9.14)

denotes the average over a time interval 7 long compared with the typical period of
fluctuation.

Equations (2.9.10)—~(2.9.14) illustrate the usefulness of the concept of quasi-
monochromatic light. Indeed, quasi-monochromatic light can be considered as mono-
chromatic over time intervals long compared with the period of time-harmonic oscil-
lations, 27z/w, but short compared with the typical period of fluctuation. Therefore,
the corresponding electric and magnetic field vectors at any moment in time can still
be found by solving the time-harmonic Maxwell equations. Any observable charac-
teristic of the quasi-monochromatic light can then be found by assuming that the cor-
responding monochromatic characteristic is “slowly varying” and averaging it over a
sufficiently long time interval.

The Stokes identity (2.6.8) is not valid, in general, for a quasi-monochromatic
beam. Indeed, now we have

IZ_QZ_UZ_VZ

= 5[<a5>,<a5,>, —(aya, cos A)? — (aya,sin 4)2]

= T2 J‘ dr’ j dt"{[ag(t")Pla, (")
— ag(t")a,(t")cos[A(t )ag(t")a,(¢") cos[ A(t")]
= ap(t)a,(t")sin[ At )]ag(t")a,(t")sin[A(")]}

= T2 J dr’ j dt"{[ag(t")la,(t")]
= ag(t)ay(t)ag(t")a,(t")cos[A(t") = At")]}

t+T t+T
j dt"[ de” {[ag(t)PLap(t)F + [ag(t")Play()])

= 2ap(t)ay(t")ag(t")a,(t") cos[A(t") — At")]}

T uor

t+T t+T
§ E%I o j dr” {[ag( )P Lag(t" )P + [ag(t")Plag )]
— 2ap(t")a, (1 )ag(t )a t")}
e 1 +T t+T
- i J dr’ I dt"[ag(t )a (") — ag(t")a, ()]

>0, (2.9.15)

thereby yielding
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1’2 0*+ U+ V2 (2.9.16)

The equality holds only if the ratio as(r)/ay(t) of the real amplitudes and the phase
difference A(t) are independent of time, which means that Ey,(f) and Eo,(?) are
completely correlated. In this case the beam is said to be fully (or completely) polar-
ized. This definition includes a monochromatic plane wave, but is, of course, more
general. However, if ag(t), ay(t), Ay(f), and Ay(?) are totally uncorrelated and
(ag): = {ap), then Q = U=V =0, and the quasi-monochromatic beam of light is
said to be unpolarized (or natural).

One way to visualize quasi-monochromatic light is to assume that Egs. (2.9.1) and
(2.9.2) describe an instantaneous polarization ellipse with ellipticity, handedness, ori-
entation, and size fluctuating in time. This means that for unpolarized light, the pa-
rameters of the vibration ellipse traced by the endpoint of the electric field vector
fluctuate in such a way that there is no preferred vibration ellipse. For a completely
polarized beam, the ellipticity, handedness, and orientation of the ellipse remain con-
stant, and only the size of the ellipse may change in time. In all other cases, the quasi-
monochromatic beam is partially polarized with certain “amounts of preference” for
ellipticity, handedness, and orientation; these amounts of preference are not equal to
100% for all of the three ellipse parameters.

Thus, quasi-monochromatic light can be partially polarized and even completely
unpolarized, whereas a plane electromagnetic wave is always fully polarized. The
realization of this fact was the main motivation for the introduction of the Stokes pa-
rameters as descriptors of the polarization state of a light beam (Stokes, 1852).

When two or more quasi-monochromatic beams propagating in the same direction
are mixed incoherently, which means that there is no permanent phase relation be-
tween the separate beams, then the Stokes column vector of the mixture is equal to the
sum of the Stokes column vectors of the individual beams:

| = 2 l,, (2.9.17)

where n numbers the beams. Indeed, inserting Egs. (2.7.1) and (2.7.2) in Eq. (2.9.10),
we obtain for the total intensity

1 .
I = E\/%ZZ (agnagm expli(4g, — Ao

+ Apnlom exp[i(A(an - A(am)])t

= %\/%{Z I,+ 22 (agnag, expli(4q, — Agy)]

n m#n

+ iy eXpli(Agn — AW)D,}- (29.18)

Since the phases of different beams are uncorrelated, the second term on the right-
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hand side of the relation above vanishes. Hence

I = Z I, (2.9.19)

and similarly for Q, U, and V. Of course, this additivity rule also applies to the coher-
ency matrix P, the modified Stokes column vector IMS, and the circular-polarization
column vector 17,

The additivity of the Stokes parameters allows us to generalize the principle of
optical equivalence (Section 2.6) to quasi-monochromatic light as follows: it is im-
possible by means of a traditional optical instrument to distinguish between various
incoherent mixtures of quasi-monochromatic beams that form a beam with the same
Stokes parameters (/,Q,U, V). For example, there is only one kind of unpolarized
light, although it can be composed of quasi-monochromatic beams in an infinite vari-
ety of optically indistinguishable ways.

According to Egs. (2.9.16) and (2.9.17), it is always possible mathematically to
decompose any quasi-monochromatic beam into two incoherent parts, one unpolar-
ized, with a Stokes column vector

[I —JO*+U*+V? 0 0 0],

and one fully polarized, with a Stokes column vector

WO*+U*+V* 0 U V"
Thus, the intensity of the fully polarized component is (Q% +U? + V)2, so that the
degree of (elliptical) polarization of the quasi-monochromatic beam is

JOP+ U+ 12
p=X— — (2.9.20)

1

The degree of linear polarization is defined as

,QZ + U2
B =—- (2.9.21)
1
and the degree of circular polarization as

P = V]I (2.9.22)

P vanishes for unpolarized light and is equal to unity for fully polarized light. For a
partially polarized beam (0 < P < 1) with V' # 0, the sign of V indicates the prefer-
ential handedness of the vibration ellipses described by the endpoint of the electric
field vector. Specifically, a positive V indicates left-handed polarization and a nega-
tive V indicates right-handed polarization. By analogy with Egs. (2.7.28) and (2.7.29),
the quantities —U/Q and |V'|/(Q* + U?)"? can be interpreted as specifying the pref-
erential orientation and ellipticity of the vibration ellipse. Unlike the Stokes parame-
ters, these quantities are not additive. According to Eqgs. (2.8.3) and (2.8.4), P, A,
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Stokes parameters: 1, Q,U, V

Intensity: /

Degree of

P =40*+U"/I

linear polarization:
Py =-Q/I (for U=0)

Degree of polarization:

P=yJo?+ur+v2/I

circular polarization: P, = v/

P = 0: natural light

0 < P < 1: partially polarized light P = 1: fully polarized light

\/

Preferential ellipticity: tan2 ‘ B ‘ = ‘V ‘ / JO? +U?

Preferential handedness:
V > 0: left-handed
V = 0: only linear polarization
V < 0: right-handed

Preferential orientation of the polarization ellipse:
U >0 then { = /4
If 0 =0 and § U =0 then only circular polarization
U <0 then ¢ =37/4
If Q#0 then tan2¢ = -U/Q and sign(cos2{) = sign(—Q)

Figure 2.9.1. Analysis of a quasi-monochromatic beam with Stokes parameters /, Q, U, and V.

and Fc are invariant with respect to rotations of the reference frame around the di-
rection of propagation.
When U = 0, the ratio

Py = -0 (2.9.23)

is also called the degree of linear polarization (or the signed degree of linear polariza-



54 Chapter 2

tion). Fp is positive when the vibrations of the electric field vector in the
@-direction (i.e., the direction perpendicular to the meridional plane of the beam)
dominate those in the @-direction and is negative otherwise.

The standard polarimetric analysis of a general quasi-monochromatic beam with
Stokes parameters /, O, U, and V is summarized in Fig. 2.9.1 (after Hovenier et al.,
2004).

210 Measurement of the Stokes parameters

Most detectors of electromagnetic radiation, especially those in the visible and infra-
red spectral range, are insensitive to the polarization state of the beam impinging on
the detector surface and can measure only the first Stokes parameter of the beam, viz.,
the intensity. Therefore, to measure the entire Stokes column vector of the beam, one
has to insert between the source of light and the detector one or several optical ele-
ments that modify the beam so that the new first Stokes parameter of the radiation
reaching the detector now contains information about the second, third, and fourth
Stokes parameters of the original beam. This is usually done with so-called polarizers
and retarders, and typically entails a succession of several such measurements to fully
characterize the Stokes column vector.

A polarizer is an optical element that attenuates the orthogonal components of the
electric field vector of an electromagnetic wave unevenly. Let us denote the corre-
sponding attenuation coefficients as py and p, and consider first the situation when
the two orthogonal transmission axes of a polarizer coincide with the 8- and @-axes
of the laboratory coordinate system (see Fig. 2.10.1). This means that after the elec-
tromagnetic wave goes through the polarizer, the orthogonal components of the elec-
tric field change as follows:

Ey = pgEg, 0= pg <1, (2.10.1)
E, = pyE,, 0<p, <1 (2.10.2)

It then follows from the definition of the Stokes parameters, Eq. (2.6.4), that the
Stokes column vector of the wave modifies according to

I' =PI, (2.10.3)
where
Po+py Pi—pp O 0
2 _ 2 2 + 2 0 0
pL|f e 3T P (2.10.4)
2 0 0 2pePy 0
0 0 0 2pePy

is the so-called Mueller matrix representing the effect of the polarizer.
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~
>

[ Polarizer

Py

Po

Figure 2.10.1. The transmission axes of the polarizer coincide with those of the laboratory

reference frame.

An important example of a polarizer is a neutral filter with py = p, = p, which
equally attenuates the orthogonal components of the electric field vector and does not
change the polarization state of the wave:

0

S o o =
S O =

0

0
1
0

0

(2.10.5)

- o O

In contrast, an ideal linear polarizer transmits only one orthogonal component of the
wave (say, the @-component) and completely blocks the other one (p, = 0):

p:p_5
2

S O = =
S O =

S o O O

(2.10.6)

S O©O o O

An ideal perfect linear polarizer does not change one orthogonal component (py = 1)

and completely blocks the other one (p, = 0):

p-1
2

S O =
S O =

0

0
0
0

0

0 (2.10.7)
ol .10.
0

If the transmission axes of a polarizer are rotated relative to the laboratory co-
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i ¢  Polarizer
\
> re

3

o Po

\J

6

Figure 2.10.2. The polarizer transmission axes are rotated through an angle 7 > 0 around n
in the clockwise direction when looking in the direction of propagation.

ordinate system (Fig. 2.10.2) then its Mueller matrix with respect to the laboratory
coordinate system also changes. To obtain the resulting Stokes column vector with
respect to the laboratory coordinate system, we need to:

e “Rotate” the initial Stokes column vector through the angle 7 in the clock-
wise direction in order to obtain the Stokes parameters of the original beam
with respect to the polarizer axes.

e  Multiply the “rotated” Stokes column vector by the original (nonrotated) po-
larizer Mueller matrix.

e “Rotate” the Stokes column vector thus obtained through the angle —7 in or-
der to calculate the Stokes parameters of the resulting beam with respect to
the laboratory coordinate system.

The final result is as follows:
I' = L(-m)PL()L (2.10.8)
Hence the Mueller matrix of the rotated polarizer computed with respect to the labo-
ratory coordinate system is given by
P@m) = L(=mPL(7) (2.10.9)
with P(0) = P.
A retarder is an optical element that changes the phase of the beam by causing a

phase shift of +{ /2 along the -axis and a phase shift of —¢/2 along the @-axis
(Fig. 2.10.3). We thus have

Ej = exp(+i¢/2)E,, (2.10.10)
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n Q Retarder
\
> ¢p

d ¢
\
0
¥
+{/2
\J
0
Figure 2.10.3. Propagation of a beam through a retarder.
E;, = exp(—i§/2)E(p, (2.10.11)
which yields
I' = R()I, (2.10.12)
where
1 0 0 0
R() = 01 0 0 (2.10.13)
1o o cos{ sind o
0 0 —sind cos¢

is the Mueller matrix of the retarder.

Consider now the optical path shown in Fig. 2.10.4. The beam of light goes
through a retarder and a rotated ideal perfect linear polarizer and then impinges on the
surface of a polarization-insensitive detector. The Stokes column vector of the result-
ing beam impinging on the detector surface is given by

I" = PMR(OL, (2.10.14)
where the polarizer Mueller matrix is

1 cos2n —sin2n

cos2 cos?2 —cos2nsin2
P(n) = 4 7 7S (2.10.15)

1
2| —sin2n —cos2nsin2n sin?2n
0 0 0

(=l - = =)

(cf. Egs. (2.10.7) and (2.10.9)). Hence the intensity of the resulting beam as a function
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Incident
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Retarder

Linear

polarizer

Detector
plane

Figure 2.10.4. Measurement of the Stokes parameters with a retarder and an ideal perfect
linear polarizer rotated with respect to the laboratory reference frame.

of 7 and ¢ is given by

I'n,¢) = +(I + Qcos2n — Usin2n cos{ — Vsin2nsin ).

(2.10.16)

This formula suggests a simple way to determine the Stokes parameters of the origi-
nal beam by measuring the intensity of the resulting beam using four different combi-

nations of 77 and

I = I'(0°,0°) + I'(90°, 0°),
0 = I'(0°0°) — I'(90°,0°),
U= —2I'(45°0° + 1,

V = I —2I'(45°90°).

(2.10.17)
(2.10.18)
(2.10.19)
(2.10.20)

Other methods for measuring the Stokes parameters and practical aspects of pola-
rimetry are discussed in detail in the books by Shurcliff (1962), Clarke and Grainger

(1971), Azzam and Bashara (1977), Kliger et al. (1990), and Collett (1992).

211 Spherical-wave solution

As we have seen, plane electromagnetic waves represent a fundamental solution of
the Maxwell equations underlying the concept of a monochromatic parallel beam of
light. Another fundamental solution representing the outward propagation of electro-
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magnetic energy from a point-like source is a transverse spherical wave. To derive
this solution, we need Egs. (2.3.3), (2.3.4), (2.3.11), (2.3.16), (2.3.17), (2.5.1), and
(2.5.2) as well as the following formulas:

+i +i
v XA _ (J_rik _ l) exp(tikr) @.11.1)
r r r
0
V.a:ai+2i+laﬁ+ dg + 1 &, (2112)
or r r d0  rtanf  rsinf 0@
Vxa = la(l_(p + 4o  _ 1 a& r
r d0  rtan@  rsinf@ Jd@

+ 1 aar_aa_(p_a_(pé_}_[aﬂ+a_9_laarj¢’
or r r 00

(2.11.3)

where f = r/|r| is the unit vector in the direction of the position vector r. It is then
straightforward to verify that the complex field vectors

E(r,?) = @El(f)exp(—ia)t), 2.11.4)
H(r,7) = le(f)exp(—ia}t) (2.11.5)

are a solution of the Maxwell equations in the limit k7 — o provided that the medium
is homogeneous and that

£ E,(f) =0, (2.11.6)
£ H,F) =0, (2.11.7)
kEXE,(f) = opH,#), (2.11.8)
kExH,(F) = — weE,(F), (2.11.9)

where the wave number & = ky + ik, = w(ep)’? = @m/c may be complex and the
E,(¥) and H,(f) are independent of the distance » from the origin.

Equations (2.11.4)—(2.11.9) describe an outgoing transverse spherical wave
propagating radially with the phase velocity v = @/kz and having mutually perpen-
dicular complex electric and magnetic field vectors. The wave is homogeneous in that
the real and imaginary parts of the local complex wave vector kr are parallel. The
surfaces of constant phase coincide with the surfaces of constant amplitude and are
spherical. It is obvious that

H(r,{) = wiufxlz(r, 0, (2.11.10)

which allows one to consider the spherical wave in terms of the electric (or the mag-



60 Chapter 2

Surface of constant phase
and constant amplitude

Figure 2.11.1. Spherical electromagnetic wave propagating in a homogeneous medium with
no dispersion and losses.

netic) field only. The time-averaged Poynting vector of the wave is given by

(8(r,1)), = %Re(\/EJMexp(—2lerjf‘, 2.11.11)
u r c

where, as before, m; = ck;/@. Thus, the local direction of the electromagnetic en-
ergy flow is away from the origin. The intensity of the spherical wave is defined as
the absolute value of the time-averaged Poynting vector,

1) = (S(r,0),| = %Re[\/E ]Me@[_zﬂmlr} @1112)
u c

r

The intensity has the dimension of monochromatic energy flux and specifies the
amount of electromagnetic energy crossing a unit surface element normal to  per
unit time. The intensity is attenuated exponentially by absorption and in addition de-
creases as the inverse square of the distance from the origin.

In the case of a medium with no dispersion and losses, the real electric and mag-
netic field vectors are mutually orthogonal and are normal to the direction of propa-
gation f (Fig. 2.11.1). The energy conservation law takes the form

# dSI(r)

S

e 6 asmer
2\/; K gﬁsdsm.(r»
é\/% LﬂdﬂEl(f)z

constant, (2.11.13)

45 dS(S(r, 1)), -t
N
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Element of area
dS = r’sin6dfde

>y

Element of solid angle

. df = sindd@dg

Figure 2.11.2. Differential solid angle in polar spherical coordinates.

where S is the sphere of radius » and

di = d—f = sin@dAde (2.11.14)
r

is a differential solid angle element around the direction r (see Fig. 2.11.2). It is also
easy to show that in the case of a nonabsorbing medium, the time-averaged energy
density of a spherical wave is given by

o2

U(r, 1)), = %ew. (2.11.15)
Equations (2.11.12) and (2.11.15) show that

I(r) = v{U(r,1)),, (2.11.16)

where v = 1/ (eu)”? is the speed of light in the material medium. The same result
was obtained previously for a plane wave propagating in a nonabsorbing medium (cf.
Eq. (2.5.30)).

In complete analogy with the case of a plane wave, the coherency matrix, the co-
herency column vector, and the Stokes column vector of a spherical wave propagating
in a homogeneous medium with no dispersion and losses can be defined as

p(r):{pn(r) plz(r)} 1 \/? 1 {Elg(f)[Elg(f)]* Eyp(®)E, ()]

pu®) )| 2Vl 7| Ey®IELDT  Ep@E O |
(2.11.17)
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Pu(r) E\g(F)[E\y(F)]"
sy = | P01 F | EuLEOT | o)
Pau(r) 2\ u r7 | Ep(F)[E ()]
P(r) E,(B)E,,(B)]
I(r) E\g(F)[Ep(P)]" + Eyp(F)E,, ()]
M T B F 1| EuESOT - B OLEOT |
U(r) 2\ u r7 | —Ep(F)[E,(O)] — Ep(F)[E(F)]
V(r) HE,(F)[Eg(F)]" — Ejp(F)[E,,(F)]'}
(2.11.19)

respectively. All these quantities have the dimension of monochromatic energy flux.
As before, the first Stokes parameter is the intensity (defined this time by Eq.
(2.11.12)).

The reader is invited to verify that the complex field vectors

E(r, ) = SRCER)
r

E,(F)exp(-iot), (2.11.20)

H(r,?) =

SXPEIR) gy @) exp(—imn) (2.11.21)
r

represent yet another solution of the Maxwell equations in the limit k» — oo provided
that the medium is homogeneous and that

£-E,F) =0, (2.11.22)
- H,(F) = 0, (2.11.23)
kEXE(F) = — wpH,(F), (2.11.24)
kExH,(F) = weE,(F). (2.11.25)

These formulas describe an incoming transverse spherical wave with mutually per-
pendicular complex electric and magnetic field vectors. The spherical surfaces of con-
stant phase and constant amplitude and the electromagnetic energy propagate radially
in the direction of the local unit vector —F.

212 Coherency dyad of the electric field

The definition of the coherency and Stokes column vectors explicitly exploits the
transverse character of an electromagnetic wave and requires the use of a local
spherical coordinate system. However, in some cases it is convenient to introduce an
alternative quantity that also provides a complete optical specification of a transverse
electromagnetic wave but is defined without explicit use of a coordinate system. One
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such quantity is called the coherency dyad and, in the general case of an arbitrary
electromagnetic field, is given by

p(r,t) = E(r, ) ®[E(r, 1), (2.12.1)

where ® denotes the dyadic product of two vectors (see Appendix A for a discussion
of dyads and dyadics). It is then clear that the coherency and Stokes column vectors
of a transverse time-harmonic electromagnetic wave propagating in the direction i
through a homogeneous medium with no dispersion and losses can be expressed in
terms of the coherency dyad as follows:

0-5-0
_ L je|9poy 2.12.2)
2\u| ¢-p-0
¢-P-9)
0:5p0+0:5 ¢
| = l\/z 0P 0-0-p0 | (2.12.3)
2V |-0-p-6-¢-p-0
i@ p-0-0-5-9)

whereas the products g-f and fn-p vanish. It follows from the definition of the
coherency dyad that it is Hermitian:

pT = p, (2.12.4)

where T denotes the transpose of a dyad(ic).

The coherency dyad is a more general quantity than the coherency and Stokes
column vectors because it can be applied to any electromagnetic field and not just to a
transverse electromagnetic wave. The simplest example of a situation in which the
coherency dyad can be introduced, whereas the Stokes column vector cannot, in-
volves the superposition of two plane electromagnetic waves propagating in different
directions. The more general nature of the coherency dyad makes it very convenient
in studies of random electromagnetic fields created by large stochastic groups of
scatterers. For example, the additivity of the Stokes parameters (see Section 2.9) is a
concept that can be applied only to transverse waves propagating in exactly the same
direction, whereas a statistical average of the coherency dyad of a random electro-
magnetic field at an observation point can sometimes be reduced to an incoherent sum
of coherency dyads of transverse waves propagating in various directions (see Section
8.6).

It is important to remember, however, that when the coherency dyad is applied to
an arbitrary electromagnetic field, it may not always have as definite a physical
meaning as, for example, the Poynting vector. The relationship between the coher-
ency dyad and the actual physical observables may change depending on the problem
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in hand and must be established carefully whenever this quantity is used in a theoreti-
cal analysis of a specific measurement procedure. For example, the right-hand sides
of Egs. (2.12.2) and (2.12.3) may become rather meaningless if the products p-n and
n- 5 do not vanish.

213 Historical notes and further reading

The equations of classical electromagnetics were written originally by Maxwell in
Cartesian component form (Maxwell, 1891) and were cast in the modern vector form
by Oliver Heaviside (1850-1925). The subsequent experimental verification of Max-
well’s theory by Heinrich Rudolf Hertz (1857-94) made it a well-established disci-
pline. Since then classical electromagnetics has been a cornerstone of physics and has
played a critical role in the development of a great variety of scientific, engineering,
and biomedical disciplines. The fundamental nature of Maxwell’s electromagnetics
was ultimately asserted by the development of the relativity theory by Jules Henri
Poincaré (1854—1912) and Hendrik Antoon Lorentz (1853—1928) (Whittaker, 1987).

The two-volume monograph by Sir Edmund Whittaker referenced above remains
by far the most complete and balanced account of the history of electromagnetism
from the time of William Gilbert (1544-1603) and René Descartes (1596-1650) to
the relativity theory. This magnificent work should be read by everyone interested in
a masterful and meticulously documented recreation of the actual sequence of events
and publications that shaped the physical science.

Comprehensive modern accounts of classical electromagnetics and optics can be
found in the monographs by Stratton (1941), Jackson (1998), Born and Wolf (1999),
and Kong (2000).

Sir George Gabriel Stokes (1819-1903) was the first to discover that four quanti-
ties, now known as the Stokes parameters, could conveniently characterize the polari-
zation state of any light beam, including partially polarized and unpolarized light
(Stokes, 1852). Furthermore, he noted that unlike the quantities entering the ampli-
tude formulation of the optical field, these parameters could be directly measured by a
suitable optical instrument.

The fascinating subject of polarization attracted the attention of many other great
scientists before and after Stokes, including Augustin Jean Fresnel (1788-1827), Do-
minique Francois Arago (1786-1853), Thomas Young (1773—-1829), Subrahmanyan
Chandrasekhar (1910-95), and Hendrik van de Hulst (1918-2000). Even Poincaré,
who is rightfully considered to be one the greatest geniuses of all time, had found the
time to contribute to this discipline by developing a useful polarization analysis tool
known as the Poincaré sphere (Poincaré, 1892; see also Kliger et al, 1990 and
Collett, 1992).

Extensive treatments of theoretical and experimental aspects of polarimetry have
been provided by Shurcliff (1962), Kliger et al. (1990), Collett (1992), Brosseau
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(1998), and Hovenier et al. (2004). In Pye (2001), numerous manifestations of polari-
zation in science and nature are described.



Chapter 3

Basic theory of electromagnetic scattering

Although the main subject of this book is multiple scattering of light by groups of
randomly positioned particles, many quantities used in the derivation of the radiative
transfer equation and finally entering it originate in the electromagnetic theory of sin-
gle scattering by a fixed object. Therefore, we will introduce in this chapter the rele-
vant single-scattering concepts and definitions and summarize the theoretical results
that will be necessary for understanding the material presented in the following chap-
ters.

As we have indicated in Chapter 1, the presence of an object with a refractive in-
dex different from that of the surrounding medium changes the electromagnetic field
that would otherwise exist in an unbounded homogeneous space. The difference of
the total field in the presence of the object and the original field that would exist in
the absence of the object can be thought of as the field scattered by the object. In
other words, the total field is the vector sum of the incident (original) field and the
scattered field.

The specific angular distribution and polarization state of the scattered field de-
pend on the polarization and directional characteristics and wavelength of the incident
field as well as on such properties of the scatterer as its size, shape, relative refractive
index, and orientation. However, the principal objective of this chapter is to consider
the general mathematical description of the scattering process without making de-
tailed assumptions about the scattering object except that it is composed of a linear
and isotropic material. As always, we begin with a field description of the scattering
process and then proceed by introducing quantities that can be directly measured with
a suitable optical instrument.

An important part of this chapter is the application of the concept of the coherency
dyad of the total electric field. Although this quantity may not have as definite a
physical meaning as, for example, the Poynting vector, it proves to be an essential

66
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Scattered spherical wave

i
&0

/

Incident wave

Figure 3.1.1. Schematic representation of the electromagnetic scattering problem. The
unshaded exterior region Vixr is unbounded in all directions, whereas the shaded areas
collectively represent the interior region Viyr.

instrument in the solution of various electromagnetic scattering problems including
the microphysical derivation of the RTE.

31 Volume integral equation and Lippmann-Schwinger
equation

Consider a fixed scattering object embedded in an infinite, homogeneous, linear, iso-
tropic, and nonabsorbing medium (see Fig. 3.1.1). The scatterer occupies a finite inte-
rior region Vr and is surrounded by the infinite exterior region Vgpxr such that
Vint UVexr = R3, where, as before, R* denotes the entire three-dimensional space.
The interior region is filled with an isotropic, linear, and possibly inhomogeneous
material. The scatterer can be either a single body or a cluster with touching and/or
separated components. Point O serves as the common origin of all position vectors
and as the origin of the laboratory coordinate system.

It is well known that optical properties of bulk substances in solid or liquid phases
are qualitatively different from those of their constituent atoms and molecules when
the latter are isolated. This may cause a problem when one applies the concept of bulk
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optical constants to a very small particle because either the optical constants deter-
mined for bulk matter provide an inaccurate estimate or the particle is so small that
the entire concept of optical constants loses its validity. We will therefore assume that
the individual bodies forming the scattering object are sufficiently large so that they
can still be characterized by optical constants appropriate to bulk matter. According to
Huffman (1988), this implies that each body is larger than approximately 50 A.

The frequency-domain monochromatic Maxwell curl equations (2.3.3) and
(2.3.17) describing the scattering problem can be rewritten as follows:

VXE(r) = iouH(r)
VxH(r) = —ia;elE(r)} r & Vexr, (3.1.1)

VXE(r) = iop,(r, ®)H(r)

VxH(r) = —iwé(r, a))E(r)} re Vi (3.1.2)

where the subscripts 1 and 2 refer to the exterior and interior regions, respectively.
The permeability and the complex permittivity for the interior region are functions of
r to provide for the general case of the scattering object being inhomogeneous. Since
the first relations in Egs. (3.1.1) and (3.1.2) yield the magnetic field provided that the
electric field is known everywhere, we will look for the solution of Egs. (3.1.1) and
(3.1.2) in terms of only the electric field.

Assuming that the host medium and the scattering object are nonmagnetic, i.e.,
Wo(r,®) = W, = Wy, where g, is the permeability of a vacuum, we derive the fol-
lowing vector wave equations:

VXVXE() - k’E(r) =0, re Vigr (3.1.3)
VXVXE(r) — k3(r,0)E(r) =0, re Vym, (3.1.4)

2 are the wave numbers of

where ki = @ (€14)"* and ky(r, ) = wlex(r, ®)i]
the exterior and interior regions, respectively. Equations (3.1.3) and (3.1.4) can then

be rewritten as a single inhomogeneous differential equation

VxVxE(r) — kfE(r) = j(r), re R’ (3.1.5)
where

i) = kP [M*(r, @) - 1]E(r), (3.1.6)

1, re Ve,
m(r, w) = { BT (3.1.7)

m(r9 w) = k2(rs a))/kl = m2(rs a))/mb re I/INT:
and m(r, w) is the refractive index of the interior relative to that of the exterior. From
this point on, we will omit the argument @ for the sake of brevity, while still remem-
bering that the relative refractive index may be frequency-dependent. It follows from

Eq. (3.1.6) that the forcing function j(r) vanishes everywhere outside the interior
region.
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Any solution of an inhomogeneous linear differential equation can be divided into
two parts: (i) a solution of the respective homogeneous equation with the right-hand
side identically equal to zero and (ii) a particular solution of the inhomogeneous
equation. The first part satisfies the equation

VXVXE™(r) — k’E™(r) =0, re R’ (3.1.8)
and describes the field that would exist in the absence of the scattering object, i.e., the
incident field. The physically appropriate particular solution of Eq. (3.1.5) must give
the scattered field E**(r) generated by the forcing function j(r). Obviously, of all
possible particular solutions of Eq. (3.1.5), we must choose the one that vanishes at
large distances from the scattering object and ensures energy conservation.

To find E**(r), we first introduce the free space dyadic Green’s function

G(r,r’) as a dyadic satisfying the differential equation
VXVxG(r,r') — kiG(r,r’) = I8(r —r"), (3.1.9)
where I is the identity dyadic,
d(r—r’)
d(x—x")8(y—y")d(z-2") (Cartesian coordinates)

%6(1’ —7")8(cos@ —cosO’)8(p—¢’) (spherical polar coordinates)
.

(3.1.10)

is the three-dimensional delta function, and 8(x—x") is the usual Dirac delta func-
tion. Taking into account that

VX[G(r,r')-jr)] = [VxG(r,r)]-jix), (3.1.11)
we get

VXVX[G(r,r')-ji)] — K2 [Gr,v') - jo)] = I -j)dr—r"). (3.1.12)
We integrate both sides of this equation over the entire space to obtain

(VxVxI — kfi).j dr’'G(r,r') - j(r’) = j(r), (3.1.13)
9{3

where the infinitesimal volume element is given by dr’ = dx’dy’dz’ in Cartesian co-
ordinates and by dr’ = r"*dr’sin8’d8’d¢’ in spherical polar coordinates. Compari-
son with Eq. (3.1.5) now shows that

Esw(r)zj dr'G(r,r')-jix’), reR’, (3.1.14)
VN'I

where we have taken into account that j(r) vanishes everywhere outside V. We
will see in the following section that this particular solution of Eq. (3.1.5) indeed
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vanishes at infinity and ensures energy conservation, thereby being the physically
appropriate particular solution. Hence, the complete solution of Eq. (3.1.5) is

E(r) = E™(r) + J‘ dr’G(r,r’) - j(r’), re R (3.1.15)
Vine

To find the free space dyadic Green’s function, we first express it in terms of a
scalar Green’s function g(r,r”) as follows:

G(r,r') = [1" + %V@ng(r, r). (3.1.16)
1

Inserting Eq. (3.1.16) into Eq. (3.1.9) and noticing that

VX[Vx(V®V)] = Vx[(VxV)®V] = 0, (3.1.17)

VxVx(Ig) = V®Vg-1V?g, (3.1.18)
where 0 is a zero dyad, we obtain the following differential equation for g:

(V2 +kHgr,r') = =8(r—r’). (3.1.19)
The well-known solution of this equation, which satisfies the condition

lim g(r,r’) =0

[r—r'| >

and represents outgoing waves, is

g(r,ry = SPUkIr = r]) (3.1.20)
4z|r — 1’|

(e.g., Jackson, 1998, p. 427). Hence, Egs. (3.1.6), (3.1.7), (3.1.15), (3.1.16), and
(3.1.20) finally yield (Saxon, 1955b; Shifrin, 1968)

E(r) = E™(r) + kf J dr'G(r,r’)-E@)[m*(r")—1]

V[NT
= E™(r) + kf(i + %V ®Vj
1

exp(ikr —r’)) re %3
drpr—v'|

. I dr’[m*(r") - 1]E(r)
(3.1.21)

The scattered electric field is then given by

E*(r) = k? j dr’G(r,r’)-E(@’)[m>*(r') —1]

VINT
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exp(ikir —r’|)

b

= kf(f + kl—zV ®Vj- I dr’[m*(r’) - 1]E")
VINT

i 4rlr — 1|

re % (3.1.22)

Equation (3.1.21) is a volume integral equation expressing the total electric field
everywhere in space in terms of the incident field and the total field inside the scat-
terer. Since the latter is not known in general, one must solve Eq. (3.1.21) either nu-
merically or analytically. As a first step, the internal field can be approximated by the
incident field. This is the gist of the so-called Rayleigh—Gans approximation (RGA)
otherwise known as the Rayleigh—Debye or Born approximation (van de Hulst, 1957;
Ishimaru, 1978). The total field computed in the RGA can be substituted in the inte-
gral on the right-hand side of Eq. (3.1.21) in order to compute an improved approxi-
mation, and this iterative process can be continued until the total field converges
within a given numerical accuracy. Although this procedure can be rather involved, it
shows that in the final analysis the scattered electric field can be expressed in terms of
the incident field as follows:

E*(r) = J dr’'G(r,r’)- dr’T(’,r")-E™x”), reR’, (3.1.23)
V]Nvl

VlN'I'

where T is the so-called dyadic transition operator (Tsang et al., 1985). Substituting
Eq. (3.1.23) in Eq. (3.1.21) yields the following integral equation for 7

T(r,v') = k}[m*(r)-1]8(r — )]

+ kP[m*(r) —1] dr’G(r,v")-T(x",x"), r,r' e Vyr.
I/]NT

(3.1.24)

Equations of this type appear in the quantum theory of scattering and are called
Lippmann—Schwinger equations (Lippmann and Schwinger, 1950; Newton, 1982).

Equation (3.1.23) shows that if Ei"*(r) and EI“(r) are two different incident
fields and E{*(r) and E5*(r) are the corresponding scattered fields, then E{®(r)+
E5™(r) is the scattered field corresponding to the incident field Ei"(r) + E°(r).
This result is, of course, a consequence of the principle of superposition discussed in
Section 2.3.

3.2  Scattering in the far-field zone

Let us now subdivide the scattering object into a large number of elementary volume
elements AV and rewrite Eq. (3.1.22) for an external observation point r in the dis-
crete form:
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Observation
point

Figure 3.2.1. Derivation of Eq. (3.2.5).

2 .
E<(r) = L. 2 AV(m? —D| T + 1y oV |.E, exp(ik, p;) ’
A AV =0 Lem klz —,0,'

r € Vexr, 3.2.1)

where the index i/ numbers the volume elements, E; and m, are the electric field and
relative refractive index values, respectively, at the center of the ith volume element,
p; =|p; is the distance from the center of the ith volume element to the observation
point, p;, =r —r; is the vector connecting the center of the ith volume element and the
observation point, and r; is the radius vector of the center of the ith volume element
(Fig. 3.2.1). Recall now that in spherical polar coordinates,

,d ~lad . 1 0
f +o——

=2 40— — 322
or " r 06 (prsine 0 ( )
%f =0, %f =0, %f = (sind, (3.2.3)

where the order of operator components relative to F, 0, and ¢ in Eq. (3.2.2) is es-
sential because the unit basis vectors depend on 8 and ¢. The simplicity of these
formulas makes it convenient to evaluate the contribution of each volume element to
the sum on the right-hand side of Eq. (3.2.1) by using a local coordinate system origi-
nating at the center of this volume element and having the same orientation as the
laboratory reference frame. This is done by making the substitution r — p; for each
new i. Recalling Egs. (2.5.1) and (2.11.1) and assuming that

kip; > 1 forany i (3.2.4)

then yields
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sca _ k12 : 2 exp(iklpi) T A A
() = - AIVHEOZAV(m,» D= ER (T - ®p)-E,

1

r € Vexr, (3.2.5)

where p; = p;/p; is the unit vector originating at the center of the ith volume ele-
ment and directed towards the observation point. Finally,

eom = 5 [ arimea - 1]%'7”%7 @) E),
Vint
r € Vexr, (3.2.6)
where
~=ﬁgﬁ, (3.2.7)

Equation (3.2.6) has two important implications. First, it shows that the scattered
field at an external observation point is a vector superposition of partial scattered
fields (wavelets) which are created by infinitesimal volume elements constituting the
interior of the object. Second, it demonstrates that each wavelet is an outgoing trans-
verse spherical wave (Fig. 3.2.2). Indeed, the identity dyadic in spherical polar coor-
dinates is given by Eq. (A.12), so that the dyadic factor

I-pep

in Eq. (3.2.6) ensures that each wavelet is transverse, i.e., the electric field vector of
the wavelet at the observation point is perpendicular to its propagation direction p”:

p-(I-p®p)-EX) =0. (3.2.8)

Furthermore, the electric field of the wavelet decays inversely with distance |r — 1’|
from the center of the infinitesimal volume element.

Let us now assume that the origin of the laboratory coordinate system O is close
to the geometrical center of the scattering object (Figs. 3.1.1 and 3.2.3). Usually one
is interested in calculating the scattered field in the so-called far-field zone of the en-
tire object. Specifically, assuming that the distance » from the origin to the observa-
tion point is much larger than any linear dimension of the scatterer,

r> ¢ forany r’ e Vi, (3.2.9)
we have
[—p®p ~1-F®F, (3.2.10)
o ”
r—r'|:r\/l—2r d +r_2
r r
I"/2
~r—ft-r+—, (3.2.11)
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Figure 3.2.2. Spherical wavelets generated by infinitesimal volume elements centered at
points i (broken line) and j (dot-dashed line).

where F =r/r is the unit vector in the direction of r, Fig. 3.2.3. The last two terms
on the right-hand side of Eq. (3.2.11) can be neglected in computing the slowly vary-
ing denominator in the expression on the right-hand side of Eq. (3.2.6), thereby
yielding

1

r-r]

~

(3.2.12)

but not in computing the rapidly oscillating factor exp(ikr —r’|). Assuming, how-
ever, that

”
kyr

7

<1 forany r’ e Viyr (3.2.13)
we finally obtain

: 2
ES(r) ~ w;f—lﬂ(f —it®f) | dr'[mi(r’) - 1]ER)
Vit

X exp(—ik,F - r’). (3.2.14)

This remarkable formula is the main result of the far-field approximation and
demonstrates that the scattered electric field at a large distance from the object be-
haves as a single outgoing transverse spherical wave centered at O and propagating in
the direction of the radial unit vector r. Indeed, the scattered field decays inversely
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X

Figure 3.2.3. Scattering in the far-field zone of the entire object.

with distance » from the origin and

£ E<(r) = 0. (3.2.15)

Thus, only the 8- and @-components of the electric vector of the scattered field are
nonzero. Equation (3.2.14) can be rewritten in the form

E*(r) = ME?M(?), i ES(F) = 0, (3.2.16)

where the vector E{®(f) is independent of » and describes the angular distribution of
the scattered radiation in the far-field zone.

Let a be the radius of the smallest circumscribing sphere of the scattering object
centered at O. Then the criteria (3.2.4), (3.2.9), and (3.2.13) of the far-field approxi-
mation can be summarized as follows:

ki(r—a)y>1, (3.2.17)

r>a or kir> ka, (3.2.18)
kya? kia*

r >

or kr> S (3.2.19)
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Figure 3.2.4. The individual spherical wavefronts generated by infinitesimal volume elements
centered at points 7 (broken curve) and j (dot-dashed curve) nearly merge with increasing
distance of the observation point from the scattering object and become locally
indistinguishable from the unified spherical wavefront centered at the common origin (solid
curve). The respective propagation directions at the observation point also become close and
eventually coincide.

The inequality (3.2.17) means that the distance from any point inside the object to
the observation point must be much greater than the wavelength. This ensures that at
the observation point, the partial field scattered by any differential volume element
develops into an outgoing spherical wavelet.

The inequality (3.2.18) requires the observation point to be located at a distance
from the object much greater than the object size. This ensures that when the partial
wavelets generated by the elementary volume elements constituting the object arrive
at the observation point, they propagate in essentially the same scattering direction,
Fig. 3.2.4, and are equally attenuated by the factor 1/distance:

-r 1 1 ,
r-r r and — forany r’ € Viyr. (3.2.20)
r

-] r—r|
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Observation
point

Figure 3.2.5. Interpretation of the inequality (3.2.19).

The meaning of the inequality (3.2.19) is a bit more subtle, but becomes clear
from the inspection of Fig. 3.2.5, in which the observation point is shown relative to
the smallest circumscribing sphere of the object. The phase difference between the
straight path connecting the observation point and a point on the sphere surface and
the path connecting the observation point and the origin is given by

ka?

k(X' —r) ~ - kacosg. (3.2.21)
The second term on the right-hand side of this expression is independent of r (for a
fixed scattering direction), whereas the variation of the first term with changing r is
significant unless ka*/2r < 1. Therefore, we can interpret the inequality (3.2.19) as
the requirement that the observation point be so far from the scatterer that the phase
difference between the paths connecting the observation point and any two points of
the scatterer becomes independent of r for any fixed scattering direction. As a conse-
quence, the surfaces of constant phase of the partial wavelets generated by the ele-
mentary volume elements constituting the object coincide locally when they reach an
observation point situated in the far-field zone, and the wavelets form a single outgo-
ing spherical wave (compare Figs. 3.2.2 and 3.2.4). This implies that the entire scat-
terer is effectively treated as a point-like body located at the origin of the laboratory
coordinate system.

The relative importance of the far-field-zone criteria (3.2.17)—(3.2.19) changes
with particle size relative to the wavelength. For particles much smaller than the
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wavelength (kja < 1), the inequality (3.2.17) is the most restrictive of the three.
When the size parameter k;a is of order unity, all three criteria are roughly equiva-
lent. For particles much greater than the wavelength (ka > 1), the inequality
(3.2.19) becomes the most demanding and can “move” the far-field zone much farther
from the particle than the other two inequalities.

In view of the inequality (3.2.18), the inequality (3.2.17) can be simplified:

k> 1. (3.2.22)

Furthermore, all three criteria of far-field scattering can be written as the following
single inequality:

kyr > max(l, +x%), (3.2.23)

where x = kja is the dimensionless so-called size parameter of the object.

3.3  Scattering dyadic and amplitude scattering matrix

Assuming that the incident field is a plane electromagnetic wave,

E™(r) = E§* exp(ik,d™ - 1), (3.3.1)
and using Eq. (3.1.23), we have

Esca(rﬁsca) — exp(lklr) A(ﬁsca’ﬁinC) . Einc’ (332)

r

where A*® = F (see Fig. 3.2.3) and A is the so-called scattering dyadic. It follows
from Eqs. (3.2.15) and (3.3.2) that

fsea . g(ﬁsca’ ﬁim:) =0. (333)

However, because the incident field given by Eq. (3.3.1) is a transverse wave with
electric field vector perpendicular to the direction of propagation, the dot product
A(R*®, A™) - 4™ is not defined by Eq. (3.3.2). To complete the definition, we take

this product to be zero:
AR, A" - a" = 0. (3.3.4)

Therefore, the final expression for the scattering dyadic in terms of the dyadic transi-
tion operator is as follows:

- | . , o ,
AM™, ") = 4—(1 — 0% ®@n*?)- driexp(—ikn*? -r’)
/4

VI\IT
X j dl'”f(l',, r”)exp(iklﬁinc . l'”) . (i _ ﬁinc ® ﬁinc:).
VINT

(3.3.5)
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The elements of the scattering dyadic have the dimension of length.

According to the above definition, the scattering dyadic describes far-field scat-
tering of a plane electromagnetic wave. Although this may appear to suggest that the
usefulness of this quantity is rather limited, its actual range of applicability is much
wider. Indeed, it follows directly from the principle of superposition that the scatter-
ing dyadic can be used to compute far-field scattering of any incident field as long as
the latter can be expanded in elementary plane waves.

Equations (3.3.3) and (3.3.4) show that only four out of the nine components of
the scattering dyadic are independent in the spherical polar coordinate system cen-
tered at the origin, Fig. 3.2.3. It is therefore convenient to introduce the 2x2 so-
called amplitude scattering matrix S, which describes the transformation of the 8-
and ¢-components of the incident plane wave into the 8- and @-components of the
scattered spherical wave:

Esca(rﬁsca) _ CXp(lklf") S(ﬁsca’ﬁinC)EglC’ (336)
r

where E denotes a two-component column formed by the €- and @-components of
the electric field vector:

E= {E“’} (3.3.7)
E<0

The elements of the amplitude scattering matrix have the dimension of length and are
expressed in terms of the scattering dyadic as follows:

S = 0 49" (3.3.8)
S, = 0. 4.9, (3.3.9)
Sy = - 40, (3.3.10)
Sy = G%- A- ™. (3.3.11)

The amplitude scattering matrix depends on the directions of incidence and scattering
as well as on the size, morphology, composition, and orientation of the scattering ob-
ject with respect to the coordinate system. It also depends on the choice of the origin
of the coordinate system relative to the object. If known, the amplitude scattering
matrix gives the scattered and thus the total field, thereby providing a complete de-
scription of the scattering pattern in the far-field zone.

We have pointed out in Section 2.6 that when a wave propagates along the z-axis,
the 8- and @-components of the electric field vector are determined by the specific
choice of the meridional plane. Therefore, the amplitude scattering matrix explicitly
depends on @™ and ¢** even when 8™ =0 or 7 and/or 8°* =0 or 7.
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34  Reciprocity

A fundamental property of the scattering dyadic is the reciprocity relation, which is a
manifestation of the symmetry of the scattering process with respect to an inversion
of time (Saxon, 1955a). To derive the reciprocity relation, we first consider the scat-
tering of a spherical incoming wave by an arbitrary finite object embedded in an infi-
nite, homogeneous, nonabsorbing medium. In the far-field zone of the object, the total
electric field is the sum of the incoming and scattered spherical waves:

E(ri) = —eXp(;‘klr)Ei"C(f) + —eXp(rlk‘r) B (F), (3.4.1)

where E™(f) and E**(f) are independent of 7 and

E™(f) = 0, (3.4.2)

-

-

CES(F) =0 (3.4.3)

(cf. Eq. (2.11.6)).

Because of the linearity of the Maxwell equations and by analogy with Eq. (3.3.2),
the outgoing spherical wave must be linearly related to the incoming spherical wave.
Following Saxon (1955a), we express this relationship in terms of the so-called scat-
tering tensor S as follows:

E(f) = — j di’ S(F, #) - E™(—"). (3.4.4)
4

In view of Eq. (3.4.3), we have
#-SEF) = 0. (3.4.5)

Since E™(#) is transverse, the product S(¥,#)-# remains undefined by Eq. (3.4.4).
As before, we will complete the definition of the scattering tensor by taking this
product to be zero:

S@E,#)-# = 0. (3.4.6)

As a consequence of Eqs. (3.4.5) and (3.4.6), S has only four independent compo-
nents.

The derivation of the reciprocity relation for the scattering tensor starts from the
statement that if E;, and E, are any two solutions of the Maxwell equations (but with
the same harmonic time-dependence), then

rZI di - {E,(rF) X[V X E,(#F)] = E,('F)X[VXE,(rF)]} = 0. (3.4.7)
4 ree

-

Indeed, using Eqs. (2.4.2), (3.1.1), and (3.1.2), we easily establish that
V-(E,xH, — E; xH,) vanishes identically everywhere in space. Integrating this
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quantity over all space and applying the Gauss theorem (2.1.19) then yields Eq.
(3.4.7).

We now take E, and E, at infinity to be superpositions of incoming and outgo-
ing spherical waves:

Ej(rf‘) _ exp(zlklr)

E'jnc(f‘) + eXp(:klr) Ei-ca(f'), ] — 1’2. (348)

Taking into account Eq. (2.5.2), (2.5.15), (3.4.2), (3.4.3), (2.11.1), and the formula
(see Eq. (3.2.2))

VXES*(#) = 0(r™), (3.4.9)

where O(r7") is a vector with components vanishing at infinity at least as »~', we

derive the following after some algebra:
J‘ df[ED°(#) - E{(#) — EM(#)- ES*(F)] = 0. (3.4.10)
4

Using Eq. (3.4.4) to express the outgoing waves in terms of the incoming waves, we
then have

I df J. di’[EP(#) - S(F,F) - E"(—F")
4r 4r
—EM™#)- S8, #) - EF(—#)] = 0. (3.4.11)

Replacing ¥ by —r" and ' by —r in the last term and transposing the tensor product
according to Eq. (A.6), we derive

I di j di’ EF(8) - {S(&,#') - [S(-t',—#)]"} - E*(—#') = 0.  (3.4.12)
4 4r

Since Ei™ and E° are arbitrary, we finally have S(#,#") = [S(-,—#)]" or
S(—#, %) = [S(,i)]". (3.4.13)

This is the reciprocity condition for the scattering tensor.

It should be remarked that in deriving Eq. (3.4.7), we assumed, as almost every-
where else in this book, that the permeability, permittivity, and conductivity are sca-
lars. However, it is easily checked that Eq. (3.4.7) and thus the reciprocity condition
(3.4.13) remain valid even when the permeability, permittivity, and conductivity of
the scattering object are tensors provided that all these tensors are symmetric. If any
of these tensors is not symmetric, then Eq. (3.4.13) may become invalid (Dolginov et
al., 1995; Lacoste and van Tiggelen, 1999).

We now use Eq. (3.4.13) to derive the reciprocity relation for the scattering dyadic
by considering the case in which the scattering object is illuminated by a plane wave
incident along the direction A", As follows from Egs. (3.2.16) and (3.3.1), the total
electric field in the far-field zone is given by
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E(ri®) = Ef exp(ikyri™ - %) + E{*(5*) (3.4.14)

exp(ik,r)

pa—

Representing the incident plane wave as a superposition of incoming and outgoing
spherical waves,

: ~inc  Asca 27 A~ inc A~ sca

exp(ikyrn™ - ) = ——|5(n" 4+ n*>?)

kyr — o0 kl

exp(—ik,r)
r

L ﬁsca)M} (3.4.15)
r
(see Appendix B), we derive

E(rﬁsca) — lzﬂ. ng S(ﬁinc + ﬁsca)
kir — o0 1

exp(—ikr)
r

+ [Ef“(ﬁ“a) - B e — ﬁsca)EiOHC}—eXp(lk‘r). (3.4.16)
ki r
Considering this a special form of Eq. (3.4.1) and recalling the definition of the scat-
tering tensor, Eq. (3.4.4), we have

ETca(ﬁsca) — llzc_ﬂ-[s(ﬁinc_ﬁsca)E})nc _ §(ﬁsca)ﬁin0)_E81c:|. (3417)
1

It now follows from the definition of the scattering dyadic, Egs. (3.3.2)—(3.3.4), that
27

k_[('[‘ _ ﬁinc ® ﬁi“C)S(ﬁinC _ ﬁsca) _ g(ﬁsca’ ﬁim)]. (3418)
1

Z(ﬁsca,ﬁim) —
Finally, from Eqgs. (3.4.13) and (3.4.18) we derive the reciprocity relation for the
scattering dyadic:

AR, —%) = [A@, 7). (3.4.19)

It is easy to see that the reciprocity relation can be interpreted as follows: if the source
of light and the detector are interchanged then the new scattering dyadic is obtained
by transposing the original scattering dyadic (Fig. 3.4.1).

The reciprocity relation for the amplitude scattering matrix follows from Egs.
(3.3.8)(3.3.11) and (3.4.19) and the unit vector identities

0(-) = 00),  @(-h) = —¢(). (3.4.20)
Simple algebra gives

Sll(ﬁsca’ﬁinC) _SZI(ﬁsca’ﬁinC)

S(_ﬁinc _ﬁsca) —
B . . .
_Slz(nsca,HmC) Szz(nsca’nlnC)

(3.4.21)

An interesting consequence of reciprocity is the so-called backscattering theorem,
A sca

which directly follows from Eq. (3.4.21) after substituting A" = fi and A** = —h:
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Detector

(a)

Source of light (b)

Figure 3.4.1. (a) Direct scattering configuration. (b) Reciprocal scattering configuration.

Sy1(—A,0) = —Sp,(—n, h) (3.4.22)

(van de Hulst, 1957, Section 5.32).

Because of the universal nature of reciprocity, Egs. (3.4.19), (3.4.21), and (3.4.22)
are important tests in computations or measurements of light scattering by small par-
ticles: violation of reciprocity means that the computations or measurements are in-
correct or inaccurate. Alternatively, the use of reciprocity can substantially shorten
required computer time or reduce the measurement effort because one may calculate
or measure light scattering for only half of the scattering geometries and then use Eqs.
(3.4.19) and (3.4.21) for the reciprocal geometries. Reciprocity also plays a funda-
mental role in the effect of coherent backscattering of light from discrete random me-
dia discussed in Chapter 14.

As we have already indicated, Eqgs. (3.4.19) and (3.4.21) are valid provided that
the permeability, permittivity, and conductivity of the scattering object are symmetric
tensors. If the scattering object and/or the surrounding medium consist of magneto-
optic materials and are placed in a constant magnetic field B, then Egs. (3.4.19) and
(3.4.21) must be replaced by
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AR, i, ~B) = [A@*, 7™, B)]", (3.4.23)

) S '*sca’ Ainc’B -S '\sca’ '\inc’B
S(_ﬁmc’ _ﬁsca’ —B) — ll(n n - ) 21(n ll ) (3424)
_Slz(ﬁsca’ ﬁmc’ B) Szz(ﬁsca’ ﬁmc’ B)

(Dolginov et al., 1995).

3.5 Scale invariance rule

Another fundamental property of electromagnetic scattering is the so-called scale
invariance rule (also referred to as the principle of electromagnetic similitude). The
general derivation of this rule was given by Mishchenko (2006) and starts with the
introduction of the following dimensionless quantities:

F =k, (3.5.1)
G = (I +V @) SR =F) (3.5.2)
4r|r — 1|
V= kiv, (3.5.3)
1
T(F,F) = kl—ST(r, ), (3.5.4)
1
m(E) = m(r). (3.5.5)

It is then rather obvious that the Lippmann—Schwinger equation (3.1.24) can be re-
written for a dimensionless dyadic transition operator as follows:
T(F,F) = [M*F) - 1]8(F - )]
+ [m*(F) - 1] ) dF"é(F, F")i(i", ¥), FFeVn, (3.5.6)
Vinr
where we have taken into account that
3(r) = b*3(br), (3.5.7)

and the dimensionless “volume” Vi = ki V;yr is obtained from the actual volume
Vinr by multiplying all dimensions of the latter by k,. Solving Eq. (3.5.6) by itera-
tion shows that the dimensionless dyadic transition operator depends on the dimen-
sionless particle volume rather than on the actual volume and on the wave number
separately.

The next step is to introduce the dimensionless scattering dyadic as follows:

AR, A1) = & AR, 0™, (3.5.8)

Then Eq. (3.3.5) takes the form
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(3.5.9)

dr’exp(—ifi**- ")
INT

2

J

the same is true of the dimensionless ampli-

df”f(f’, ) exp(in™-¥") - (I — A" @ n'™),

(1 e ® ﬁsca) .
ﬁsca’ ﬁin(:).

1 -
I}IINT
S(

4r
g

S(ﬁsca,ﬁinC) — kl

A(ﬁsca, ﬁinc) —

The scale invariance rule is a direct consequence of these results and states the

Figure 3.5.1. Three classes of electromagnetically similar objects. Note that the objects in a
class have geometrically similar shapes and morphologies as well as identical orientations with
which shows again that the dimensionless scattering dyadic is a function of the di-
mensionless particle volume rather than a function of the actual particle volume as
following. If one multiplies all linear dimensions of the scattering object by a constant
factor f (thereby not changing the shape and morphology of the object and its orienta-
tion with respect to the coordinate system) and multiplies the wave number &, by a
factor 1/ f, then the dimensionless scattering dyadic and the dimensionless amplitude
scattering matrix of the object do not change.

well as of the wave number. Of course,

respect to the laboratory reference frame.
tude scattering matrix
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“/11"
= f 2+

Figure 3.5.2. Scale invariance rule.

This rule can be reformulated as follows. Consider a class of geometrically similar
objects with geometrically similar spatial distributions of the relative refractive index
and the same orientation with respect to the laboratory reference frame (Fig. 3.5.1). It
is clear that each object from the class can be uniquely identified by the value of a
typical linear dimension a (for example, the largest or the smallest dimension of the
object or the radius of the surface- or volume-equivalent sphere). Then the scale in-
variance rule implies that the dimensionless scattering characteristics of the objects do
not depend on specific values of @ and k;, but rather depend on the product of a and
k, traditionally called the size parameter x.

The size parameter can also be expressed in terms of the wavelength of the inci-
dent wave in the exterior region, A4, =27x/k,, as x=27a / Ay. This means that multi-
plying the typical particle size and the wavelength by the same factor f (see Fig. 3.5.2)
does not change the dimensionless scattering dyadic and the dimensionless amplitude
scattering matrix.

The scale invariance rule can be very helpful in practice because it makes a single
computation or measurement applicable to all couplets {size, wavelength} having the
same ratio of size to wavelength, provided that the relative refractive index remains
the same. In particular, the scale invariance rule is the basic physical principle of the
so-called microwave analog technique. The latter involves measurements of micro-
wave scattering by easily manufactured centimeter-sized objects followed by ex-
trapolation to other wavelengths (e.g., visible or infrared) by keeping the ratio of size
to wavelength fixed (e.g., Gustafson, 2000 and Section 8.2 of MTL).

The ratios Z(ﬁsca,ﬁi“c)/ a and S(H*?, ﬁi“c)/ a are also scale-invariant quantities.
Indeed, since assuming

kya = constant
yields

k AR /™) = constant
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and
k;S(R*?, i™) = constant,

dividing the latter two equalities by the first equality must also yield constants.

3.6  Electromagnetic power and electromagnetic
energy density

Although the knowledge of the amplitude scattering matrix provides the complete
description of the monochromatic scattering process in the far-field zone, the meas-
urement of the amplitude scattering matrix is a very complex experimental problem
involving the determination of both the amplitude and the phase of the incident and
scattered waves. Measuring the phase is especially difficult, and only a handful of
such experiments have been performed, all using the microwave analog technique
(Gustafson, 2000). The majority of other experiments have dealt with quasi-
monochromatic rather than monochromatic light and involved measurements of de-
rivative quantities having the dimension of energy flux rather than the electric field
itself. It is therefore more convenient to characterize the scattering process using
quantities that are easier to measure and are encountered more often, even though
they may provide a less complete description of the scattering pattern in some cases.
Such quantities will be introduced in this and the following sections.

Consider the standard measurement configuration involving a well-collimated
detector of electromagnetic radiation located at a distance » from the scattering object
in the far-field zone, with its sensitive surface aligned normal to and centered on the
position vector r=rr (see Fig. 3.6.1). The functional definition of a well-collimated
detector suitable for our purposes is that of a sensitive plane surface of an area AS
that registers the energy of monochromatic or quasi-monochromatic light impinging
on any point of AS in directions confined to a small solid angle A2 (called the de-
tector angular aperture) centered at the local normal to the detector surface. We will
assume that the angular size of the sensitive surface of the detector as seen from the
scattering object is smaller than the detector angular aperture:

CRPUNe) 3.6.1)

B
This important inequality ensures that if the detector is centered on the scattering ob-
ject then all radiation scattered by the object in radial directions and impinging on
AS is detected. For well-collimated detectors with a small angular aperture, the con-
dition (3.6.1) usually implies that the distance » from the scattering object to the de-
tector is much greater than the diameter D of the sensitive surface of the detector:

r>>D. (3.6.2)
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Figure 3.6.1. Response of the collimated detector depends on the line of sight

We begin by writing the time-averaged Poynting vector (S(r’,¢)), at any point of
(3.6.3)

the sensitive surface of the detector located in the far-field zone as the sum of three

terms:

(8(r',1)), = +Re{E(r")x[H(r")]"}

= (S™(r, 1)), + (S, 1), + (S, 1),
(3.6.4)

where r’ =7t is the corresponding radius vector,

1 inc ../ inc ./ \7*
7 Re{E™(r") x[H™(r")]'}

(3.6.5)

(S0,
IReAE (1) x [H(r)]'}

and
(&*(’0), =
are the Poynting vectors associated with the incident and the scattered fields, respec-
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tively, and
(S(r 1)), = %Re{Einc(r')x[Hsca(r')]* + Esa(r’) x[H™ ()]} (3.6.6)

can be interpreted as the term caused by interaction between the incident and the
scattered fields.

Let us consider a scattering object illuminated by a plane electromagnetic wave.
Recalling Egs. (2.5.6), (2.5.8), (2.5.17), (3.3.1), and (B.10), we have for the incident
wave in the far-field zone of the scattering particle:

EinC(r’) — mc CXp(lkl Mnc . ')

— 1272’- |:6("mc ) exp( rlklr ) S(Alnc _ ) exp(lklr ):| inc

k,r — kl 0>
(3.6.7)
Eionc . ﬁinc — 0’ (368)

H™ (') = /% exp(ik ™ - ')A x E°
0

127

— k |:6( o 1HC " )

k' — o0 1
— a(ﬁinc _ i;') exp(lfclr ):l 61 '\mc XEmC. (369)
r \ 1o

Equations (2.11.8) and (3.2.16) give for the scattered spherical wave:

exp(— 1k1r )

ES(r) = MES“(”) ES () - = 0, (3.6.10)
r
Hsca(r’) — 61 eXp(lkli"),\, Esca(f.') (3611)
\ 1o v

One can now derive that the total electromagnetic power received by a well-
collimated detector is

Was (F) = J. dS#-(S(r', 1)),
AS

~ A8 L& 1\E5°a(r)|2 (3.6.12)
Hy 1

when # # A'™ (detector 2 in Fig. 3.6.1), whereas for the exact forward-scattering
direction (detector 1),

Wys (") = I dSF - (S(r',1)),
AS
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1%

ASl i|E})“°\2 + J. dSH - [(S%(r, 1)), + (S, 1)),]
2\ Ho AS

1 € inc 1 sca/pinc
AS—W/—I [Eo P+ —Ef (@ )Iz}
2 #0 r

+ 12 J dF A - (S(r, 1)),
o

1 € i 1 sca /4 inc
~ AS—]}—I D 0 + — B (R )|2}
2\ u, r

Q

_27 & Im[E{(R1") - (E¢)*] (3.6.13a)
ki \ Ho
1 € i 2r |e sca (7 inc incy*
= AS S L ERR - 2T S Im{ER ™) - ()]
2 Uy kl Ho
+0(r™), (3.6.13b)

where 2’ = AS/ 2 is the solid angle centered at the direction n™™ and subtended by
the detector surface at the distance r from the particle. Equations (3.6.13a) and
(3.6.13b) are a particular case of the so-called optical theorem.

Note that the presence of the terms proportional to the delta function (™ + F)
on the right-hand sides of Eqgs. (3.6.7) and (3.6.9) seems to indicate that there is inter-
ference of the incident field and the field scattered in the exact backscattering direc-
tion. It is easy to verify, however, that the contribution of the interference term
(8(r’,1)), to the signal measured by a detector facing the exact backscattering di-
rection vanishes upon taking the real part of the signal according to Eq. (3.6.6).

The first term on the right-hand side of Eq. (3.6.13b) is proportional to the detec-
tor area AS and is equal to the electromagnetic power that would be received by de-
tector 1 in the absence of the scattering object (cf. Eq. (2.5.23) with m; =0), whereas
the second term is independent of AS and describes attenuation caused by interpos-
ing the object between the light source and the detector. Thus, the detector centered at
the exact forward-scattering direction measures the power of the incident light attenu-
ated by the interference of the incident and the scattered fields plus a relatively small
contribution from the scattered light, whereas the detector centered at any other di-
rection registers only the scattered light. These are two fundamental features of elec-
tromagnetic scattering by a fixed object.

It is extremely important that in either case the detector reacts to a transverse
electromagnetic wave, be it the scattered spherical wave propagating in a direction
away from n'"™ (detector 2) or the superposition of the incident plane wave and the
scattered spherical wave propagating in the incidence direction (detector 1). We will
see in the following two sections that this allows one to describe the polarization re-
sponse of detectors 1 and 2 using the Stokes vector formalism.
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The formula for the time-averaged electromagnetic energy density of the total
field at a point r follows from Eq. (2.5.27):

U, 1)y, = U™(x, 1)), + U(x, 1)), + (UM, 1), (3.6.14)
where
U™(r,0), = e E™(r) [E™[O)] + poH™(r)-[H"™(r)]}
= 1€ ine|? (3.6.15)
is the component due to the incident field,
U, 1), = e B (1) - [E<(0)]" + o (r) - [H*(1)]'}
_ % (3.6.16)
is that due to the scattered field, and
(U™(r, 1), = FRe{eE™(r) - [E*(0)]" + poH"(r) - [H**(1)]'}

- i”ez‘ SR™ — F) Im[EF (57) - (E1°)’] (3.6.17)
"

is that due to the interference of the incident and the forward-scattered field. The lat-
ter term vanishes everywhere except along the straight line originating at the scatter-
ing object and extending in the incidence direction.

The ratio of minus the second term on the right-hand side of Eq. (3.6.13b) to the
incident energy flux has the dimension of area and is called the extinction cross sec-
tion, C,, (see also Section 3.9). Therefore, Eq. (3.6.13b) can also be written as fol-
lows:

Wys(F=0") ~ (AS — Cm)% /i|E})“°|2 + 0(r7). (3.6.18)
Ho

It is well known that the extinction cross section can exceed the area of the object’s
geometrical projection by a factor of several (e.g., Section 9.1 of MTL). Therefore, it
is necessary to assume that the diameter D of the surface of detector 1 is significantly
greater than any linear dimension of the scattering object:

D> 2a. (3.6.19)

Indeed, this requirement ensures that the signal measured by detector 1 is positive
and, thus, physically meaningful. In general, this requirement does not apply to de-
tector 2 in Fig. 3.6.1.

There is another fundamental reason for imposing the requirement (3.6.19). As we
have already emphasized, the far-field-zone approximation implies the treatment of
the scatterer as a point-like object. This treatment is justified for the derivation of the
above formulas, but becomes too crude when one attempts to describe the interaction
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Figure 3.6.2. (a) The wavelets generated by different elementary volume elements interact

with the incident plane wave along the respective straight lines parallel to A™™. (b) To capture
the interaction of all wavelets generated by different elementary volume elements with the
incident plane wave, the detector surface must be greater than the object’s geometrical shadow.

of the incident plane wave and the scattered field across the sensitive surface of the
detector facing the incident light. To do that properly, we should recall that the actual
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scattered field is a superposition of spherical wavelets generated by elementary vol-
ume elements of the scattering object. It is clear from the previous discussion that
each wavelet interacts with the incident plane wave only along the straight line drawn
through the center of the corresponding volume element and parallel to the incidence
direction A" (Fig. 3.6.2(a)). Therefore, to capture each individual interaction, the
detector surface must exceed the area of the shadow cast by the scatterer onto the
plane normal to ™, Fig. 3.6.2(b).

Another important practical aspect of scattering measurements is that the angular
scattering pattern for a particle comparable to and larger than the wavelength is
known to vary dramatically with scattering direction. This angular variability can be
traced back to the complex exponential factor exp(—ikf-r’) on the right-hand side
of Eq. (3.2.14). Indeed, the electric field contributions from two arbitrary elementary
volumes of the scattering object centered at r’ and r” interfere in the far-field zone,
the result of the interference being controlled by the product

exp(—ik - r")exp(—ikt - r")]" = exp[-ikF - (r' - r")]. (3.6.20)

Obviously, depending on the angle between £ and r'—r” and on |r’ - r”|, this com-
plex exponential can be a rapidly varying function of f. As a result, the angular scat-
tering pattern in the far-field zone can be expected to be a superposition of multiple
maxima and minima generated by different pairs of elementary volume elements of
the scatterer. The most rapidly changing component of the scattering pattern should
be caused by the pairs of elementary volume elements with (r'—r”)Lf and
[r"—r”| =~ 2a. Therefore, the far-field angular pattern can be expected to vary quite
significantly even when the scattering direction changes by as little as 7/(2k,a) (rad)
since this change corresponds to a change of the phase k- (r’—r”) equal to 7. An
example of this strong angular variability can be seen in the upper left panel of Plate
11.13.1, which will be further discussed in Section 11.13.

Consequently, if a detector were to fully resolve this angular variability, the dis-
tance r from the scattering object to the detector must satisfy the following inequality:

Dka
—

r> (3.6.21)
If this requirement is not met, then the detector will record a convolution of the an-
gular scattering pattern with the detector angular aperture. For particles greater than

the wavelength, the condition (3.6.21) becomes much stronger than the condition
(3.6.2).

3.7 Phase matrix

In the thought experiment discussed in the previous section, it was assumed that the
detectors can measure only the total power of electromagnetic radiation impinging on
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their sensitive surfaces in directions within their angular apertures and that they make
no distinction between electromagnetic waves with different states of polarization.
Many detectors of electromagnetic energy are indeed polarization-insensitive. How-
ever, by interposing one or more optical elements such as polarizers and retarders (see
Section 2.10) between the source of light and the scattering object, one can generate
incident light with a specific state of polarization, whereas interposing one or more
optical elements between the object and the detector enables the latter to measure the
power corresponding to a particular polarization component of the scattered light. By
repeating the measurement for a number of different combinations and/or orientations
of the optical elements, one can, in principle, determine the specific prescription for
the transformation of a complete set of polarization characteristics of the incident
light into that of the scattered light provided that both sets of characteristics have the
same dimension of energy flux. This prescription is usually formulated in terms of the
so-called phase and extinction matrices.

As discussed in Section 2.6, convenient complete sets of polarization characteris-
tics having the dimension of monochromatic energy flux are the coherency and
Stokes column vectors. So we will now assume that a measurement device realizing
the situation shown schematically in Fig. 3.6.1 can:

1. Generate incident light with different (but physically realizable) combinations
of coherency or Stokes column vector components.

2. Measure the electromagnetic power associated with any component of the
coherency or the Stokes column vector and equal to the integral of the com-
ponent over the surface AS of the collimated detector aligned normal to the
direction of propagation r. The component itself is then found by dividing
the measured power by AS.

Let us first consider the situation when the scattering direction is away from the
incidence direction (f # ™). According to the discussion of the previous section,
detector 2 in Fig. 3.6.1 registers only the scattered radiation in the form of a trans-
verse outgoing spherical wave. Therefore, one can express the polarization response
of the detector in terms of the coherency column vector of the scattered wave as fol-
lows:

(Signal 2)’ = AS J*?(ri?), A% 2 fine (3.7.1)
where

Egca(’,ﬁsca)[Egca(rﬁsca)]*

ESCﬂ rﬁSCa ESCa rﬁSCa *

Jsca(rﬁsca): l i zca( "SCB)[ qSoCa( "SCa)]>’<
2\ to | EF(ria>)[EF(rie®)]
E;ca(rﬁsca)[E;ca(rﬁsca)]*
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ESCa(ﬁ sca)[Esca (ﬁsca)]*

ESCa(f5ca Esca fse?
1 1 1sia('~sca)[ sca(ﬂsca)] ! (372)
Vﬂo A EG ()]
Ef;a(ﬁm)[EﬁZa(ﬁ“a)]*

Recalling that the coherency column vector of the incident plane wave is given by

lnC (El]’lc

) lnC ElnC
gie = L [€r | Eoo ’ (3.7.3)

2 ﬂo lnc (ElHC

lnC (El]’lc

it is straightforward to derive the following relationship between the coherency col-
umn vectors of the incident and scattered light:

Jsca(rﬁsca) — LzzJ(ﬁsca’ ﬁirw) Jinc’ (374)
r

where the elements of the 4x4 coherency phase matrix Z”/(7** A'™) have the di-
mension of area and are quadratic combinations of the elements of the amplitude

scattering matrix S(A%*?, Al"°):

|S11|2 SIISI*Z S12 Srl |S12|2
SllS;I SllS;2 SIZS;I SIZS;Z

Z' = . . . -t (3.7.5)
SuSi SuSn SnSi S$»Sh
S 8285 SnSsy 1Sy
In the Stokes-vector representation,
Signal 2 = ASP“ (%), A% £ /i (3.7.6)

where the Stokes column vector of the scattered spherical wave is given by

sca (EISCa) + ESCa (EIS(ZB. *

X . 1 1 sca Esca _ Esca Esca
Isca(’,nsca) _ Jsca( sca) _ sca( ]scz sca( o
\/ﬂo - B (Eip) — Ei' (E5")

1 [ESCa (EISCa) sca (ESCB. ]
(3.7.7)

The corresponding scattering transformation now reads:
sca (. sca 1 asca pincy fine
PR’ = — Z(0, ") 1™, (3.7.8)
r

where Z(0*? ™) is the 4x4 Stokes phase matrix, and the Stokes column vector of
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the incident plane wave is given by
Bl (B35 + B85 ()

] ) Einc Einc * Einc Einc *
Ilnc = DJlnc = l i Ofﬂf O?I’IC * O(lpllf O(ﬁ’lc * - (3.7.9)
2 V Mo | —Egg (Eoy)” — Eog (Egg
iLES (ES)" — Els (Eis)']
Explicit formulas for the elements of the Stokes phase matrix in terms of the ampli-

tude scattering matrix elements result from

Z(ﬁsca’ﬁinc) — DzJ(ﬁsca’ﬁiﬂC)D—l (3710)

(cf. Egs. (2.6.5) and (2.6.7)) and are as follows:

Zyy = 5(Sul? + S0l +1Sx* + (S5, (3.7.11)
Zyy = 2080l = 180l + 182 = 1Sxl?), (3.7.12)
Zy3 = —Re(S8)181; + 857), (3.7.13)
Zyy = —Im(S;,S), — S5,55), (3.7.14)
Zy = 2(Sul? + 181 = 182 = Sxl*), (3.7.15)
Zy = 20150 = [Sul = 1Sl* + 1521, (3.7.16)
Zy = —Re(S),51, — $15%), (3.7.17)
Zyy = —Im(S),S5 + S2,55), (3.7.18)
Z3 = —Re(S)155, + S5SDh), (3.7.19)
Z3 = —Re(S1,531 — S»Sih)s (3.7.20)
Z3; = Re(S,,55 + S1285), (3.7.21)
Z3y = Im(S,85, + 55150), (3.7.22)
Zy = —Im(Sy 1) + S»Sh), (3.7.23)
Zyp = —Im(S,,8]) — S2Sh), (3.7.24)
Ziz = Im(Sy,ST) — S1,55), (3.7.25)
Ziu = Re(5287 — S1255). (3.7.26)

Finally, the modified Stokes and circular-polarization phase matrices are given by

ZMS(ﬁsca, ﬁil’lC) — BZ(ﬁsca, ﬁinC)B—l (3727)

and
ZCP(ﬁsca’ﬁinC) — AZ(ﬁ“a,ﬁi“C)A‘l, (3728)

respectively (see Egs. (2.6.9)~(2.6.16)). The elements of the matrices Z and ZM® are
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real-valued. Like the amplitude scattering matrix, the phase matrices explicitly de-
pend on @™ and @*®
the z-axis.

even when the incident and/or scattered light propagates along

The elements of all phase matrices have the dimension of area. It is easy to see
that the dimensionless products of k7 and the phase matrix elements satisfy the scale
invariance rule (see Section 3.5). Another way to create scale-invariant quantities is to
divide the phase matrix elements by a?.

Up until now we have been considering only the scattering of monochromatic
plane waves. However, we already pointed out in Section 2.9 that the formalism
based on the solution of time-harmonic Maxwell equations must also be applicable to
quasi-monochromatic light. Therefore, Eqs. (3.7.4) and (3.7.8) remain valid even
when the incident radiation is a parallel quasi-monochromatic beam provided that the
coherency and Stokes column vectors entering Egs. (3.7.4) and (3.7.8) are averages
taken over a sufficiently long time interval.

In general, all 16 elements of any of the phase matrices introduced above are non-
zero. However, the phase matrix elements of a single particle are expressed in terms
of only seven independent real numbers resulting from the four moduli |S;| (i, j =
1,2) and three differences in phase between the Sj;. Therefore, only seven of the
phase matrix elements are actually independent, and there must be nine unique rela-
tions among the sixteen phase matrix elements. Furthermore, the specific mathemati-
cal structure of the phase matrix can also be used to derive many useful linear and
quadratic inequalities for the phase matrix elements. The most important of these
inequalities are

7,20 (3.7.29)

(this property follows directly from Eq. (3.7.11)) and
1Zjl < Zun () =1,...,4). (3.7.30)

The reader is referred to Hovenier et al. (1986), Cloude and Pottier (1996), and Ho-
venier and van der Mee (1996, 2000) for a review of this subject and a discussion of
how the general properties of the phase matrix can be used for testing the results of
theoretical computations and laboratory measurements.

From Egs. (3.7.11)—(3.7.26) and (3.4.21) we derive the reciprocity relation for the
Stokes phase matrix:

Z(-i", ) = A[Z(R*, 3 ™)]"A,, (3.731)

where

A, =AT = A} = (3.7.32)

o o o —
o o ~ o
L o
- o o o



98 Chapter 3

The reciprocity relations for the other phase matrices can be easily obtained from Egs.
(3.7.10), (3.7.27), and (3.7.28):

Z/ (™, ~) = D Z(-A"™, ~4*")D
= DAL [Z(6%, 7™)]TA;D
= D'A,[DZ’ (7%, 4"™)D'|TA;D
= D'A,[D']"[Z’ (A**, Ai"™)]"D"A,D
= Ay [Z7 (0%, 0")]T A, (3.7.33)
ZMS(_ﬁinc’ _ﬁsca) — BZ(—ﬁinC, _ﬁsca)Bfl
= BA,[Z(H*, 7™)]TA,B"!
= BA,[B'ZM(7**, 4™)B]T A, B!
= BA,BT[ZMA*, 7™)]"[B']TA,B"!
— AMS[ZMS(ﬁsca’ ﬁinC)]T[AMS]—l’ (3734)

ZCP(_ﬁinC’_ﬁsca) — AA3AT[ZCP(ﬁsca’ﬁinC)]T[Afl]T A3A—1

= [ZP (A%, A™)]T, (3.7.35)
where
10
A, = Al = A5l = 0 -1 0 , (3.7.36)
0 0 -10
00 0 1
/2 0 0 0 2 00
A _ (AN _ 0 12 0 0| Ay 0 di
0 0 -10 00 -10
0 0 0 1 0 0 1
(3.7.37)

The backscattering theorem, Eq. (3.4.22), along with Egs. (3.7.11), (3.7.16), (3.7.21),
and (3.7.26), leads to the following general property of the backscattering Stokes
phase matrix (Mishchenko ef al., 2000b):

Zy(—h, R) — Zyp(—0,0) + Z33(—h, 0) — Zy(-n,0) = 0. (3.7.38)

Electromagnetic scattering most typically produces light with polarization char-
acteristics different from those of the incident beam. If the incident beam is unpolar-
ized, i.e., I™ = [7™ 0 0 0], the scattered light generally has at least one nonzero
Stokes parameter other than intensity:
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s = Z”Iinc’ Qsca — Zleincs Use = Z311inc, psea — Z411inc- (3739)

This effect is traditionally called “polarization” and results in scattered light with non-
zero degree of polarization:

\/2221 +ZH + Zs (3.7.40)

Zn

(see Eq. (2.9.20)). Obviously, if the incident light is unpolarized, then the element
Z,, determines the angular distribution of the scattered intensity. When the incident
beam is linearly polarized, i.e., 1" = [I" Q" Ui O]T, the scattered light may
become elliptically polarized (V** # 0). Conversely, when the incident light is cir-
cularly polarized, i.e., "= [I" 0 0 V"]T, the scattered light may become par-
tially linearly polarized (Q** # 0 and/or U** # 0).

A general feature of scattering by a single particle is that if the incident beam is
fully polarized (P" = 1), then the scattered light is also fully polarized. Hovenier et
al. (1986) gave a proof of this property based on the general mathematical structure of
the Stokes phase matrix. Thus, a single particle does not depolarize fully polarized
incident light. However, single scattering by a collection of non-identical nonspheri-
cal particles (including particles of the same kind but with different orientations) can
result in depolarization of incident polarized light, and this is another important prop-
erty of electromagnetic scattering.

3.8 Extinction matrix

Let us now consider the special case of the exact forward-scattering direction (¢ =
n"®). Because now both the incident plane wave and the scattered outgoing spherical
wave propagate in the same direction and are transverse, their superposition is also a
transverse wave propagating in the forward direction. Therefore, we can define the
coherency column vector of the total field for propagation directions r very close to
A" as follows:

Eg(ri)[Ey (rD)]

oy = L[ Ey(ri)E, (r})] GED
2\ o | E,(r¥)[E, (rD)]" -

E,(rt)[E,(rP)]

where the total electric field is given by
E(rt) = E™(rf) + ES(rF). (3.8.2)

Integrating the elements of J(rF) over the surface of the collimated detector aligned
normal to A™ and using Eqs. (3.6.7) and (3.6.10), one can derive for the coherency-
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vector representation of the polarized signal recorded by detector 1 in Fig. 3.6.1:

(Signal 1)’ = I dSJ(ri)
AS
inc Jqiney pinc AS Jaine aincy pince
= ASJ™ - K'(a"™)J"™ + —2Z7 (2™, n")J (3.8.3a)
r
= ASJ™ — K/ (@) J™ + O(2), (3.8.3b)

where Z’(fi™,7A"™) is the forward-scattering coherency phase matrix, O(r™) is a
4x 4 matrix with elements vanishing at infinity as 2, and the elements of the 4x4
coherency extinction matrix K’(@™¢, ¢'™) are expressed in terms of the elements of
the forward-scattering amplitude matrix S(8™, p'™; 8™, ™) as follows:

Sii =S Sia =Sy 0
KJ — 12_” S;I 552 _Sll . 0 _S*IZ (384)
kl _S21 0 Sl] _S22 SIZ
0 =Sy 83 $»n =5,
In the Stokes-vector representation,
Signal1 = J‘ dSI(rr)
AS
— AS'inc _ K(ﬁinC)Iinc + A_fZ(ﬁinc’ ﬁinc)linc (3858)
r
= ASI™ — K@™)I™ + O(r2), (3.8.5b)
where
I(7A™) = DJ(rn™). (3.8.6)
The 4x4 Stokes extinction matrix K(fi™) is given by
K(@™™) = DK’/(h"™)D™". (3.8.7)

The explicit formulas for the elements of this matrix in terms of the elements of the
forward-scattering amplitude matrix S(6™, ¢'™; '™, ¢™°) are as follows:

2 .
ij = k—llm(S11 + S5»), j=L..,4, (3.8.8)
2
Ky =Ky = k—lm(Sn - S»), (3.8.9)
1
2
K13 = K31 = _k_Im(Slz + S21), (3.8.10)

2r
Ky =Ky = k_Re(SZI - Si), (3.8.11)

1
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2r
Ky =-K3 = k_Im(SZI - Si), (3.8.12)
1
2r
Ky =—-Kyp = _k_Re(Slz + 820, (3.8.13)
1
2r
K3y = —Ky3 = k—Re(Szz =S (3.8.14)
1

The elements of the coherency and Stokes extinction matrices have the dimension
of area. The dimensionless products of k7 and the extinction matrix elements as well

as the dimensionless ratios of the extinction matrix elements and a

satisfy the scale
invariance rule (see Section 3.5).

Equations (3.8.3) and (3.8.5) represent the most general form of the optical theo-
rem. They show that the presence of the scattering object changes not only the total
power of the electromagnetic radiation received by the detector facing the incident
wave (detector 1 in Fig. 3.6.1) but also, perhaps, its state of polarization. The latter
phenomenon is called dichroism and results from different attenuation rates for dif-
ferent polarization components of the incident wave. Equations (3.8.3) and (3.8.5)
remain valid if the incident radiation is a parallel quasi-monochromatic beam of light
rather than a plane electromagnetic wave.

By placing detector 1 sufficiently far from the scatterer, one can make the contri-
bution of the third term on the right-hand side of Eqs. (3.8.5a) and (3.8.5b) negligibly
small:

Signal1 = ASI™ — K(@"™)l". (3.8.15)

As a consequence, the extinction matrix becomes a directly observable quantity.

It is clear from Egs. (3.8.8)—(3.8.14) that only seven of the sixteen elements of the
Stokes extinction matrix are independent. It is easy to verify that this is also true of
the coherency extinction matrix. The elements of both matrices explicitly depend on
@™ even when the incident wave propagates along the z-axis.

From Egs. (3.4.21) and (3.8.8)—(3.8.14) we obtain the reciprocity relation for the
Stokes extinction matrix:

K(-a"™) = A;[KH™)]TA,. (3.8.16)
It is also straightforward to derive a related symmetry property:
Kjp(@™)  Kp(™)  —Kp@™) K, (0"
Ky (0™)  Kp(a™)  Kpu(™)  —Kyy (™)
K5 (07) K5 (™) Ky (™) K (™)
Ka(@™)  —Kp(™)  Ka(™)  Ku@™)

K(-A™) = (3.8.17)

Thus, the only effect of reversing the direction of propagation is to change the sign of
four elements of the Stokes extinction matrix.
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The modified Stokes and circular-polarization extinction matrices are given by
KMS(hi™) = BK(h'™)B, (3.8.18)
K@) = AKH™) AL (3.8.19)

Reciprocity relations for the matrices K’(/™), KMS(H™), and KP(A"™) can be
derived from Eq. (3.8.16) by analogy with Eqgs. (3.7.33)—(3.7.35):

K/(—0"™) = Ay[K/(5")]" Ay, (3.8.20)
KMS(_ﬁinC) — AMS[KMS(ﬁinC)]T[AMS]—I’ (3821)
KCP(_ﬁinC) — [KCP(ﬁinC)]T. (3822)

3.9  Extinction, scattering, and absorption cross sections

The knowledge of the total electromagnetic field in the far-field zone also allows us to
calculate such important optical characteristics of the scattering object as the total
scattering, absorption, and extinction cross sections. These optical cross sections are
defined as follows. The product of the scattering cross section C,., and the incident
monochromatic energy flux gives the total monochromatic power removed from the
incident wave resulting solely from scattering of the incident radiation in all direc-
tions. Analogously, the product of the absorption cross section C,,, and the incident
monochromatic energy flux gives the total monochromatic power removed from the
incident wave as a result of absorption of light by the object. Of course, the absorbed
electromagnetic energy does not disappear, but rather is converted into other forms of
energy. Finally, the extinction cross section C,,, is the sum of the scattering and ab-
sorption cross sections and, when multiplied by the incident monochromatic energy
flux, gives the total monochromatic power removed from the incident light due to the
combined effect of scattering and absorption.

To determine the total optical cross sections, we surround the object by an imagi-
nary sphere S of radius  large enough to be in the far-field zone. Since the surround-
ing medium is assumed to be nonabsorbing, the net rate at which the electromagnetic
energy crosses the surface S of the sphere is always nonnegative and is equal to the
power absorbed by the particle:

s = ‘fﬁ dS(S(r,0), - F = —r I dF(S(r.0)), -F (3.9.)
N

4

(see Eq. (2.4.15)). According to Eq. (3.6.3), W can be written as a combination of
three terms:

Wabs — Winc — s 4 Wext’ (392)

where
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rine _ _r2J‘ di (8™ (r, 1)), - T, (3.9.3)
4r
Jrsea rzj dE(S*(r, 1)), - F, (3.94)
¥4
rext — _},ZJ‘ dF(S(r, 1)), - F. (3.9.5)
4r

Wire vanishes identically because the surrounding medium is nonabsorbing and
(8™(r, 1)), is a constant vector independent of r, whereas W*? is the rate at which
the scattered energy crosses the surface S in the outward direction. Therefore, W is
equal to the sum of the energy scattering rate and the energy absorption rate:

Wt = prsea 4 Wabs. (396)

Inserting Egs. (3.6.5)—(3.6.11) in Egs. (3.9.4) and (3.9.5) and recalling the definitions
of the extinction and scattering cross sections, we derive after some algebra

WeXt 4n A ine incy*
Cou = = o IM[E;™ (") - (Eg°)], (3.9.7)
1 € inc12 k1|E0 |
P el | Ot
2\ 1o
., =—" - df B (7). (3.9.8)
inc|2
1 € inc|2 |E0 | 4r
4 [EoY
2\ o

In view of Egs. (3.2.16), (3.3.6), (3.7.7)—(3.7.9), and (3.8.8)—(3.8.11), Egs. (3.9.7) and
(3.9.8) can be rewritten as follows:

1 A~ incy yinc A inc inc A inc inc
Cou = [i—nC[Ku(n ™+ Kp(™)0™ + Ki;(0™)U
+ K, (A, (3.9.9)

2

Cop = — j df I (rf)
4

IIHC

[inc J‘ di‘,.[le(f.’ ﬁlHC)[lnC + Z]Z(f.’ ﬁlﬂC)QlHC
4r
+ Zyy(B, AMU™ + Z,,(F, ")V ], (3.9.10)

The absorption cross section is equal to the difference of the extinction and scat-
tering cross sections:

Cabs = Cexl - Csca 2 0. (3911)

The single-scattering albedo is defined as the ratio of the scattering and extinction
cross sections:
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Csca
Cext

o =

<1. (3.9.12)

Obviously, @ = 1 for nonabsorbing particles.

Equations (3.9.9) and (3.9.10) (and thus Egs. (3.9.11) and (3.9.12)) also hold for
quasi-monochromatic incident light provided that the elements of the Stokes column
vector entering these equations are averages over a time interval long compared with
the period of fluctuations. All cross sections are inherently non-negative real quanti-
ties and have the dimension of area. They depend on the direction, polarization state,
and wavelength of the incident light as well as on the particle size, morphology, rela-
tive refractive index, and orientation with respect to the reference frame. The products
of the cross sections and k7 obey the scale invariance rule.

Equation (3.9.9) is another representation of the optical theorem and, along with
Egs. (3.8.8)—(3.8.11), shows that although extinction is the combined effect of ab-
sorption and scattering in all directions by the object, it is determined only by the am-
plitude scattering matrix in the exact forward direction. This is a direct consequence
of the fact that extinction results from the interference between the incident and scat-
tered light (Eq. (3.6.6)) and the presence of delta-function terms in Egs. (3.6.7) and
(3.6.9).

Equation (3.6.18) shows that the extinction cross section is a well-defined, ob-
servable quantity and can be determined by measuring W,g(A™) without and with
the scattering object interposed between the source of light and the detector. The net
effect of the object is to reduce the detector area by “casting a shadow” of area C,,,.
Of course, this does not mean that C,,, is merely given by the area G of the object’s
geometrical projection on the detector surface. However, this geometrical interpreta-
tion of the extinction cross section illustrates the rationale for introducing the dimen-
sionless efficiency factor for extinction by dividing the extinction cross section by the
geometrical cross section:

Cext

Ot = G

(3.9.13)

As demonstrated in Chapters 9 and 10 of MTL, Q. can be considerably greater or
much less than unity. The efficiency factors for scattering and absorption are defined

analogously:
C Cuw
o = 5 s = — 3.9.14
O G Ou G ( )
It is easy to see that the efficiency factors obey the scale invariance rule.
The quantity
dCy,  I**(ri)r?
do Iinc
1

e [Z,\(R, B") [ + Z,,(F, Ai") Q"
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+ Z]3(f', ﬁinC)Uinc + Zl4(f',ﬁinc)Vinc] (3915)

has the dimension of area and is called the differential scattering cross section. It de-
scribes the angular distribution of the scattered light and specifies the electromagnetic
power scattered into a unit solid angle about a given direction per unit incident inten-
sity.' The differential scattering cross section depends on the polarization state of the
incident light as well as on the incidence and scattering directions. Comparison of
Egs. (3.9.10) and (3.9.15) shows that

Coa = j di 3G (3.9.16)
4r dg

A quantity related to the differential scattering cross section is the phase function
p(£,0™) defined as

4 dCg,

. 3.9.17
Cya dQ ¢ )

p(E, ™) =
The convenience of the phase function is that it is dimensionless and normalized:

L j dip(F, A™) = 1. (3.9.18)
ar 4

The asymmetry parameter (cos®) is defined as the average cosine of the scat-
tering angle @ = arccos(#-A'™) (i.e., the angle between the incidence and scattering

directions):
1 oY A aincy | [ine
(cos@) = — I dr p(f, ")t -n
47[ 4r
= ! J. df'dcﬂﬂﬁinc. (3.9.19)
Csca 4 de

The asymmetry parameter is positive if the particle scatters more light toward the
forward direction (@ = 0), is negative if more light is scattered toward the back-
scattering direction (@ = ), and vanishes if the scattering is symmetric with respect
to the plane perpendicular to the incidence direction. Obviously, (cos®) e [-1,+1].
The limiting values correspond to the phase functions 478(f + A'™) and 478(F —
™), respectively.

3.10 Coherency dyad of the total electric field

We explained in Section 3.6 that in order to characterize the directional flow and spa-

! Note that the symbol dCy, /d£2 should not be interpreted as the derivative of a function of
Q.
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tial distribution of electromagnetic energy that results from a scattering process, one
must calculate the Poynting vector and the energy density of the total electromagnetic
field. This, in turn, requires the knowledge of both the electric and the magnetic com-
ponents of the field. It would be attractive, however, to develop a simplified formal-
ism that would involve the electric field only and would make feasible the solution of
more involved problems such as the development of a unified microphysical theory of
radiative transfer and coherent backscattering (Chapters 8 and 14). Therefore, the aim
of this section is to analyze whether the scattering process can be described ade-
quately in terms of the coherency dyad introduced in Section 2.12.

As in Section 3.6, we begin by representing the coherency dyad of the total field
in the far-field zone as the sum of three components:

p(r) = E(r, 1) ®[E(r,1)]"
_ B 5O 4 ), (3.10.1)
where
p = E™(r,1) ®[E™(r,1)]" = Ef° ® (E°)° (3.10.2)

is the coherency dyad of the incident field,
= sca sca sca #* 1 sca /4, sca L\ 1*
p(r) = E¥(r,t) ®[E*(r,0)]" = r_zEl (r) ®[E;*(r)] (3.10.3)

is the coherency dyad of the scattered field, and the component
p(r) = E™(r,t) ®[E*(r,1)]" + E**(r,¢) @ [E™(r, 1)]"
_i2z
kyr?

{[3(R™ + F)exp(-i2kr) — 8(A™ — F)]EF* ®[E{* ()]

+[-8(A™ + F)exp(i2k,7) + 3(A™ — F)|E{*(F) ® (EF°)*}
(3.10.4)

can be interpreted as the result of interaction of the incident and scattered fields. The
coherency dyad of the incident field yields directly the coherency and Stokes column
vectors of the incident field via

éinc . pinc . 6inc

ge = L e ‘3_ '/"; R (3.10.5)
2 ﬂo (pmc . pmc . Olnc
('I\)inc . pinc . ¢inc

and I'™ = DJ™™. Furthermore, we can rewrite Eq. (3.10.3) in the form

=sca o= A~ inc inc (e ainc incy*
pir) = r—z[A(r,n )-Eg° ] ®[A(r,n™) - E¢*]
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= LA a5 L AT, (3.10.6)
p

where we have used the dyadic identity (A.8). Recalling then that
E%)nc — E(l)"gc ninc + E(l)r(l; ("\)inc
and

() = B (B0 + B9

and using Eqgs. (3.3.6)—(3.3.11) as well as the identity (A.12) and the transversality
conditions (3.3.3) and (3.3.4), we easily recover Egs. (3.7.4) and (3.7.8), in which

ésca . psca(},f.) . ésca

Jsca(rf‘) _ l i éSca .ﬁsCa(rf').(:Psca (3'10.7)
2 ﬂo ("*)sca . ﬁsca(ri;) . esca
('[*’sca . psca(’,f.) . ('I\)sca

and I“(rr) = DJ**(rt). Finally, by integrating the coherency dyad of the total field
over the surface of detector 1 in Fig. 3.6.1 and applying similar algebra, we recover
Egs. (3.8.3) and (3.8.5).

Thus, the use of the coherency dyad to describe the electromagnetic scattering
process appears to be consistent with the main results of Sections 3.7 and 3.8. How-
ever, one encounters a problem when the response of the detector facing the exact
backscattering direction is being considered. When the right-hand side of Eq. (3.10.4)
is integrated over the surface of this detector, the term proportional to S(A!™ + F)
gives a nonzero contribution due to apparent interference of the incident and the
backscattered field. However, in view of the discussion in Section 3.6 this contribu-
tion is unphysical. Indeed, the effect of interference of the incident and backscattered
fields is annihilated by the real filter Re on the right-hand side of Eq. (3.6.6) and by
the fact that the corresponding electric and magnetic contributions to (U/**(r,?)), in
Eq. (3.6.17) cancel each other. It is thus clear that one must exercise caution if the
coherency dyad is used as a basic characteristic of the electromagnetic scattering pro-
cess.

As we pointed out in Section 2.12, one of the main advantages of the formalism
based on the concept of the coherency dyad is that it does not require the electric field
to be transverse. Thus it can potentially be used to:

e Characterize the total field everywhere in space rather than in the far-field
zone only.

e Describe situations in which an object is illuminated by two or more sources
of radiation.

e Analyze electromagnetic scattering by time-variable objects.

Several examples of this versatility will be given in the remainder of this and in the
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following two sections.
Our first step is to include explicitly the time-harmonic factor and rewrite Eq.
(3.1.23) as follows:

Esca(r,t)=j dr'G(r,x’)- | dr’exp(iki™ -¥") T(r',r") - Ei
VINT V[.\JT

xexp(-iwt), re R, (3.10.8)

where it is assumed that the incident field is a plane electromagnetic wave incident in
the direction A'™. Hence, the total field can be expressed as

E(r,1) = T(w,r,i™)-EM exp(-iwr), re R, (3.10.9)
where 7 is a transformation dyadic given by
T(@,r,2"™) = exp(ikp™ -r)]

+ J. dr’'G(r,r’)- dr” exp(ikn™ - r") T(r',x").
Vit

Vint
(3.10.10)
The coherency dyad of the total field now takes the following form:
p(r) = E(r,t) ®E*(r, 1)
= [T (@, r,7™) - Ei*]1® [T (@, r,i"™) - Ei*]*
= T (o, r,2a"™)- p"™ [T (0, r, i)™, re R, (3.10.11)

where p™ is the coherency dyad of the incident field given by Eq. (3.10.2). Equation
(3.10.11) generalizes Egs. (3.10.1)~(3.10.4) and (3.10.6) and shows that the coher-
ency dyad of the total electric field everywhere in space is linearly expressed in the
coherency dyad of the incident electric field.

If the incident light is a parallel quasi-monochromatic beam then

E@r, 1) = T(o,r,A™) - EM() exp(-iot), re R’ (3.10.12)

where the fluctuating amplitude Ei*(¢) changes in time much more slowly than the
time-harmonic factor exp(—iwt). The average of the coherency dyad of the total
electric field over a time interval long compared with the typical period of fluctuation
is now given by

(P(r), = (E(r,t) ®E'(r, 1)),
= (7 (@,r,i"™) - E§* (0] ®[7 (@, r, ") - EF*(1)]"),
= T (o, r,7"™)- (5", -[T (@, r,a"™)]™, (3.10.13)
where

<ﬁinc>t — <EBnC(t) ® [Ebnc(t)]*% (31014)
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Equation (3.10.13) demonstrates that the time average of the coherency dyad of the
total field everywhere in space is linearly expressed in the time average of the coher-
ency dyad of the incident quasi-monochromatic beam.

Comparison of Egs. (3.10.11) and (3.10.13) reinforces the point made previously:
the scattering formalism based on the introduction of actual observables having the
dimension of electromagnetic energy flux applies equally to the situations when the
incident light is a plane electromagnetic wave and when it is a parallel quasi-
monochromatic beam.

3.11 Other types of illumination

Consider now a more complex case of illumination of an object by two monochro-
matic plane electromagnetic waves with angular frequencies @, and @, # @,

A inc

propagation directions A and A¥°, and amplitudes EI* and EIY, respectively.

Note that Al® may or may not coincide with Ai". The total electric field is now the
vector superposition of two partial fields:

E(r,t) = T (@, r,8") - Eif exp(-io) + T (1, 85) - B exp(—im,t),
re R (3.11.1)

Since @, # ®,, the average of the product exp(—im;t)[exp(—im,t)]" over a suffi-
ciently long time interval vanishes:

T>> 27/, —w,|

LT
T I dt’ exp[—i(@, — @w,)t’] = 0. (3.11.2)
t

Therefore, the time average of the coherency dyad of the total field is equal to the
sum of the respective partial coherency dyads:

(P(r), = pi(r) + Pa(r), (3.11.3)
where

pix) = T(w,,r,q™)- pi . [T (w;,r,d"™)™, =12, (3.11.4)

P = B ®(ER), Q=12 (3.11.5)

Equations (3.11.3)—(3.11.5) can be generalized to any number N of incident plane
waves provided that all of them have different angular frequencies:

N
B, =Y. BiD). (3.11.6)
i=1

Equation (3.11.6) has the following practical interpretation. Imagine N scattering
experiments in which a fixed particle is illuminated sequentially by each of N sources
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of monochromatic light. The corresponding illumination directions are given by the
unit vectors 0™, i =1,..., N, and the angular frequencies of all the sources are dif-
ferent. One or several observable characteristics of the total radiation field are meas-
ured by a fixed detector. Now let us imagine that all the light sources are turned on
simultaneously, and the total radiation is measured by the same detector. Then, ac-
cording to Eq. (3.11.6), the reading of the detector will be equal to the sum of the N
readings recorded during the N individual experiments.

The requirement that the angular frequencies of all the N sources of light be dif-
ferent becomes unnecessary if the light is quasi-monochromatic so that the amplitudes

E*(t) fluctuate in time. Indeed, now we have instead of Eq. (3.11.6):

N
BN, = Y B (ERIR)

i=1
where
(1)), = T(@;, r, 8i%) - (pirey, - [T (@, v, )™ (3.11.8)

and (---), denotes an average over a time period long compared with the typical pe-
riod of fluctuation. In deriving Eq. (3.11.7), we have taken into account that the fluc-
tuations of each amplitude E&‘(#) occur randomly and independently of those of all
the other amplitudes so that

(Ege() ® [EF5()]), = 0 (3.11.9)

forany i # j, where, as before, 0 is a zero dyad.

3.12 Variable scatterers

Most scatterers encountered in practice change during the time necessary to take a
measurement rather than remain fixed. However, the results of the two preceding sec-
tions remain valid provided that significant changes of the transformation dyadic re-
quire time intervals that are much longer than the period of time-harmonic oscillations
and/or much longer than the typical period of fluctuation.

Specifically, let us first assume that a scatterer is illuminated by N monochromatic
plane waves with different angular frequencies and arbitrary propagation directions.
Let 7, be the shortest time interval such that

1 t+T,
— dt’exp[-i(w;, - w,)1'] = 0 (3.12.1)
T, J:
for any i # j. Let us also assume that the measurement is taken over a time interval

T,, suchthat 7, < T,,. Then, recalling Egs. (3.11.4)—(3.11.6), we may conclude that
the reading of a detector of electromagnetic energy per unit time will be described by
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the following expression:
1 N t+T,
— &t T (¢, w,,x,2™)- p* [T (¢, o, r,a")]"™, 3.12.2
TmZ;f, ( ) AT ( ) (3.12.2)

in which the transformation dyadic depends on time explicitly. It is clear that Eq.
(3.12.2) represents the sum of the N individual readings of the detector corresponding
to illumination of the object by each monochromatic plane wave separately.

Let us now assume that a scatterer is illuminated by a single quasi-monochromatic
beam and denote by T; the shortest time interval such that averaging the coherency
dyad of the incident field over 7; gives the result indistinguishable from that obtained
by averaging over an infinite time interval:

1 t+T¢ ) 1 t+T ] )
EJ: dr' p (t)zTh_r}LFJ: A’ p(’) = (p™), (3.12.3)

for any ¢. Let us also assume that the typical time during which the transformation
dyadic changes appreciably, T, is such that 7; < T; and that the measurement is
taken over a time interval 7, such that 7; < 7. Then, in view of Eq. (3.10.13), the
reading of the detector of electromagnetic energy per unit time will be described by
the expression

t+T,,
TL J dt’ T, w,x,a™) - (™), - [T (¢, o, r,h")]™ (3.12.4)
m t

Similarly, let us assume that the object is illuminated by N quasi-monochromatic
beams with arbitrary frequencies and propagation directions and that

1 t+T¢ _ _ .
e I de’ Ege () ®[Egs()]" = 0 (3.12.5)
f ot
for any r and any i # j. Then the reading of the detector per unit time is given by
1 N 4T _
— A" T, @, 0, 87) - (p;"), [T (¢, @;, v, 0)]"". (3.12.6)
x|

Again, Eq. (3.12.6) represents the sum of the N individual readings of the detector
corresponding to illumination of the object by each quasi-monochromatic beam sepa-
rately.

The results of this section are quite general and apply to all scattering objects that
change in time not too rapidly. As such, they expand significantly the range of appli-
cability of formulas derived in Chapters 6-8.
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3.13 Thermal emission

If the particle’s absolute temperature 7 is above zero, it can emit as well as scatter and
absorb electromagnetic radiation. The emitted radiation in the far-field zone of the
particle propagates in the radial direction, i.e., along the unit vector ¥ =r/r, where r
is the position vector of the observation point with origin inside the particle. The en-
ergetic and polarization characteristics of the emitted radiation are described by a
four-component emission Stokes column vector K,(F, T, @) defined in such a way
that the net rate at which the emitted energy crosses a surface element AS normal to
r at a distance r from the particle at angular frequencies from @ to @+ Aw is

we = %ASAa)Kel(f', T, o). (3.13.1)
r

The K (F, T, w), the first component of the column vector, can also be interpreted as
the amount of electromagnetic energy emitted by the particle in the direction r per
unit solid angle per unit frequency interval per unit time.

In order to calculate K (r, T, @), let us assume that the particle is placed inside an
opaque cavity of dimensions large compared with the particle and with any wave-
length under consideration (Fig. 3.13.1(a)). If the cavity and the particle are main-
tained at the constant absolute temperature 7, then the equilibrium electromagnetic
radiation inside the cavity is isotropic, homogeneous, and unpolarized (Mandel and
Wolf, 1995). This radiation can be represented as a collection of quasi-
monochromatic, unpolarized, incoherent beams propagating in all directions and
characterized by the Planck blackbody energy distribution 7,(7, ). Specifically, at
any point inside the cavity the amount of radiant energy per unit frequency interval,
confined to a small solid angle A£2 about any direction, which crosses an area AS
normal to this direction in unit time is given by

ha?

aric?| exp o)

where 7 =h/27, h is Planck’s constant, c is the speed of light in a vacuum, and &y is

AQASI(T, ®) = AQAS

(3.13.2)

Boltzmann’s constant.

Consider an imaginary collimated, polarization-sensitive detector of electromag-
netic radiation with surface AS and small solid-angle field of view A2, placed at a
distance r from the particle (Fig. 3.13.1(a)). The dimension of the detector surface is
much greater than any dimension of the particle and 7 is large enough to be in the far-
field zone of the particle but smaller than (AS/A£2)Y2. The latter condition ensures
that all plane wave fronts incident on the detector in directions falling into its solid-
angle field of view AL2 are equally attenuated by the particle (Fig. 3.13.1(b)). The
surface AS is aligned normal to and centered on ¥, where F is the unit vector origi-
nating inside the particle and pointing toward the detector.
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Figure 3.13.1. (a) Cavity, particle, and electromagnetic radiation field in thermal equilibrium.
(b) [llumination geometry.

In the absence of the particle, the polarized signal per unit frequency interval
measured by the detector would be given by

AQASI|(T, ), (3.13.3)
where
I(T, o)
(T, 0) = 8 (3.13.4)
0

is the blackbody Stokes column vector. The particle attenuates the incident blackbody
radiation, emits radiation, and scatters the blackbody radiation coming from all direc-
tions in the direction of the detector. Taking into account that only the radiation
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emitted and scattered by the particle within the solid-angle field of view A2 is de-
tected (Fig. 3.13.1(b)), we conclude that the polarized signal measured by the detector
in the presence of the particle is

AQASI|(T, w) — AQK(E, 0)l,(T, ) + AQK,(F, T, w)

+ AQ j di’ Z(F, ¥, w)l,(T, ) (3.13.5)
4

(see Egs. (3.8.5b) and (3.7.8)). However, in thermal equilibrium the presence of the
particle does not change the distribution of radiation. Therefore, we can equate ex-
pressions (3.13.3) and (3.13.5) and finally derive for the ith component of K,

Kei(i;’ T: CU) = Ib(T’ w)Kil(fr CU)

- I(T, w) j dF Zy(F, ¥ w),  i=1,..,4 (3.13.6)
4

This important relation expresses the emission Stokes column vector in terms of the
leftmost columns of the extinction and phase matrices and the Planck energy distribu-
tion.

Although our derivation assumed that the particle was in thermal equilibrium with
the surrounding radiation field, emissivity is a property of the particle only. There-
fore, Eq. (3.13.6) is valid for any particle, in equilibrium or in nonequilibrium.

3.14 Historical notes and further reading

Important early contributions to the subject of far-field electromagnetic scattering
were made by Silver (1949) and Miiller (1969). Formal mathematical aspects of the
electromagnetic scattering theory, including basic existence and uniqueness theorems,
are discussed in Miiller (1969), Colton and Kress (1998), Doicu ef al. (2000), and
Pike and Sabatier (2001).
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Scattering by a fixed multi-particle group

The formalism described in the preceding section equally applies to a scatterer in the
form of a single body and to a fixed multi-particle group. However, when the scatter-
ing object is a cluster consisting of touching and/or separated distinct components
then it is often convenient to use an alternative formalism in which the total scattered
electric field is explicitly represented as a vector superposition of the partial fields
scattered by the cluster components. This approach is based on the system of integral
so-called Foldy—Lax equations which follow directly from the macroscopic Maxwell
equations and rigorously describe the scattered electric field at any point in space. In
this chapter, we will derive both the exact form of the Foldy—Lax equations and an
approximate far-field version. The latter applies to a group of widely separated parti-
cles and offers significant simplifications essential for a microphysical derivation of
the radiative transfer equation.

41  Vector form of the Foldy-Lax equations

Consider electromagnetic scattering by a fixed group of N finite particles collectively
occupying the interior region

N
Vine = ‘L:JlVia (4.1.1)

where V; is the (bounded) volume occupied by the ith particle (Fig. 4.1.1). As before,
we assume that the particles are imbedded in an infinite, homogeneous, linear, iso-
tropic, and nonabsorbing medium. Repeating the derivation of Section 3.1, we arrive

at a similar volume integral equation describing the electric field everywhere in space:

115
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Figure 4.1.1. Scattering by a fixed group of N finite particles.

E(r) = E™(r) + J‘ dr’'G(r,v’)-E@d)U®X), reR’, (4.1.2)
g{}
where the integration is performed over the entire space, the potential function U(r)
is given by
Y
U(r) = U(r), re®R’, 4.1.3)
i=1
and U,(r) is the ith-particle potential function. The latter is given by
Ui(r) % Tev (4.1.4)
i r) = 1.
ki Imi(r) =11, reV

where

m;(r) = ky(r)/k; (4.1.5)

is the refractive index of particle i relative to that of the host medium. All position
vectors originate at the origin O of an arbitrarily chosen laboratory coordinate system.

We will now show that the solution of Eq. (4.1.2) everywhere in space can be ex-
pressed as

N
E(r) = E™(r) + Z j dr'G(r,r’)- J. dr’T,(,r")-E,(r"), reR’,
i=1 YV Vi
(4.1.6)

where the electric field E;(r) “exciting” particle i is given by

N
E(r) = E™(r) + Y Ef(), (4.1.7)

(=1
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the EZ*(r) are partial exciting fields given by
ES(r) = Idr'é(r, r)- I T, x") E;(r"),  reV (4.1.8)
V/ V/

and T, is the ith-particle dyadic transition operator with respect to the laboratory co-

1

ordinate system and satisfies the following Lippmann—Schwinger equation:
Ti(r, 1) = Ui(n)8(r—x") I + Uy(r) _[ A’ G ") - L% r),  rr'e;
v,
(4.1.9)

We first introduce the ith potential dyadic centered at the origin of the laboratory ref-
erence frame,

U(r,x") = U(r)d(r—r")1, (4.1.10)

and rewrite Eqs. (4.1.2) and (4.1.6)—(4.1.9) in the following operator form:

E = E™ + GUE, (4.1.11)
)
E=E™+Y GTE, (4.1.12)
i=1
N
E, = Ei™ + Z GT.E,, (4.1.13)
Jji=1
T,=U,+U,GT, (4.1.14)
where
>
U=%N0, (4.1.15)
i=1
and
BE = J dr’B(r,r") - E("). (4.1.16)

Note that the ordering of operators in Egs. (4.1.11)—(4.1.14) is important and cannot
be changed at will. Equations (4.1.15) and (4.1.14) yield

UGT,

N
0,61+ Y 0,67

>

N
=1-0+ Y 06T, (4.1.17)

J(#)=1

Let us now evaluate the right-hand side of Eq. (4.1.11). Substituting sequentially Egs.
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(4.1.12), (4.1.17), and (4.1.13) and then again Eq. (4.1.12) gives

N
E™ 4 GUE = E™ + GU| E™ +Z GT.E

i~i

i=1

= g™ +ﬁ GT.E; + GUE™ - GEN: U,E™
i=1 i=1

= E. (4.1.18)

Thus, the substitution of Egs. (4.1.12)—(4.1.14) into the right-hand side of Eq. (4.1.11)
yields the left-hand side, which proves that Egs. (4.1.6)—(4.1.8) indeed give the solu-
tion of the volume integral equation (4.1.2) (Prishivalko et al., 1984).

Equations (4.1.6)—(4.1.8) represent the vector form of the so-called Foldy—Lax
equations (Foldy, 1945; Lax, 1951). They follow directly from the Maxwell equations
and rigorously describe the process of multiple scattering by a fixed group of N parti-
cles. Indeed, Eq. (4.1.6) expresses the total field everywhere in space in terms of the
vector sum of the incident field and the partial fields generated by each particle in
response to the corresponding exciting fields, whereas Eqgs. (4.1.7) and (4.1.8) show
that the field exciting each particle consists of the incident field and the fields gener-
ated by all other particles. Importantly, 7; is the dyadic transition operator of particle

1

i in the absence of all other particles (cf. Egs. (3.1.24) and (4.1.9)).

4.2  Far-field version of the vector Foldy-Lax equations

Although the Foldy—Lax equations can be solved numerically in order to compute the
electric field scattered by a finite cluster consisting of arbitrarily positioned compo-
nents (Tsang et al., 2001), the solution becomes increasingly problematic and eventu-
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ally impracticable with increasing number of cluster components and/or their sizes
relative to the wavelength. To make the problem more manageable, we will often
assume that:

e The particles forming the group are separated widely enough that each of
them is located in the far-field zones of all the other particles.

e The observation point is located in the far-field zone of any particle forming
the group.

These approximations lead to a considerable simplification of the Foldy-Lax equa-
tions and will eventually enable us to derive the RTE.

Indeed, according to Egs. (3.1.23), (3.2.16), and (4.1.8), the contribution of the jth
particle to the field exciting the ith particle in Eq. (4.1.7) can now be represented as a
simple outgoing spherical wave centered at the origin of particle j:

EZ(r) ~ G(r)Ey;(F)) (4.2.1a)
~ exp(—iklliii ‘R)E; exp(iklliij -T), reV. (4.2.1b)
Here,
G(r) = ZpUk). (4.2.2)
r

E; = GR)E;;(R,)), E; R; =0, (4.2.3)

. r; . R;
i =-L, R, =-"1, (4.2.4)

7. R..

J i

3 Ir — Ri|2

r, =[R;+r—-R| ~ R; + R; - (r—R;) + —r (4.2.5)

i

and the vectors r, r;, R;, R;, and R;; are shown in Fig. 4.2.1(a). According to the re-
sults of Section 3.2, Eq. (4.2.1a) is valid provided that any point inside particle 7 is
located in the far-field zone of particle j:

klajz*
k(Ry—a;—a;) >1, R;—a > a, R;—a; > 7

where a; and a; are the radii of the smallest circumscribing spheres of particles i
and j, respectively. Equation (4.2.1b) follows from similar criteria:
kilr =R

> — (4.2.6)

kiR; >1, R;>|r-R| Ry .

Note that we use a lower case bold letter to denote a vector ending at an observation
point, a capital bold letter to denote a vector ending at a particle origin, and a caret
above a vector to denote a unit vector in the corresponding direction.

Obviously, E;; is the partial exciting field at the origin of the ith particle (i.e., at
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(a)

Observation
point

(b)

X

Figure 4.2.1. Scattering by widely separated particles. The local origins O; and O; are
chosen arbitrarily inside particles i and j, respectively.

r = R,) generated by the jth particle. Thus, Egs. (4.1.7) and (4.2.1b) show that each
particle is excited by the external field and the superposition of locally plane waves
with amplitudes exp(—iklflij -R,)E; and propagation directions R;:
E(r) ~ E§*exp(iks -r)
N
+ 2 exp(—ikR; - R)E exp(ikR; 1), reV, (4.2.7)
J#=1

where we have assumed that the external incident field is a plane electromagnetic
wave:

E™(r) = E°exp(ik$ 1),  E§°-8 = 0. (4.2.8)
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According to Eq. (3.3.2), the outgoing spherical wave generated by the jth particle
in response to a plane-wave excitation of the form E{°exp(ik;$ - r;) is given by

G(r)) 4,(F;,8) - EF,

where r; originates at O; and ;l‘,»(fj,‘, §) is the jth particle scattering dyadic centered
at O;. To exploit this fact, we must rewrite Eq. (4.2.7) for particle j with respect to
the jth-particle coordinate system centered at O;, Fig. 4.2.1(a). Taking into account
that r = r; +R; yields

N
E,(r) ~ E™(R,)exp(ik$-r)) + 2 E exp(ikR; r), reV,
1(#j)=1

(4.2.9)

The electric field at O; generated in response to this excitation is simply

N
G(R;)| 4,(R;,8)-E™(R;) + 2 AR, R,)E, | (4.2.10)

I(z)=1

Equating Eq. (4.2.10) with the right-hand side of Eq. (4.2.1b) evaluated for r = R;
finally yields a system of linear algebraic equations for determining the partial excit-
ing fields E;:

N
E; = G(Ri/)A.i(ﬁi/’5)'Einc(Rj) + G(Ry) 2 A_,‘(R;‘ja ﬁjl)'Ejls
1) =1
i,j=1,.,N, j#i (4.2.11)

This system is much simpler than the original system of integral equations (4.1.7)—
(4.1.8) and can be readily solved on a computer provided that N is not too large.

After the system (4.2.11) has been solved, one can find the electric field exciting
each particle and the total field. Indeed, Eq. (4.2.7) gives for a point r” € V;:

N
E,(r") ~ E™(R,)exp(ik§ r7) + 2 E exp(ikR; 1)), eV,
J(Fi)=1

(4.2.12)

(see Fig. 4.2.1(b)), which is a vector superposition of plane waves. Substituting
r/ = 0 in Eq. (4.2.12) gives a simple formula for the exiting field at the origin of
particle i:

N
E,R,) = E™(R,) + Z E,. (4.2.13)
J#i)=1

Finally, substituting Eq. (4.2.12) in Eq. (4.1.6) and recalling the mathematical form of
the far-field response of a particle to a plane-wave excitation, we derive for the total
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electric field:

N
E(r) = E™(r) + " G()4(F.8)-E™(R))

i=1

N N
+ ) 60D Y AE R Ey, (42.14)
i=1

J#)=1

where the observation point r, Fig. 4.2.1(b), is assumed to be in the far-field zone of
any particle forming the group:

k(rp—a)>1, nrn>a, nr>-—"= (4.2.15)

for any i.
Equation (4.2.14) can also be re-written as follows:

N

E(r) = E™(r) +2 E;(r), (4.2.16)

i=1

where

N
E(r) = G(r;)| A(F,8) - E™(R,) + 2 AF, Ry E; | (4.2.17)
Jj#F)=1
These formulas show that the total field at any point located sufficiently far from any
particle in the group is the superposition of the incident plane wave and N spherical
waves generated by the N particles.
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Statistical averaging

Most of our discussion of electromagnetic scattering in Chapters 3 and 4 was based
on the assumption that the position and orientation of the scattering object are fixed.
Although there are practical circumstances in which this assumption is true, more
often than not the scatterer changes its position and orientation randomly during the
time necessary to take a measurement. Moreover, one usually has to deal with a scat-
tering object in the form of a group of many discrete particles randomly rotating and
moving relative to each other. Important examples of such “stochastic” scattering
objects are clouds consisting of water droplets and/or ice crystals and plumes of aero-
sol particles.

At any given moment in time, a cloud can be represented by a fixed static group
of discrete particles. However, any measurement takes a finite amount of time during
which the cloud goes through an infinite succession of varying discrete states. Al-
though the result of the measurement can be modeled numerically by computing the
scattered signal for many different discrete cloud states and then taking the average, a
more efficient approach is to use methods of mathematical statistics and attempt to
derive the average analytically. Specifically, all further discussion in this book will be
based on the following two fundamental premises:

e The scattering object can be adequately characterized at any moment in time
by a finite set of physical parameters.

e The scattering object is sufficiently variable in time and the time interval nec-
essary to take a measurement is sufficiently long that averaging the scattering
signal over this interval is essentially equivalent to averaging the signal over
an appropriate analytical probability distribution of the physical parameters
characterizing the scattering object.

According to the discussion in Section 1.5, the second premise is equivalent to the
ergodic hypothesis and means that averaging over time for one specific realization of

123
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a random scattering process is equivalent to ensemble averaging, Eq. (1.5.3).

The specific aim of this chapter is to introduce the concepts of mathematical sta-
tistics necessary for the following discussion of electromagnetic scattering by a group
of randomly distributed particles. We will also give examples of analytical distribu-
tion functions frequently used to describe statistical characteristics of particles en-
countered in natural and artificial environments.

51  Statistical averages

It is convenient to describe a large group of N arbitrarily oriented and randomly dis-
tributed particles using the probability density function p(R,,&;..;R;,E;5..0
R, &y) defined with respect to a common laboratory coordinate system. The prob-
ability of finding the first particle in the volume element dR; centered at R, and
with its state in the region d&; centered at &, ..., the ith particle in the volume ele-
ment dR; centered at R; and with its state in the region d&; centered at &;, ..., and
the Nth particle in the volume element dR, centered at R, and with its state in the
region d&, centered at & is given by

N
P(R1a§15-~-;RN,§N) I I dRidé:r (5.1.1)
i=1

The state of a particle can collectively indicate its size, refractive index, shape, orien-
tation, etc. Hence,

d&; = d(size of particlei) x d(refractive index of particle i)

x d(shape of particlei) x d(orientation of particlei) X ---. (5.1.2)
The probability density function is normalized to unity:
N
j I I dRIdétp(RlaglasRNS§N) = 13 (513)
i=1

where the integration is performed over the entire range of particle positions and
states. The statistical average of a random function f depending on all N particles is
given by

N
(g = j ] JeRidé /R G Ry £ PR Gk i Ry S0, (5.14)
i=1

If the position and state of each particle are independent of those of all other parti-
cles then

P(Rlaégl;m;RN,fN) = Hpi(Riafi)- (5.1.5)
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This is a good approximation when particles are sparsely distributed so that the finite
size of the particles can be neglected. In this case the effect of size appears only in the
single-particle scattering and absorption characteristics. Obviously,

deid‘fi pi(R;, &) = 1. (5.1.6)
If, furthermore, the state of each particle is independent of its position, then
iR, &) = pri(R)ps(S) (5.1.7)
with
IdR,-pR,-(R,-) =1, (5.1.8)
_[dcfipgi(éi) = 1. (5.1.9)

Equation (5.1.7) allows one to separate the configurational averaging (i.e., averaging
over the particle positions) from the averaging over the particle states.
Finally, assuming that all particles have the same statistical characteristics, we

have
PR, &) = p(R.,&) = pr(R)pe(S), (5.1.10)
PR, &Ry, Ey) = ﬂpR(Ri)pg(é-), (5.1.11)

i<
IdRpR(R) =1, (5.1.12)
_[dcfp;(f) = 1. (5.1.13)

The interpretation of the probability density function pg(R) is simple:

pr(R)dR = probability of finding a particle within volume dR
centered at R

number of particles within dR

total number of particles

R)dR

_ m(R)R (5.1.14)
N

where ny(R) is the local particle number density defined as the number of particles

per unit volume in the vicinity of R. Thus,

Pr(R) = %. (5.1.15)
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5.2  Configurational averaging

In what follows, we will often assume that particles forming a multi-particle group are
confined to a finite bounded volume of space V. Furthermore, we will always assume
that the spatial distribution of the N particles throughout the volume ¥ is statistically
uniform. Then

N .
n(R) =™ = 3 T ReV, (5.2.1)
0 if ReV
and
Pr(R) = if ReV, (52.2)
0 if ReV.

5.3  Averaging over particle states

The computation of averages over the particle states is, in principle, rather straight-
forward. The orientation of a particle with respect to the laboratory coordinate system
can be specified by affixing a Cartesian coordinate system to the particle and speci-
fying the Euler angles &, [, and y that transform the laboratory coordinate system
into the particle coordinate system (see Appendix C). If a multi-particle group con-
sists, for example, of homogeneous ellipsoids with semi-axes a € [dmin, Amax], P €
[Pumins Omax]s and ¢ € [Cpmin» Cmax] and the same refractive index then the ensemble
average of a scattering or absorption characteristic ¢ per particle is given by

27 T 27 . Dinax Cinax
()¢ = j dajdﬁsinﬁj. dyj da.[ dbj de
0 0 0 pin Dinin Crnin
X pe(e, B,y;a,b,0)g(a, B,y;a,b,c), (5.3.1)

where the probability density function pg(a, B,7;a,b,¢) satisfies the following
normalization condition:

2 b 2 Apmax b Crnax
j do J. dpsinf j dy J. da J. db j de pe(e, B,7;a,b,c) = 1.
0 0 0 - b Coin

(5.3.2)

The integrals in Eq. (5.3.1) are usually evaluated numerically by using appropriate
quadrature formulas (see Appendix D). Some theoretical techniques (e.g., the 7-
matrix method described in Chapter 5 of MTL) allow analytical averaging over parti-
cle orientations, thereby bypassing time-consuming numerical integration over the
Euler angles.
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It is often assumed that the shape/size and orientation distributions are statistically
independent. The total probability density function can then be simplified by repre-
senting it as a product of two functions, one of which, p. (e, B,7), describes the dis-
tribution of particle orientations, and the other one, p¢(a,b,c), describes the particle
shape/size distribution:

pf(aa ﬂn Vs a,b,c) = po(aﬂ ﬂa y)ps(asbac)n (533)

each normalized to unity:

2 .4 2
I do J‘ dfsinf I dy po(a, B,y) =1, (5.3.4)
0 0 0
Apmax Do Crnax
J. da I db J. dc py(a,b,c) = 1. (5.3.5)
A pin brin Crnin
As a consequence, the problems of computing shape/size and orientation averages are
separated.

Similarly, it is often convenient to separate averaging over shapes and sizes by
assuming that particle shapes and sizes are statistically independent. For example, the
shape of a spheroidal particle can be specified by its aspect ratio € (ratio of the larg-
est to the smallest axes) along with the designation of either prolate or oblate, whereas
the particle size can be specified by an equivalent-sphere radius . Then the shape/size
probability density function p,(€,7) can be represented as a product

ps(&,r) = p(e)n(r), (5.3.6)

where p(€) describes the distribution of spheroid aspect ratios and n(r) is the distri-
bution of equivalent-sphere radii. Again, both p(¢) and n(r) are normalized to
unity:

r“‘“dg p(e) = 1, (53.7)

£,

J. drn(r) = 1. (5.3.8)

In the absence of external forces such as magnetic, electrostatic, or acrodynamical
forces, all orientations of a nonspherical particle are equiprobable. In this practically im-
portant case of randomly oriented particles, the orientation distribution function is uni-
form with respect to the Euler angles of rotation, and we have

1

po,random(a’ ﬁ’ 7/) = o2 (539)
8w

An external force can make the orientation distribution axially symmetric with the
axis of symmetry given by the direction of the force. In this case it is convenient to
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choose the laboratory reference frame with the z-axis along the external force direc-
tion so that the orientation distribution is uniform with respect to the Euler angles o
and y:

MMMﬁﬂ=%ﬁM) (53.10)
JC

Particular details of the particle shape can also simplify the orientation distribution
function. For example, for rotationally symmetric bodies it is convenient to direct the
z-axis of the particle reference frame along the axis of rotation, in which case the ori-
entation distribution function in the laboratory reference frame becomes independent
of the Euler angle y:

mmﬂw=§%@m. (53.11)
T

Natural size distributions are often approximated using convenient analytical
functions. The analytical size distribution functions used most typically are the fol-
lowing:

e The modified gamma distribution

7
n(r) = constant X r“exp[— ﬂ} (5.3.12)

yrt

e The log normal distribution

4 (lnr—lnrg)2
n(r) = constant X r~ exp| - —————|. (5.3.13)
2ln“o,
e The power law distribution
constant X r>, 5 <r<np,
n(r) = . (5.3.14)
, otherwise.
e The gamma distribution
n(r) = constant x r(1-3)/ exp[— ibj be (0,0.5). (5.3.15)
a
e The modified power law distribution
constant, 0<r<n,
n(r) = qconstant X (r/n)%, R <r<n, (5.3.16)
0, <7

e The modified bimodal log normal distribution
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Inr —Inr,)?
n(r) = constant X r~*Jexp —%
2In“oy,

_ 2
u} . 53.17)

+ VexP|: 21n20'g2
The constant for each size distribution is chosen such that the size distribution satis-
fies the standard normalization of Eq. (5.3.8).

Implicitly, particle radii in the modified gamma, log normal, gamma, and modi-
fied bimodal log normal distributions extend to infinity. However, a finite 7,,, must
be chosen in actual computer calculations. There are two different practical interpre-

tations of a truncated size distribution. The first one assumes that 7, is increased

max
iteratively until the scattering and absorption characteristics of the size distribution
converge within a prescribed numerical accuracy. In this case the converged truncated

size distribution is numerically equivalent to the distribution with 7., =o. In the

ax —
second interpretation, the truncated distribution with a specified r,,, can be consid-
ered as a specific size distribution with scattering and absorption characteristics dis-
tinctly different from those for the distribution with r,,, = c. Similar considerations
apply to the parameter r,;,, whose implicit value for the modified gamma, log nor-
mal, gamma, and modified bimodal log normal distributions is zero, but in practice
can be any number smaller than 7. In what follows, we always adopt the first in-
terpretation of a truncated size distribution.

Two important integral characteristics of a size distribution are the effective radius

e and effective variance v,y defined by

1 Tmax
Togp = —— drn(ryrzr?, 5.3.18
"G Im (r) ( )
v = o | Y=, (53.19)
(G)ry Fanin
where
(G) = I drn(rar? (5.3.20)

is the average area of the geometric projection per particle. The 7. is simply the
projected-area-weighted mean radius, whereas the dimensionless effective variance
provides a measure of the width of the size distribution. Hansen and Travis (1974)
and Mishchenko and Travis (1994a) have shown that different moderately broad size
distributions that have the same values of 7+ and v, can be expected to have simi-
lar dimensionless scattering and absorption characteristics.

Note that for the gamma distribution with 7,;,, =0 and 7,,, =, a and b coincide
with 7 and vy, respectively. For the other size distributions with specific values of
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Figure 5.3.1. Log normal, gamma, and modified power law size distributions with 7,4 =
1.5um and v = 0.1. The power exponent of the modified power law size distribution is
o =-3.

Fmin and 7., the effective radius and effective variance must be determined either
analytically or numerically.

As an example, Fig. 5.3.1 shows three kinds of size distribution with the same
values of the effective radius and the effective variance. It is rather obvious that the
modified power law distribution has an important practical advantage in that its
maximal radius 7,,, is finite by definition and can be significantly smaller than the
corresponding convergent maximal radii for the “equivalent” log normal and gamma
distributions.
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Scattering by a single random particle

The simplest kind of a stochastic scattering object is a single particle that moves, ro-
tates, and perhaps changes its size and/or shape during the measurement. A typical
example is the scattering by a single particle suspended in air or vacuum with one of
the existing levitation techniques (Davis and Schweiger, 2002). The particle position
within the trap volume of the levitator as well as the particle orientation are never
perfectly fixed, and the particle can undergo random or periodic movements and can
spin during the time interval necessary to take a measurement. The particle may also
change its size and shape owing to evaporation, sublimation, condensation, or melt-
ing. The shape of a liquid particle can also change owing to surface oscillations.

The results of Sections 3.2 and 3.6-3.9 are not applicable directly to electromag-
netic scattering by such a “random” particle. However, we will show in this chapter
that under certain assumptions one can still use most of those results in combination
with the statistical averaging concepts introduced in Chapter 5.

The discussion in this chapter is explicitly based on the assumption that the scat-
tering object is illuminated by a plane electromagnetic wave. However, the results can
be generalized easily to cover the more general cases of illumination considered in
Sections 3.10-3.12.

6.1  Scattering in the far-field zone of the trap volume

To model electromagnetic scattering by a random particle trapped in a finite volume,
let us assume that at any moment during the measurement the particle can be any-
where inside a small volume V with radius R, > a, where a is the radius of the
smallest circumscribing sphere of the scatterer (see Fig. 6.1.1). The geometrical cen-
ter of the volume serves as the origin O of the laboratory coordinate system. Let the
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Figure 6.1.1. Scattering by a single random particle.
electric field of the incident plane wave be given by
E™(r) = Efexp(ik,i™ - r), (6.1.1)

where r is the position vector originating at O, and let r’ be the position vector of the
same observation point but originating at the particle origin O” (Fig. 6.1.2). Since

Figure 6.1.2. The origin of the particle reference frame does not coincide with that of the
laboratory reference frame.
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r = r’+ R, where R connects the origin of the laboratory coordinate system with the
particle origin, the incident electric field at the observation point can also be written
as follows:

E™(r) = EMexp(ik,i™ - r’)exp(ik,i™ - R). (6.1.2)

We know that the outgoing spherical wave generated by the particle in response to a

inc inc

plane-wave excitation of the form E{*°exp(ikn
by

-r’) in the far-field zone is given

eXp(iklr,) /Z(l’;, ﬁinC) . E})nc

where ' = r’/r’ is the scattering direction centered at the particle and A(F, i'™) is
the scattering dyadic with respect to the particle reference frame. Therefore, the inci-
dent field (6.1.2) results in the following scattered field:

By = PO ok . RYAE, A7) B (6.1.3)
This formula is valid provided that the following far-field criteria are satisfied (see

Egs. (3.2.17)~(3.2.19)):

k(r'—a) > 1, (6.1.4)

¥ o> a, (6.1.5)
2

S le“ (6.1.6)

Using the law of cosines,

¥? = 71>+ R* - 2r-R, (6.1.7)
we finally obtain

ESCa(r) —

exp(lkli’) ,;i(f', ﬁinc; R) %)nc’ (618)
r

where ¥ = r/r is the scattering direction centered at the origin of the laboratory co-
ordinate system,

A(#, 2" R) = exp(id) A(F, A™™) (6.1.9)

is the scattering dyadic of the particle with respect to the laboratory coordinate sys-
tem,

A = k@™ - F)-R, (6.1.10)
and we have further assumed that

r> R, (6.1.11)
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2
kR <1, (6.1.12)
2r
and
A, ™) ~ A(F, 5™). (6.1.13)

As should have been expected,
A(®, 8" 0) = A(F, 0™). (6.1.14)

Equation (6.1.8) describes a transverse outgoing spherical wave centered at the
origin of the laboratory reference frame. This allows us to proceed in exactly the same
way as we did in Chapter 3. Specifically, exploiting the transverse character of the
wave yields

Esca(r) — %ﬂcllﬂ)s(f.,ﬁinc; R) Bnc, (6115)

where we have used the notation of Eq. (3.3.7), and the amplitude scattering matrix of
the particle with respect to the laboratory coordinate system, S(F, Ai'";R), is ex-
pressed in terms of that with respect to the particle coordinate system, S(F, A'™), as
follows:

S(f, i™; R) = exp(id)S(F, A™). (6.1.16)

Of course, Eq. (6.1.16) implies that the spatial orientations of the two coordinate sys-
tems are the same. As before,

S(£, 1™ 0) = S(F, A™). (6.1.17)

Substituting Eq. (6.1.16) in Egs. (3.7.11)—(3.7.26) and Egs. (3.8.8)—(3.8.14) shows
that irrespective of the particle position within the trap volume, the phase and extinc-
tion matrices of the particle with respect to the laboratory reference frame remain the
same and are equal to those with respect to the particle reference frame:

Z(#,A™; R) = Z(f,A™;0) = Z(f, A™), (6.1.18)
K@™; R) = KH™;0) = K®H™). (6.1.19)

Indeed, the factor exp(id) is common to all elements of the amplitude scattering ma-
trix centered at the origin of the laboratory reference frame and disappears when mul-
tiplied by its complex-conjugate counterpart, whereas the phase A vanishes identi-
cally in the exact forward-scattering direction. It is straightforward to verify that all
the optical cross sections and efficiency factors, the single-scattering albedo, the
phase function, and the asymmetry parameter are also invariant with respect to
changing R.

This important result indicates that to model the cumulative signal measured by a
distant detector over a finite time interval, one may use Egs. (3.7.6), (3.7.8), and
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(3.8.5b), in which r =, is the distance from the origin of the laboratory reference
frame to the detector (Fig. 6.1.1), and the phase and extinction matrices are obtained
by averaging the matrices Z(f, n'™) and K(A™™) over particle states:

(Z(t, A" R))res = (Z(F, ﬁ“‘c))é, (6.1.20)
(K(a'™; R))re = (K(ﬁi“c))g. (6.1.21)

The averaging over particle states incorporates the possible effects of variable particle
orientation, size, and/or shape during the measurement. Thus, a moving particle can
be effectively replaced by a particle fixed at the origin of the laboratory coordinate
system. The latter is still partially random in that it may change its orientation, size,
and/or shape.

Let us now analyze the conditions of applicability of Egs. (6.1.20) and (6.1.21).
First, the very concept of using a detector of electromagnetic radiation implies that the
following criteria, adapted from Egs. (3.6.1), (3.6.19), and (3.6.21), must be satisfied:

AS  zD?

< AQ, 6.1.22
ré 4r§ ( )
D> 2R, (6.1.23)
> 204, (6.1.24)

T

where D is the diameter of the sensitive surface of the detector, AS is its area, and
AL is the detector angular aperture. As in Section 3.6, the criterion (6.1.23) applies
only to the detector facing the incident light. It reflects the fact that the interaction of
the incident plane wave and the scattered spherical wave occurs along the line drawn
through the particle origin in the direction of the unit vector A'™ (Fig. 6.1.3(a)). In
order to capture this interaction irrespective of the particle position within the trap
volume, the sensitive area of the detector centered at O must be sufficiently large to
always contain the geometrical shadow cast by the particle (Fig. 6.1.3(b)):

Particle shadow € AS. (6.1.25)

Second, the inequalities (6.1.4)—(6.1.6), (6.1.11), and (6.1.12) must be valid for
any position of the particle within the volume element V. This yields

ki(rp = Ry) > 1, (6.1.26)
nh—Ry+a>a, (6.1.27)
=Ry +a > klsz , (6.1.28)
> Ry —a, (6.1.29)
b > faRy —a)® (6.1.30)

2
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Figure 6.1.3. The geometrical shadow cast by the particle must be within the sensitive area of
the detector facing the incident light.

It is obvious that if R, > a then the criteria (6.1.29) and (6.1.30) are stronger
than the criteria (6.1.27) and (6.1.28), respectively, so that the latter can be neglected.
Furthermore, comparison with Egs. (3.2.17)—(3.2.19) shows that the criteria (6.1.26),
(6.1.29), and (6.1.30) require the detector to be located in the far-field zone of the
entire trap volume.

Finally, the approximate equality (6.1.13) used to derive Eq. (6.1.8) means that the
angular pattern of light scattering by the particle is assumed to change insignificantly
over the range of scattering directions equal to the angular size of the trap volume as
viewed from the detector. Therefore, it follows from the discussion preceding Eq.
(3.6.21) that the distance r, from the volume element to the detector must obey the
following additional inequality:

2(Ry —a)kja
-

> (6.1.31)

For a particle with size parameter k;a significantly exceeding unity, the condition
(6.1.31) becomes much more restrictive than the condition (6.1.29).

6.2  “Near-field” scattering

The approach described in the preceding section is based on the assumption that the
detector is positioned so far from the origin of the laboratory reference frame O that
for any position of the particle within the volume J the scattered wavefront at the
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detector is indistinguishable from that created by the particle centered at the origin of
the laboratory reference frame. The advantage of this far-field approach is that it al-
lows one to conveniently use the formalism of Chapter 3 without any change by in-
voking the concepts of O-centered phase and extinction matrices. The price that one
has to pay for this simplicity is the condition (6.1.30), which can become very oner-
ous if the radius of the volume element R significantly exceeds the wavelength.
Therefore, it is desirable to develop an alternative “near-field” approach that would
not require the far-field condition (6.1.30).
Let us first rewrite Eq. (6.1.3) in the form

exp(ik;r”)

E*(r) = A(#, 2") - Eife (6.2.1)

where
ok = exp(ika™ - R)EG*. (6.2.2)

It is clear that Eq. (6.2.1) describes far-field scattering with respect to the particle ref-
erence frame. The only difference from the case studied in Chapter 3 is that the origi-
nal amplitude of the electric (and thus the magnetic) field is multiplied by the expo-
nential factor exp(ik;a™™ - R). It is easy to see, however, that this factor has no effect
on the final formulas of Sections 3.6-3.9 because it always gets multiplied by its own
complex conjugate value and thereby disappears.

This is a very important result which shows that one can use the formulas of Sec-
tions 3.6-3.9 without any modification to describe the response of a detector with its
sensitive surface centered at and normal to the position vector r’ for any value of the
particle position vector R (Fig. 6.2.1).

We will now use this result to quantify the response of the original detector with
its sensitive surface AS centered on and normal to the unit vector ¥ originating at O
(Figs. 6.1.1 and 6.2.2). The unit vector t’ originating at O still points towards the
center of the sensitive surface but is not normal to it. As a consequence, the particle
sees an “effective” detector with a “sensitive surface” AS” centered at and normal to
£ such that AS" < AS (Fig. 6.2.2). Let us, however, assume that #* and ¢ are close
enough that the approximate equality (6.1.13) holds and that

AS’ ~ AS. (6.2.3)
Furthermore, we assume that

h & Tp, (6.2.4)

where 7}, is the distance from O’ to the center of the detector sensitive surface. It
then becomes clear from the discussion in Sections 3.3 and 3.6 that if the detector is
not facing the incident wave then its instantaneous response can be accurately de-
scribed by Egs. (3.7.6) and (3.7.8) in which » = r;, and the phase matrix is that with
respect to the particle reference frame.
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RNo

Figure 6.2.1. Scattering with respect to the particle origin.

To describe the response of the O-centered detector normal to the incidence direc-
tion (f = A™) and provide for the possibility of a meaningful measurement of ex-
tinction, we further require that for any location of the particle within the volume
element V, the geometrical shadow cast by the particle be within the sensitive surface
of the detector (Fig. 6.1.3(b) and Eq. (6.1.25)). Then it follows from Sections 3.3 and
3.6 that the instantaneous response of the detector is accurately described by Eq.
(3.8.5b), in which the extinction matrix is that with respect to the particle reference
frame. The corresponding time-averaged detector responses are described by the en-
semble averaged phase and extinction matrices (Z(f, 1'™))s and (K(@™)),, respec-
tively.

This is substantially the same result as that obtained in the preceding section.
However, the conditions of applicability are now somewhat different. Indeed, it is
easy to see that the inequalities (6.1.22)—(6.1.29) and (6.1.31) must still apply, but
they must be supplemented by a new condition reflecting the fact that the observation
point may now be so close to the origin of the laboratory reference frame that the light
scattered by a particle located at the boundary of the trap volume can come to the
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Figure 6.2.2. Scattering with respect to the origin of the laboratory reference frame.

observation point from a direction distinctly different from that originating at O. We
must still require that all the light scattered by this off-centered particle and impinging
on the detector surface be detected, which means that the entire trap volume as
viewed from the detector must be within the detector angular aperture:
(D +Ry -a)’
<

3

AQ. (6.2.5)

On the other hand, the potentially most demanding condition of the far-field ap-
proach, Eq. (6.1.30), is now excluded. This means that the detector is allowed to be in
the near-field zone of the volume element V7, which justifies the title of this section.
The detector must still be sufficiently distant in order to be in the far-field zone of the
particle irrespective of its location within V (see Egs. (6.1.26)—(6.1.28)).

Thus the net difference between the far-field and near-field approaches is that the
conditions (6.1.22) and (6.1.30) are replaced by the condition (6.2.5). The relative
importance of these conditions may vary depending on the specific measurement
situation. Obviously, to apply Egs. (6.1.20) and (6.1.21) one should verify whether:

e The conditions (6.1.23)—(6.1.29) and (6.1.31) are met and

e Either the combination of the inequalities (6.1.22) and (6.1.30) or the ine-
quality (6.2.5) is satisfied.



Chapter 7

Single scattering by a small random particle group

The next problem in order of increasing complexity is electromagnetic scattering by a
sparse group of particles randomly distributed throughout a small element of space.
The concept of single scattering of light by a “differential” volume element has been
central to the phenomenological theory of radiative transfer. With the development of
the microphysical approach to radiative transfer (Chapter 8), the differential volume
element has lost its long-cherished role as an elementary scattering unit in a macro-
scopic medium composed of a very large number of randomly positioned discrete
particles. However, the concept of a small volume element filled with sparsely and
randomly positioned particles remains a useful modeling tool in practical applications
in which:

e The scattering medium is observed from a distance much greater than its
maximal linear dimension.

e The total number of particles in the medium is insufficiently large to cause a
significant multiple-scattering contribution to the total radiation leaving the
medium in all directions.

A prime example of such applications is the analysis and interpretation of laboratory
measurements of light scattering by tenuous collections of natural and artificial small
particles (Section 9.3). Hence, the objective of this chapter is to discuss how one can
model theoretically the response of a polarization-sensitive well-collimated detector
placed at a large distance from a small volume element filled with randomly and
sparsely distributed discrete scatterers (Mishchenko ef al., 2004b).

By analogy with the previous chapter, we will assume that the incident light is a
plane electromagnetic wave. However, the results can be generalized easily to en-
compass the more general cases of illumination considered in Sections 3.10-3.12.

140
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7.1  Single-scattering approximation for a fixed group of
particles

We have seen in Section 4.1 that electromagnetic scattering by an arbitrary fixed
group of N finite particles (Fig. 4.1.1) is rigorously described by the vector form of
the Foldy—Lax equations (4.1.6)—(4.1.8). Let us now assume that the second term on
the right-hand side of Eq. (4.1.7) is small in comparison with the first term (specific
conditions under which this assumption holds will be discussed in Section 7.6). This
means that each particle is excited only by the external incident field, which is the gist
of the single-scattering approximation (SSA) for the fixed N-particle aggregate. We
then have instead of Eq. (4.1.6):

E(r) = E™(r) + E(r), re%®’, (7.1.1)

where the total scattered field is a vector sum of the partial scattered fields:

N
Esca(r) — E?ca(l’), (712)
E*(r) = jdr'é(r, ) _[ dr" T, (e, r") - E™ (), (7.1.3)
v, V;

It is clear that each partial field is independent of the partial fields scattered by all
other particles forming the group (see Eq. (3.1.23)).

Let us choose the origin O of the laboratory coordinate system close to the geo-
metrical center of the group, illuminate the fixed N-particle group by a plane electro-
magnetic wave incident in the direction of the unit vector §,

E™(r) = Ef°exp(ik$-r), E§-§=0, (7.1.4)

assume that the observation point is located in the far-field zone of any particle
forming the group (Fig. 7.1.1), and recall Egs. (3.3.1) and (3.3.2). The latter indicate
that the outgoing spherical wave generated by particle i in response to a plane-wave
excitation of the form Eexp(ik,§ - r;) in the far-field zone of this particle is given
by
SO 1.¢,.8)- i,

where r; originates inside particle i (Fig. 7.1.1), A(F,8) is the ith particle scattering
dyadic centered at the particle origin, and f;, = r;/r; is the unit vector in the scatter-
ing direction. To make use of this fact, we must rewrite Eq. (7.1.4) in the following
form:

E™(r) = EMexp(ik8 - r;)exp(ik,§ - R;), (7.1.5)

where R; connects the origin of the laboratory coordinate system with the origin of
particle i (Fig. 7.1.1). This yields
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Observation
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Figure 7.1.1. Far-field scattering by a group of particles occupying collectively a small
volume element V.

4;(#,8) - Eg°. (7.1.6)

E(r) = expliks - R,) 2R

1

This formula is valid provided that the following inequalities hold for each particle of

the group:
ky(r;—a;) > 1, (7.1.7)
> a; (7.1.8)
2
o> lea (7.1.9)

where a; is the smallest circumscribing sphere of particle i (cf. Eqgs. (3.2.17)—
(3.2.19)).

7.2  Far-field single-scattering approximation for a fixed
particle group

Assuming that the observation point is located so far from the center of the particle
group that » > R; for any i yields

no=[r=Ry
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r r
2
~ r—f‘-R,—+R—". (7.2.1)
2r
Therefore,
) = S0 opia) A 8) B (722)
r
where
A = kK8-1)-R,, (7.2.3)

and it is further assumed that

R2
p s BiRE (7.2.4)
2
and
A(F,8) ~ A(F,8) (7.2.5)

for any i. We can now rewrite Eq. (7.1.2) as

Esca(r) — g(l’;, §) . ionc’ (726)

exp(ik,r)
r
where the scattering dyadic of the entire group is given by
N
A#,8) = 2 exp(id,) A,(F, §). (7.2.7)
i=1
It is clear that Eq. (7.2.6) describes a transverse outgoing spherical wave centered
at 0. Exploiting the transverse character of the wave yields

E(r) = —eXp(:k") S(#.$)-EJ", (7.2.8)

where we have used the notation of Eq. (3.3.7) and expressed the total amplitude ma-
trix of the group S(¥,§) in terms of the partial amplitude matrices S;(f,§) centered
at the respective particle origins as follows:

N
S(#,8) = 2 exp(id,)S,(, §). (7.2.9)
i=1
This formula is based on the assumption that the orientations of the laboratory and
particle-centered reference frames are the same.
The approximate equality (7.2.5) used to derive Eq. (7.2.6) means that the dis-
tance » from the center of the particle group to the observation point must satisfy the
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inequality 7z/(2k,a;) > L/2r (cf. Eq. (6.1.31)), where L is the maximal linear di-
mension of the volume element } occupied collectively by the group; we assume, for
simplicity, that /2 is much greater than any a;. Furthermore, the assumption r >
R; leads to the inequality » > L/2. Thus, our derivation and discussion show that
the criteria of applicability of Egs. (7.2.6)—(7.2.9) can be summarized as follows:

k> 1, (7.2.10)
L

- (7.2.11)
2
k,L?

r> S (7.2.12)

- I S (7.2.13)

7 1

where, as before, A, =27z/k, is the wavelength in the surrounding medium.

Equations (7.2.6)—(7.2.9) imply that the entire particle group behaves like an ef-
fective point-like scatterer generating a unified outgoing spherical wave and charac-
terized by a cumulative scattering dyadic and a cumulative amplitude scattering ma-
trix. It is, therefore, not surprising that the inequalities (7.2.10)—(7.2.12) are essen-
tially equivalent to the criteria (3.2.17)—~(3.2.19) of far-field scattering as applied to
the particle group as a whole. Hence, Eqgs. (7.2.6)~(7.2.9) summarize what can be
called the far-field single-scattering approximation for the multi-particle group.

The critical advantage of the approximate formula (7.2.7) over the exact formula
(3.3.5) is that the former provides a much simpler way to compute the scattering dy-
adic of the multi-particle group provided that the individual scattering dyadics of the
component particles are known. Equation (7.2.9) can then be used to compute all ob-
servable scattering and absorption characteristics of the group introduced in Sections
3.6-3.9.

In particular, since the A; vanish in the exact forward-scattering direction (f =
§), substituting Eq. (7.2.9) in Egs. (3.8.8)—(3.8.14) and Eq. (3.9.9) yields

N
K — ZK"’ (7.2.14)

i=1

N
Coi = Y, Cons (72.15)

i=1

In other words, the extinction matrix and the extinction cross section of the fixed N-
particle group in the framework of the far-field SSA are obtained by adding the re-
spective optical characteristics of all the individual particles forming the group. One
can also substitute Eq. (7.2.9) in Egs. (3.7.11)—(3.7.26) and derive the corresponding
formulas for the elements of the total Stokes phase matrix. However, we will not do
that explicitly but rather will derive, in the following section, a formula for the total
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phase matrix under additional simplifying assumptions.

7.3  Far-field uncorrelated single-scattering
approximation and modified uncorrelated
single-scattering approximation

Let us now make two further assumptions:

e The N particles filling the volume element V' (Fig. 7.1.1) move during the
time necessary to take a measurement in such a way that their positions are
random and uncorrelated with each other.

e  The criteria of validity of Eqgs. (7.2.8) and (7.2.9) are satisfied at each moment
during the measurement.

Collectively, these assumptions define what can be called the far-field uncorrelated
single-scattering approximation (USSA) for a small volume element. Obviously,
these assumptions do not change Eqgs. (7.2.14) and (7.2.15) since the latter are inde-
pendent of the specific particle positions at any moment during the measurement.
Therefore, Eqs. (7.2.14) and (7.2.15) are also the formulas for the time-averaged or,
equivalently, configuration-averaged total extinction matrix and extinction cross sec-
tion of the volume element:

N
Kr = 2 K, (7.3.1)
i=1

N
<Cext>R = Zcext,i' (732)
i=1

Our next step is to substitute Eq. (7.2.9) in Egs. (3.7.11)—(3.7.26) and assume that
the randomness of particle positions during the measurement leads to the following
inequalities:

N N
Re D’ Y [SiFIulS:(F )] (expli(4; — 4D

i=1 i'(zi)=1

N
< |Re z [S.(F, )]u[S:(F, )]y, (7.3.3)

i=1

and,if k= p or [l #gq,

N N
mY D [SiE IS/ )], (expliC4; ~ 49D

i=1 i"(zi)=1
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N
< ImZ[S;(f,ﬁ)]kz[S,-(ﬁ5)]Zq, k.l,p,q=1,2. (7.3.4)

i=1

Equation (7.2.3) suggests that for the left-hand sides of the inequalities (7.3.3) and
(7.3.4) to vanish, the positions of particles i and i’ must change randomly by a few
wavelengths or more, thereby causing the real and imaginary parts of the factor
expli(4; —4;)] to vary randomly between —1 and +1. It is then straightforward to
show that the configuration average of the total phase matrix of the volume element is
also given by the “incoherent” sum of the partial phase matrices:

N
@w = ) 2. (73.5)
i=1

Finally, Egs. (3.9.10), (3.9.11), and (7.2.15) yield the configuration-averaged total
scattering and absorption cross sections of the volume element as sums of the respec-
tive partial optical characteristics:

N
<Csca>R = chca,ia (736)
i=1

N
<Cabs>R = anbs,i' (737)
i=1

Although the presence of the rapidly oscillating complex exponential factors in-
deed causes the left-hand sides of the inequalities (7.3.3) and (7.3.4) to vanish upon
configurational averaging in most cases, it is clear that both inequalities are violated
in the vicinity of the exact forward-scattering direction (f = §), when all the 4,
vanish or become very small (see Eq. (7.2.3)) and all the factors exp[i(4; —A4,)] re-
duce to unity. This means that single scattering by constituent particles in directions
close to the exact forward direction is always coherent or almost coherent irrespective
of specific particle positions and must result in an additional enhancement of intensity
due to constructive interference. Therefore, Eqgs. (7.3.5)—(7.3.7) are not a direct con-
sequence of the USSA, but rather are based on the USSA and the additional assump-
tion that the forward-scattering interference can be neglected. The latter assumption,
along with the USSA, defines the far-field modified uncorrelated single-scattering
approximation (MUSSA) for a small volume element.

Equations (7.2.14), (7.2.15), and (7.3.5)—(7.3.7) are usually adopted without rig-
orous proof and form the basis for treating single scattering by random particle en-
sembles in virtually every book on light scattering and radiative transfer. It is clear
from our detailed derivation that Egs. (7.2.14) and (7.2.15) are a consequence of the
simple far-field SSA as applied to any particle group, either fixed or random, whereas
Egs. (7.3.5)—(7.3.7) are strictly valid only in the framework of the far-field MUSSA.

Spatial coordinates are not the only particle characteristics that can vary with time.
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In principle, the particles may also change their sizes, shapes, and/or orientations. A
traditional approach in such cases is to assume that temporal changes of particle states
are totally uncorrelated with temporal changes of their coordinates (Section 5.1). As a
consequence, one may average the right-hand sides of Egs. (7.2.14), (7.2.15), and
(7.3.5)—(7.3.7) over the varying particle states and obtain the following formulas for
the cumulative ensemble-averaged optical characteristics of the entire volume ele-
ment:

Kire = NKyp)e, (7.3.8)
(Dre = N(Z))e, (7.3.9)
(Coxtre = N(Coxi1)es (7.3.10)
(Coadre = N(Cya)es (7.3.11)
(Caps)re = N(Caps1)e> (7.3.12)

where the angular brackets on the right-hand side denote averages of the respective
single-particle characteristics over the particle states.

74  Forward-scattering interference

To demonstrate the forward-scattering interference effect, Fig. 7.4.1 shows the ele-
ment {F};), of the scattering matrix for a simple two-sphere system in random ori-
entation computed using the exact superposition 7-matrix method (Mishchenko and
Mackowski, 1994). As will be discussed in greater detail in Chapter 11, the orienta-
tion-averaged scattering matrix is defined as

<F(9)>o — <Z(esca — 9’ q)sca — 0’ einc — 0’ (pinc — 0)>0’ (741)

which means that the plane through the incidence and scattering directions is used as
a reference for defining the Stokes parameters of both the incident and the scattered
light. Averaging over the uniform orientation distribution of a two-sphere cluster with
a fixed distance between the components is intended to approximately model the ran-
domness of the component-sphere positions. Also shown are the results for two
equivalent spheres that scatter light in total isolation from each other.

It is clearly seen indeed that the main difference in the curves for two interacting
spheres from those for two non-interacting spheres is the presence of a pronounced
oscillating pattern at forward-scattering angles. To demonstrate unequivocally that the
latter is caused by the interference, we note that, as follows from Egs. (3.7.11)—
(3.7.26), (7.2.3), and (7.2.9), the interference contributions (i # i") to the total phase
matrix of a two-sphere cluster differ from the incoherent contributions (i = i’) in that
each of them includes an additional factor exp[ik,;(§ — 1) (R, —R,)] or exp[—ik,(§
-1)- (R, —R,)],where R, and R, connect the origin of the laboratory coordinate



148 Chapter 7

100

10

<El>o (Hmz)

0.1

100

10

<Fll>0 (“mz)

0.1

0.01

60

120 180

Scattering angle (deg)

Figure 7.4.1. The results of exact 7-matrix computations of the (F};), element of the

scattering matrix versus the scattering angle @ for a two-sphere cluster in random orientation.

The d is the distance between the centers of the component spheres and, for the three cases

studied, increases such that the product k;d grows from 15 to 60. The radius a of each sphere

is 0.5 um, their relative refractive index is 1.5, and the wavelength in the surrounding medium

is 0.6283 um. For comparison, the thick curves show (F},), for two noninteracting spheres of

the same size and relative refractive index.

system with the centers of spheres 1 and 2, respectively. By writing R, - R, = d

=dd, where d is the distance between the component sphere centers and the unit



Single scattering by a small random particle group 149

Figure 7.4.2. Illustration of the equality |§—F| = 2sin(@/2).

100 [ ]
F Single-scattering approximation -
L —— Exact result i
r - - - - Noninteracting spheres 1
NE L .
=3 -7
~—~ 10 — = - —
= r . ~_ ]
N
N
1 | | LN
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Scattering angle (deg)

Figure 7.4.3. The solid curve shows the results of exact 7-matrix computations of the (F};),
element of the scattering matrix versus the scattering angle @ for a two-sphere cluster in
random orientation with k,d =60, a=0.5pm, m=1.5, and A, =0.6283 um. For comparison,
the dotted curve shows the result of using Eq. (7.4.5), whereas the dashed curve depicts the
(F11), for two noninteracting spheres of the same size and relative refractive index.

vector d specifies the cluster orientation, and averaging over all d, we derive

LJ ddexp[ik,d($ —F)-d] = 1 j dd exp[—ik,d(§ — 1) - d]
47 Jux 4 J4

T
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Figure 7.4.4. f(©) versus O for kd =15 and 60.

_sin(kd | - #])

kd|s—1|
= f(9), (7.4.2)
where @ = arccos(r - §) is the scattering angle and
sin[2k,d sin(©/2
f(@) = Sni2kdsind /2] (7.4.3)
2k d sin(©/2)

since |§ — | = 2sin(@/2) as shown in Fig. 7.4.2. Thus, the orientation-averaged total
two-sphere phase and scattering matrices in the single-scattering approximation are
given by

(Z(F,8)), = 2Z,(%,9)[1 + f(O)], (74.4)
(F(@)), = 2RO)[1 +f(O)], (7.4.5)

where Z,(f,8) and F (@) are the single-sphere phase and scattering matrices, re-
spectively.

Figure 7.4.3 demonstrates that for a sufficiently large value of k;d, these simple
formulas provide a nearly perfect fit to the exact 7T-matrix result. The f(©@) has a
sharp and narrow maximum at @ =0 followed by a succession of maxima and
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minima with decreasing frequency and magnitude (see Fig. 7.4.4). The magnitude of
all maxima and minima is inversely proportional to k,d with the exception of the first
interference maximum at @ = 0 whose magnitude is always equal to unity owing to
the well-known limit

sin x
- 1

X x—0

This explains the diminishing effect of the interference with increasing kd and @ at
side- and backscattering angles in Fig. 7.4.1.

7.5 Energy conservation

As we have already mentioned, the presence of the interference pattern at forward-
scattering angles means that Eqs. (7.3.5)—(7.3.7) for the configuration-averaged total
phase matrix and total scattering and absorption cross sections are only approximate
consequences of the far-field USSA. Unfortunately, this also implies that the USSA
violates the energy conservation law. Indeed, energy conservation requires that the
total scattering cross section of the particle collection (C,,)g be equal to the total
extinction cross section (C,)gr if all the constituent particles are nonabsorbing so
that Cy.,; = Ce,; for each i. One can see that Egs. (7.2.15) and (7.3.6) already lead to
(Coea)r = (Cox)r even though Eq. (7.3.6) does not include the contribution of the
forward-scattering interference. Adding this contribution breaks the energy balance
and leads to the unphysical result (Cy,)r # (Cexi )R-

The fact that the MUSSA satisfies the energy conservation law precisely whereas
the presumably more accurate USSA does not seems to be rather strange. The expla-
nation of this paradox is that the USSA includes two-particle electromagnetic interac-
tions in the calculation of the total phase matrix and the total scattering cross section,
but not in the calculation of the total extinction matrix and the total extinction cross
section. It can in fact be shown that energy conservation would be restored if one
were to take into account two-particle interactions in the calculation of (K)p and
(Cexyr by including the contribution of light scattered twice, but this would go be-
yond the framework of the SSA. Therefore, the implicit (and not the best) way in
which energy conservation is restored in the MUSSA is by neglecting artificially the
forward-scattering interference.

7.6 Conditions of validity of the far-field modified
uncorrelated single-scattering approximation

Let us now consider what happens with increasing average distance (d) between
particles in a random group. Figure 7.4.1 shows that increasing the distance between
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two interacting spheres makes the main interference maximum narrower, whereas the
(F}1), values at other scattering angles approach those obtained by doubling the cor-
responding single-sphere values. Also it is seen that the (F,(0)), value for two inter-
acting spheres remains approximately constant with varying distance between the
sphere centers and is close to twice that computed for two non-interacting spheres, as
it should be (the square of the sum of two equal electric fields is equal to twice the
sum of the squares of the fields: |E + E[* = 2([E|* + |E|*)). Thus we can conclude
that the expected consequences of taking the limit k,{(d) — oo are the following:

e The total amount of energy contained in the interference pattern decreases
with increasing interparticle distance and eventually becomes negligible
compared to the total energy scattered by the particles.

e The angular width of the main interference peak becomes so small that the
peak becomes hardly distinguishable from the incident beam.

Therefore, the MUSSA can be expected to give essentially the same results as the
USSA provided that the particles are separated widely enough. This is a welcome
conclusion since the MUSSA is significantly simpler than the USSA.

The first zero of the function f(@) occurs at @ = @, = 2arcsin[z/(2k,d)].
Therefore, to make the amount of energy contained in the interference pattern for a
two-particle system negligibly small, this angle must be much smaller than 7, which
means that k;,d must be much greater than unity. Furthermore, it is well known that at
least half of the energy scattered by large particles (k@ > 1) is contained in the nar-
row diffraction peak and mostly at scattering angles @ < 4/(k,a) (see Section 7.4 of
MTL). Therefore, we must also require that @, < 4/(k,a), which leads to d > a.

Although the forward-scattering interference pattern for a many-particle system
can be significantly more complex than that shown in Figs. 7.4.1 and 7.4.3, it is clear
that the conditions of validity of Egs. (7.3.5)—(7.3.7) imposed by the presence of the
interference pattern should be as follows:

LY (7.6.1)

= > a, i=1,...,N. (7.6.2)

These inequalities reflect the obvious fact that the angular width of the forward-
scattering interference peak generated by a many-particle group is controlled by the
average distance between any two particles from the group rather than that between
two neighboring particles. To ensure that particle positions are uncorrelated during
the measurement (the position of each particle is not affected by the presence of the
other particles), we must also require that the average distance (d,) between neigh-
boring particles be much greater than their sizes:

(dy) > a, i=1,...,N. (7.6.3)
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Figure 7.6.1. The ratio of the total scattering cross section for a two-particle cluster with
identical touching components and in random orientation to the sum of the scattering cross
sections of two noninteracting spheres of the same radius as a function of the sphere size
parameter. The relative refractive index of the spheres is 1.5.

Let us now discuss the conditions of validity of the main assumption of the SSA,
viz., that each particle is excited only by the incident field. First of all, it is obvious
that the total amount of energy scattered by the particles filling a volume element
must be much smaller than the amount of incident energy passing through the vol-
ume-element’s geometrical cross section:

N
Z Coas < 2. (7.6.4)
i=1

Besides this generic constraint, one may look at specific manifestations of close-
proximity effects and how they behave with increasing interparticle separation. For
example, if the line connecting the centers of two particles is nearly parallel to the
incidence direction, then the field scattered by the particle located closer to the source
of illumination can attenuate the incident field when it reaches the other particle. For
particles much larger than the wavelength, this effect can be qualitatively interpreted
as a “shadow” cast by the first particle upon the second particle.

To illustrate this phenomenon, Fig. 7.6.1 shows the results of 7-matrix computa-
tions of the ratio p of the total scattering cross section for a two-particle cluster with
identical touching components and in random orientation to the sum of the scattering
cross sections of two non-interacting spheres as a function of the sphere size parame-
ter x = kja. In the geometrical optics limit, the scattering cross section of a nonab-
sorbing particle is equal to twice the area of the particle projection on the plane per-
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(b) (©)

Figure 7.6.2. Computation of (G, for a randomly oriented cluster consisting of two identical
touching spheres.

pendicular to the incidence direction (see Section 7.4 of MTL). Therefore, in the
limit k,a — oo the ratio p should approach the value (G),/(27ma*), where (G), is
the orientation average of the projected area of the two-sphere cluster. Obviously, p
would be very close to unity if the distance between the sphere centers were much
greater than their radii, but should be significantly smaller than unity for touching
spheres.

Figure 7.6.2 illustrates the computation of {(G), for the case of a randomly ori-
ented two-sphere cluster with identical touching components. As before, the cluster
orientation is specified by the direction of the unit vector d or, equivalently, by its
polar angle 6 and azimuth angle ¢ (Fig. 7.6.2(a)). Let us assume for the sake of
simplicity that the incident light propagates in the direction of the positive z-axis.
Then the area of the bisphere projection onto the xy-plane is independent of the azi-
muth angle, so that

R J dd G(d)
4r 4r

1 2 T
— I de I d@sind G(6)
4 J, 0

(G),

/2
I d0sin6 G(6), (7.6.5)

0

where G(0) is the area of the shape shown in Fig. 7.6.2(b). Obviously, the latter is



Single scattering by a small random particle group 155

1.4
13 —— x=1 7

L x=5 4
12+ ----x=10

Scattering cross section ratio
I

IS
=)
T

~
N
|

I
%

k,d

Figure 7.6.3. The ratio of the scattering cross section of a two-sphere cluster with equal
components and in random orientation to the sum of the scattering cross sections of two
noninteracting spheres of the same radius as a function of k;d. The relative refractive index
of the spheres is 1.5 and their size parameter x =k;a varies from 1 to 10.

equal to 27a® minus twice the common area of the two overlapping circles in Fig.
7.6.2(c), or G(6) = a*(7/2 — 6 — sinfcosh), thereby yielding (G),/(2za’) = 1/2
+ 4/(37m) ~ 0.9244. The actual scattering cross section ratio in Fig. 7.6.1 indeed
tends to this asymptotic value as the size parameter increases, thereby corroborating
the presence and the importance of the shadowing effect.

Of course, the shadowing effect and the forward-scattering interference are not the
only manifestations of the electromagnetic interaction between the particles forming a
group and not the only factors that limit the accuracy of the far-field MUSSA and its
range of applicability in terms of the smallest allowable interparticle separation. Un-
fortunately, it is difficult to perform a detailed theoretical analysis of this problem for
many-particle groups consisting of arbitrary components. We hope, therefore, that
exact numerical results for a few simple cases can provide at least qualitative guid-
ance.

Figure 7.6.3 depicts the ratio of the total scattering cross section of a two-sphere
cluster in random orientation to that of two noninteracting spheres of the same size. It
is clear that in order for this ratio to be sufficiently close to unity, the distance be-
tween the centers of the interacting spheres must be at least several times greater than
the sphere radii. The corresponding asymmetry parameter ratio (Fig. 7.6.4) is much
closer to unity and is essentially independent of kd for the larger spheres with x =5
and 10, but still requires interparticle distances d > a for the spheres with x = 1 in
order to reach the asymptotic value unity.
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Figure 7.6.4. As in Fig. 7.6.3, but for the ratio of the asymmetry parameter of a two-sphere

cluster with equal components and in random orientation to the asymmetry parameter of two
noninteracting spheres of the same radius.

Figures 7.4.1 and 7.6.5 demonstrate how increasing the interparticle separation af-
fects the scattering matrix element (Fj,), and the ratios (Fy),/(Fj;), and
—(Fy), J{F},), for two interacting wavelength-sized spheres with a size parameter
x = 5. The behavior of the ratio (Fy,),/(F), is especially revealing since it must
be identically equal to unity for noninteracting spheres. Obviously, this asymptotic
regime is approximately reached when the distance between the sphere centers ex-
ceeds several times their radii. We have seen before that no distance between the in-
teracting spheres can eliminate the forward-scattering interference pattern (Fig. 7.4.1).
However, this pattern becomes very narrow when d exceeds several times the sphere
radii (or several times the wavelength for subwavelength-sized particles) and eventu-
ally becomes indistinguishable from the incident light. Although the data depicted in
Figs. 7.4.1 and 7.6.3-7.6.5 were computed for two-sphere clusters with equal compo-
nents, analogous 7-matrix results for bispheres with different components (not shown
here) exhibit the same basic features and lead to the same conclusions.

Our final note concerns the relative importance of the far-field-zone criteria
(3.2.19) and (7.2.12) for a single component particle and for the entire particle group,
respectively. For a single particle with a size parameter k@ = 10 the inequality
(3.2.19) implies that the far-field zone begins at a distance from the particle much
greater than five particle radii, which is not much stricter than the inequality (3.2.18).
However, for a volume element with a size parameter k,L/2 = 10* the inequality
(7.2.12) yields » > 0.25x10*L, which moves the far-field zone much farther from
the volume element than the inequalities (7.2.10) and (7.2.11) would require. This
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Figure 7.6.5. As in Fig. 7.4.1, but for the ratios (Fy),/(Fi1)o and —(Fy)o /{F}})o-

implies that if one wants to apply the MUSSA to a volume element with L =2 mm
assuming a source of illumination with a wavelength of 0.6283 um (thereby yielding
kiL/2 = 10%), then the observation point must be moved from the volume element
by many meters. However, the following section will demonstrate that in many cir-
cumstances, one can theoretically model the response of a detector located at a dis-
tance much greater than the volume element size but perhaps not as far as the ine-
quality Eq. (7.2.12) would necessitate.
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7.7  First-order-scattering approximation

In this section we will take another look at single scattering of light by a small volume
element by assuming that detectors of the scattered light are located sufficiently far
from the volume element that the inequalities (7.1.9), (7.2.10), (7.2.11), and (7.2.13)
are satisfied, whereas the condition (7.2.12) will not be enforced. As a consequence,
the volume element can no longer be considered at each moment in time as an effec-
tive point-like scatterer and characterized by a cumulative amplitude scattering ma-
trix. Instead, it must be explicitly treated as a macroscopic random cloud of particles.
The alternative approach described below will be based on the concept of the coher-
ency dyad outlined in Section 3.10.

As before, we start with the SSA equations (7.1.1), (7.1.2), and (7.1.6). We then
define the coherency dyad of the total electric field at the observation point as

p(r) = E(r) ®[E(r)]

N
= E™() ®[E™(N)] + E™()® Y [EF ()]

i=1

N N N

+ Y EROBE™E] + Y EFOO Y [EF)
i=1 i=1 J(#i) =1
N

n 2 EX(r) ® [EX(r)]* (7.7.1)

i=1

and assume that during the time necessary to take a measurement, the positions of all
particles inside the volume V are totally random (Section 5.2). The latter assumption
implies that the average distance between neighboring particles is much greater than
the particle sizes, Eq. (7.6.3). Thus, the configuration-averaged coherency dyad is
given by

N
(Br)r = E™(r) ®E™[)] + E™(r)® )" (EX*(0)]')x
i=1

N
+ Y (EFE)R O [E™(r)]

i=1

N N
+ 2 (B (r)r ® (EF* ()] )r

i=1 J(#i)=1
N

+ Y (EFEOQEFO] ), (7.7.2)
i=1

where the configuration averaging is performed assuming the probability distribution
function (5.2.2). The first term on the right-hand side of this formula is the coherency
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dyad of the incident field, the second and third terms describe the interference of the
incident and scattered fields, the fourth term describes the interference of the partial
fields singly scattered by different particles, and the fifth term is the sum of the coher-
ency dyads of the partial scattered fields.

Averaging the interference terms over particle positions involves the evaluation of
the integrals

(Ei*(r)w j dR; pr(R)) E;*(r)
gil

A(F,8)-E (7.7.3)

. ikr;
j 0R, pr(R,Yexpliks-R) SEUA7)
R i
(cf. Eq. (7.1.6)), which give the average partial scattered fields at the observation
point. It is convenient to perform the integration in the spherical coordinate system
originating at the observation point (Fig. 7.7.1(a)). Taking into account that R; = r
+ R/, where the vector R’ connects the observation point and particle i, and using the
Saxon asymptotic expression (B.10), we obtain
s 127 A7 - ’ ~ 57 ~ 57 . ’
(B (r)r = - I dR; I dR; [5(8 + R;) — (8 — R;)exp(2ik, R;)]
1 4 0

XPR(Ri)gi(_li;a §)- Emc(r)- (7.7.4)

This formula shows that each average partial scattered field is contributed to only by
those points of the volume element that belong to the segment As(r) of the infinite
straight line through the observation point and the source of illumination (Figs.
7.7.1(a) and 7.7.1(b)). Hence the following three situations must be considered: the
observation point can either be behind the scattering volume as viewed from the
source of illumination (e.g., point 1 in Fig. 7.7.1(b)), or between the source of illumi-
nation and the scattering volume (e.g., point 2), or lie on a line which is parallel to the
incidence direction and does not go through the scattering volume (e.g., point 3).

It is obvious that (E{*(r;))r at point 3 is equal to zero and that the average field
at point 1 is given by

127 “ Ay i
(E*(r))r = kl_VAs(r])Ai(s’ §) - E™(r)). (7.1.5)

The radial integral for point 2 contains a rapidly oscillating factor exp(2ik,R;), which
makes (E*(r,))g much smaller than (Ei®(r)))r provided that kAs(r,) > 1. The
latter condition is equivalent to the inequality (7.6.1). More fundamentally, the pres-
ence of the delta function 8(§ — R/) implies the existence of the interference of the
incident and backscattered fields, which is unphysical (recall the warning issued on p.
107). Thus we can conclude that (Ei(r))g is given by Eq. (7.7.5) if the observation
point is “shadowed” by the volume element and vanishes otherwise.

It is clear from Eqgs. (7.7.5) and (3.3.3) that the average partial field created by
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Figure 7.7.1. First-order scattering by a small volume element.

particle 7 at a “shadowed” distant observation point is a transverse plane wave propa-
gating in the direction of the incident plane wave. Therefore, the second and third
terms on the right-hand side of Eq. (7.7.2) describe the interference of pairs of trans-
verse plane waves propagating in the same direction.

It follows from Egs. (3.3.8)—(3.3.11), (3.8.8)—(3.8.14), and (3.9.9) that the factor

N
2w -
—As(r Aié,g
o (1>§=1 3.9)

is of the same order of magnitude as the sum of the extinction cross sections of all the
particles filling the volume element divided by the volume element’s geometrical
cross section:
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N

)
— Coxti-
2 ext,i

L i=1

Assuming that this ratio is much smaller than unity,
N
Y Cour < I, (7.7.6)
i=1

we can neglect the fourth term on the right-hand side of Eq. (7.7.2) in comparison
with the second and third terms.

Integrating the last term on the right-hand side of Eq. (7.7.2) over all particle po-
sitions and recalling the inequalities (7.2.11) and (7.2.13) yields

N

%2 [4,(F,8)- Ef°] ® [4(F.8) - Ej°T
i=1
1 N

_ T(a &), 3inc 4 s a\T*

- r—ZZA[(r,s)-p 4R, 9],

i=1
where p™ is the coherency dyad of the incident field. This is simply an “incoherent”
sum of partial coherency dyads at the observation point, each partial dyad being due
to a transverse spherical wave propagating in the same direction given by the unit
vector F.

We can now make use of the transverse character of the plane and spherical waves
involved in the first, second, third, and fifth terms on the right-hand side of Eq. (7.7.2)
and rewrite this equation in terms of the Stokes vector using Eq. (2.12.3). After tedi-
ous but simple manipulations, we derive

As(r) 1 -«
I(r) = I - —~ K@)l + = Z.8,8)l™ 7.7.7
(r) v Ezl ®) p gl (8.8 (7.7.7)
if the observation point is shadowed by the volume element and
1 N
Ir) = — Y Z,(¢ 8§l 7.7.8
(r)=— g] (F,$) (7.7.8)

otherwise. We will refer to the totality of approximations made in the derivation of
Egs. (7.7.7) and (7.7.8) as the first-order-scattering approximation (FOSA).

Let us now consider the measurement situation shown schematically in Fig.
7.7.1(c). The integration of Egs. (7.7.7) and (7.7.8) over the acceptance area of the
detectors shows that the polarized signal measured by detector 1 per unit time is given

by

N N
. . AS .
Signal1 = ASI™ — z K@)I™ + = z Z,3,8)I, (7.7.9)
i=1 r i=1
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whereas that measured by detector 2 per unit time is given by
AS
Signal2 = — ) Z,(q,8)I™. 7.7.10
g > Z @9) (7.7.10)

By choosing r to be sufficiently large, one can minimize the third term on the right-
hand side of Eq. (7.7.19) relative to the second term. As a consequence, the response
of detector 1 becomes

N
Signal1 = ASI™ - Z K, §)I™. (7.7.11)
i=1
Equations (7.7.10) and (7.7.11) represent the main result of the FOSA. Compari-
son with Egs. (3.7.6), (3.7.8), (3.8.5b), (7.2.14), and (7.3.5) shows that the FOSA pre-
dicts essentially the same electromagnetic response of the distant detectors as the far-
field MUSSA but without requiring that the detectors be placed as far from the vol-
ume element as to satisfy the inequality (7.2.12). However, since the volume element
is now treated explicitly as a macroscopic object subtending a nonzero solid angle
when viewed from the observation point, we must require that it be fully within the
detector angular aperture AL2. This implies that the distance » must be large enough
to satisfy the inequality
L2
— < AQ. (7.7.12)

V2

This condition can be rather onerous in the case of a well-collimated detector. Like
the MUSSA, the FOSA is based on ignoring the interference of light singly scattered
by different particles in the forward direction (i.e., the fourth term on the right-hand
side of Eq. (7.7.2)) and, as a consequence, satisfies the energy conservation law.

Assuming, as before, that the temporal changes of the particle states are uncorre-
lated with temporal changes of their coordinates, we obtain

Signal1 = ASI™ — N(K,(§)): 1™ + A—fN<Z(§, 8)) 1™
r

= ASI™ — N(K,($)) 1™, (7.7.13)

Signal 2 = A—fzwzl(q, ) eI, (7.7.14)
r

where the angular brackets denote averages of the single-particle extinction and phase
matrices over the particle states. Again, this is the same result as that predicted by the
far-field MUSSA (cf. Egs. (7.3.8) and (7.3.9)). It is also straightforward to verify that
all formulas of this section remain unchanged if the volume element is illuminated by
a parallel quasi-monochromatic beam rather than a plane electromagnetic wave.
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7.8 Discussion

The traditional way to define the Stokes parameters applies only to transverse elec-
tromagnetic waves such as plane and spherical waves. It was, therefore, logical to
start the analysis of single scattering by a small volume element using the far-field
SSA, which treats the volume element at each moment in time as a unified scatterer
generating a single outgoing spherical wave and makes possible the introduction of
the cumulative amplitude scattering matrix.

An important result of our analysis of the far-field SSA applied to a random group
of particles is that one must distinguish between the simple USSA and the MUSSA.
The MUSSA satisfies the energy conservation law, is widely used in practice, and is a
cornerstone of the phenomenological theory of radiative transfer. However, one
should be aware of the fact that the MUSSA goes beyond the USSA by neglecting the
interference of light scattered by various particles in the vicinity of the exact forward
direction and thus may be inapplicable in circumstances involving precise computa-
tions or measurements at scattering angles approaching zero (e.g., Ivanov et al.,
1970). Otherwise, the MUSSA can be expected to give satisfactory results provided
that the following conditions are met:

e The observation point is located far enough to satisfy the inequalities
(7.2.10)—(7.2.13).

The inequalities (7.6.1) and (7.6.2) are satisfied.

e Particle positions are uncorrelated, Eq. (7.6.3), and change by approximately
a few wavelengths or more during the time interval necessary to take a meas-
urement.

e The geometrical cross section of the volume element is much greater than its
total scattering cross section, the inequality (7.6.4).

e The following inequalities analogous to the inequalities (6.1.22)—(6.1.24) are

satisfied:

AS

=< AQ, (7.8.1)
D> L, (7.8.2)
r s Dha (7.8.3)

T

where, as before, D is the diameter of the sensitive surface of the detector,
AS is its area, and AL2 is the detector angular aperture. As in Sections 3.6
and 6.1, the inequality (7.8.2) applies only to the detector facing the incident
light. The inequality (7.8.3) must be valid for each particle of the group.

Since for large nonabsorbing particles the scattering cross section is approxi-
mately equal to twice the area of the particle geometrical cross section (e.g., Section
7.4 of MTL), the inequality (7.6.4) can be rewritten in the form
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L > (a)J27N. (7.8.4)

If the distance from the center of the volume element to the observation point does
not satisfy the inequality (7.2.12), then the total field scattered by the volume element
at a moment in time cannot be approximated by a single spherical wave. In this case,
it is impossible to define the amplitude scattering matrix of the volume element as a
whole, and a different approximate way to model the response of a detector measur-
ing electromagnetic scattering by the small volume element is called for. One such
approach is to apply the FOSA, which is based on the following assumptions:

e The observation point is located far enough to satisfy the inequalities (7.1.9),
(7.2.10), (7.2.11), and (7.2.13).

e Particle positions within the volume element are completely random during
the time interval necessary to take a measurement, Eqs. (5.2.2) and (7.6.3).

e The geometrical cross section of the volume element is much greater than its
total scattering cross section, the inequality (7.6.4).

e The sum of the extinction cross sections of the particles filling the volume
element is much smaller than the volume element geometrical cross section,
Eq. (7.7.6). For particles larger than the wavelength, this assumption is
roughly equivalent to the inequality (7.6.4).

e The inequalities (7.7.12) and (7.8.1)—(7.8.3) are satisfied.

We have demonstrated that if these conditions are met, then the FOSA leads to essen-
tially the same result as the far-field MUSSA in terms of the response of a distant
polarization-sensitive detector.

In summary, the far-field MUSSA and the FOSA can be viewed as alternative
ways to model electromagnetic scattering by a small volume element filled with ran-
domly distributed particles. The far-field MUSSA treats the entire volume element at
each moment in time as an effective point-like scatterer, whereas the FOSA explicitly
considers the volume element as a macroscopic random cloud of particles. However,
both approximations give substantially the same result in terms of the polarization
response of a sufficiently distant detector. This allows one to use Egs. (7.7.10) and
(7.7.11) whenever a specific scattering situation satisfies the conditions of applicabil-
ity of either approximation.
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Radiative transfer equation

The radiative transfer theory originated more than a century ago in the papers by
Lommel (1887) and Chwolson (1889). Since then analytical studies of the radiative
transfer equation have become an independent discipline of mathematical physics and
have resulted in numerous new techniques for solving integral and integro-differential
equations. The RTE has also found remarkably diverse applications in a variety of
science and engineering disciplines dealing with multiple scattering of light by ran-
domly and sparsely distributed discrete particles. However, the usual way to introduce
the RTE has been based on deceptively simple principles of phenomenological radi-
ometry. This has led to the widespread ignorance of the fact that the real derivation of
the RTE and the clarification of the physical meaning of all participating quantities
must be based on fundamental principles of classical electromagnetics as applied to
discrete random media.

During the past three decades, there has been significant progress in re-
consideration of the RTT in terms of the statistical wave formalism (e.g., Barabanen-
kov, 1975; Ishimaru, 1978; Apresyan and Kravtsov, 1996; Tsang and Kong, 2001).
This research has ultimately led to the RTE becoming a corollary of the electromag-
netic theory (Mishchenko, 2002, 2003). Hence the aim of this chapter is to provide a
detailed and systematic microphysical derivation of the RTE from first principles.

Our point of departure is the far-field version of the vector Foldy—Lax equations
for a fixed N-particle system which allows one to represent the total electric field at
an observation point as a superposition of the incident plane wave and N spherical
waves centered at the particles. We will then assume that particle positions are com-
pletely random and will apply the so-called Twersky and ladder approximations to the
average coherency dyad of the total electric field in the limit N — oo. Separate sec-
tions will provide a summary of approximations necessary to derive the RTE, a dis-
cussion of the physical meaning of all participating quantities, and a detailed com-
parison of the microphysical and phenomenological approaches to radiative transfer.

165
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Figure 8.1.1. Electromagnetic scattering by a large number of discrete particles sparsely
distributed throughout a macroscopic volume V.

81  The Twersky approximation

Let us consider electromagnetic scattering by a large group of particles imbedded in
an infinite, homogeneous, isotropic, and nonabsorbing medium. The particles are
sparsely distributed throughout a macroscopic volume V' and are illuminated by a
plane electromagnetic wave propagating in the direction of the unit vector §, Eq.
(4.2.8) (see Fig. 8.1.1). We will assume that:

e The particles are separated widely enough that each of them is located in the
far-field zones of all the other particles.
e The observation point is also located in the far-field zones of all the particles.

These assumptions make applicable the far-field version of the vector Foldy—Lax
equations, Section 4.2,
Let us first rewrite Egs. (4.2.14) and (4.2.11) in a compact symbolic form:

= E™ 4+ 23”0 E™ + 22 e (8.1.1)

i=1 j(#i)=1

ij th Emc 2 Bl/l (812)

I(#)=1
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where N is the total number of the particles,

E = E(r), (8.1.3)
E™ = E™(r), (8.1.4)
" = E™(R)), (8.1.5)
By = G(r) A%, 9), (8.1.6)
By = G(r) 4(F, Ry), (8.1.7)
Ego = G(R) 4,(R;, ), (8.1.8)
= G(R)4,(R;, R ). (8.1.9)

The notation on the right-hand sides of Eqgs. (8.1.5)—(8.1.9) follows that introduced in
Section 4.2. Iterating Eq. (8.1.2) yields

N
Elj = BUO ElllC Z B[jl le() Emc E § BU] lem B[m() Em(,
1=1 I=1 m=1
I#] 1#j m#l
N N N
+ E ' E E z/l /lm “Biyun * Buno - Elnnc + -, (8110)
=1 m=1n=
¢ m#l n ¢

whereas substituting Eq. (8.1.10) in Eq. (8.1.1) gives an order-of-scattering expansion
of the total electric field:

N N N
E=E"+S B, E™+ ZZBW Byo - EM™
i=1 i=1 j=1
J#i
N N N
533 RN

i=1 j=1 I=1
J#EI 1#]
N N N

22223 By By Bo Ejif + - (8.1.11)
i

(cf. Twersky, 1964). Indeed, the first term on the right-hand side of Eq. (8.1.11) is
the incident field, the second term is the sum of all single-scattering contributions, the
third term is the sum of all double-scattering contributions, etc., as shown schemati-
cally in Fig. 8.1.2.

The terms with j=i and /= in the triple summation on the right-hand side of
Eq. (8.1.11) are excluded, but the terms with /=i are not. Therefore, we can decom-
pose this summation as follows:
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Figure 8.1.2. (a) Incident field, (b) single scattering, (c) double scattering, (d) triple scattering
through a self-avoiding path, and (e) triple scattering through a path that goes through particle i
twice.
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MR » )R
j;:tt

MMZ

i=1 i=1 j=1 I=1
VEIRE]
l1#j

ZZB,U i Blo-EM. (8.1.12)

111=

‘M

The triple summation on the right-hand side of Eq. (8.1.12) is illustrated in Fig.
8.1.2(d) and includes scattering paths going through a particle only once (so-called
self-avoiding paths), whereas the double summation involves the paths that go
through the same particle more than once, as shown schematically in Fig. 8.1.2(e).
Higher-order summations in Eq. (8.1.11) can be decomposed similarly.

Hence, the total field at an observation point r is composed of the incident field
and single- and multiple-scattering contributions that can be divided into two groups.
The first one includes all the terms that correspond to self-avoiding scattering paths,
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Figure 8.1.3. (a) Self-avoiding scattering paths and (b)—(e) paths involving four scattering
events and going through a particle more than once.

Fig. 8.1.3(a), whereas the second group includes all the terms corresponding to the
paths that go through a scatterer more than once, Fig. 8.1.3(b)-8.1.3(¢e).

The so-called Twersky approximation neglects the terms belonging to the second
group and retains only the terms from the first group:

N N
E~E™+ % By B+ N By By B

i=1 i=1 j=1

J#i
N N N
+ E z E B, By - By Ef
i=1 j=1 I=1
J#Ei 1#i
l#j
N N N
+ E 1 E " E Brij'Bijl'lem'BImO'E;rrz‘C + (8113)
i=1 j=1 I=1
J#Ei l1#i i
l#j

~
IS8\
H oI
~— o~ —
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Figure 8.1.4. Diagrammatic representations of (a) Eq. (8.1.11) and (b) Eq. (8.1.13).

(Twersky, 1964). The physical meaning of the Twersky approximation is rather
transparent. Indeed, a close look at Eq. (8.1.13) shows that the electric field exciting
each particle i (i =1, ..., N) is now replaced by the total electric field that would exist
at the origin of particle i if this particle were removed from the group. We will see in
the following sections that switching from the full order-of-scattering expansion
(8.1.11) to the partial Twersky expansion (8.1.13) is a crucial step in the derivation of
the RTE.

It is straightforward to show that for a large N, the Twersky approximation in-
cludes the majority of multiple-scattering paths. Specifically, an L-fold summation
with L > 2 on the right-hand side of the exact expansion (8.1.11) contains
N(N =1DE~! terms, whereas that in the approximate expansion (8.1.13) contains
N!/(N — L)! terms. The ratio of these two numbers indeed tends to unity as N — oo,
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which suggests that one can expect the Twersky approximation to yield rather accu-
rate results provided that the number of particles is sufficiently large.

It is convenient to represent order-of-scattering expansions of the electric field
using the diagram method. Panel (a) of Fig. 8.1.4 visualizes the full expansion
(8.1.11), whereas panel (b) illustrates the Twersky approximation (8.1.13). The ar-
rows in these diagrams represent the incident field, the symbol —e denotes multiply-
ing a field by a B dyadic, and the dashed curve indicates that two scattering events
involve the same particle.

8.2  The Twersky expansion of the coherent field

Let us now assume that the particles filling the volume V are randomly moving and
consider the field E(r) at an internal point r € V. In general, E(r) varies (fluctu-
ates) in time because of the random temporal variations of particle coordinates and
states, albeit at a much slower rate than the time-harmonic factor exp(—iwz?). A typi-
cal measurement takes a significant amount of time during which the electromagnetic
signal is averaged over a representative set of particle positions and states. Therefore,
it is often convenient to decompose E(r) into the average (or coherent) part E (1)
and the fluctuating part E.(r):

E(r) = E.(r) + E¢(r), (8.2.1)
where, upon assuming that the particle ensemble is fully ergodic,

E.(r) = (E(r), = (E(r)gre, (8.2.2)

(E¢(r)), = (E¢(r))ge = 0. (8.2.3)

The statistical averaging is performed over those coordinates and states of all the par-
ticles that are physically realizable during the time of the measurement.

It is very important to recognize that the coherent field E (r) thus defined is not a
real physical field but rather is a purely mathematical construction. Indeed, if we re-
store the time-harmonic factor exp(—i@wt), which we have been omitting so far for the
sake of brevity, then we must conclude that the time average of the actual electric
field is equal to zero, Eq. (1.2.1). In contrast, the coherent field does not vanish be-
cause it is defined as the time average of the part of the electric field that does not
include the factor exp(—iwt). The only reason to introduce the coherent field in the
first place is that it will eventually appear in formulas for quantities that describe the
multiply scattered radiation and can be actually measured with a suitable optical de-
vice. These quantities are defined in such a way that the factor exp(—iw?) naturally
disappears upon multiplication by its complex-conjugate counterpart.

Assuming that all particles have the same statistical characteristics and that the
state of each particle is independent of its coordinates, we have from Egs. (8.1.13) and
(5.1.11):
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X Pf(f,/)PR(Rz)pg(fz) Eri}‘ : Ew : Eﬂo : E}nc
4o (8.2.4)

The spatial integrations are performed over the entire volume V.

Note that since Egs. (8.1.1) and (8.1.2) are valid only in the far-field zones of all
the particles filling the scattering volume, each integral on the right-hand side of Eq.
(8.2.4) should, in principle, exclude a spherical volume element centered at the obser-
vation point r or at a particle origin R; (i =1, ..., N) and having a radius satisfying
the inequalities (3.2.17)—(3.2.19). However, usually this volume element is much
smaller than ¥V, and its relative contribution to the integrals can be expected to be
negligible.

Equations (8.1.6)—(8.1.9) yield

N
E. = E™ + ) I AR, pr(R) G(r) (A(E §)); - EI*
i=1 %V

N
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X G(1) G(R;) G(R ;) (A(F,, R;))
(AR, R )z (AR, 8)) - E
+ e, (8.2.5)

where (A(r, n))¢ is the average of the single-particle scattering dyadic over the par-
ticle states. Finally, recalling Eq. (5.1.15), we obtain

E. = E™ + IdRino(Ri)G(Vf)@(fi,ﬁ))g'E?“
Vv

-1
¢ MN=D J.Vdedeno(Ri)ﬂo(Rj)G(Vi)G(Rij)

X <‘zi(f'ia ﬁi]‘»f : <Z(Rg/= §)>§ : Ei}w
# M=) R AR, Ry (R) (R (R
V
X G(1;) G(Ry) G(R ;) (A(F;, Ry)) e
(AR R e (AR 1, 8)) - EM
I (8.2.6)

or, in the limit N — oo,

N—

E. = E™+ IdRino(Rf>G<n)<A7(fi,§>>5-Ei-"°
« v

14
X (A Ry ARy, ) B

+ j dR; dR/ dR,;ny(R;) no(R_/) no(R;) G(r) G(Rg/) G(le)
V
X (A, Ry)e - (ARG, R ) - (AR 1, 8) ¢ - B
+ - (8.2.7)
Note that the subscripts 7, j, ... are no longer summation indices and are only used to

label different integration variables. Equation (8.2.7) is the full vector version of the
expansion derived by Twersky (1964) for scalar waves.

8.3 Coherent field

Let us now assume for the sake of simplicity that the distribution of the particles
throughout the volume ¥ is statistically uniform, Eq. (5.2.1), and that the volume has
a concave boundary. The latter assumption ensures that all points of a straight line
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Figure 8.3.1. Geometry showing the quantities used in the derivation of Eq. (8.3.8).

connecting any two points of the medium are inside the medium.

It is convenient for our purposes to introduce an s-axis parallel to the incidence di-
rection and going through the observation point. This axis enters the volume V at the
point A such that s(4)=0 and exits it at point B (Fig. 8.3.1). Let us consider the first
integral on the right-hand side of Eq. (8.2.7) and denote it I,. From R; = r + R}, we
have

I =n J‘dRiG(riXZ(f'ia e -EM™
V
= 1, j dR! exp(ik@-Rj)%W(ﬁ(—R;, 8)s - E™(r), (8.3.1)
4 i

The observation point is assumed to be in the far-field zone of any particle, which
means that kR > 1. We may, therefore, use in Eq. (8.3.1) the Saxon asymptotic
expansion of a plane wave in spherical waves (see Appendix B):
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[8(5 + R))exp(—ik,R)) — &(5 — R))exp(ik,R))].

o a e 127
exp(ik;$-R;) . R;_) R
1 = KLy

(8.3.2)
In order to evaluate the integral (8.3.1), we use a spherical polar coordinate system

with origin at the observation point and with the z-axis directed along the s-axis. We
thus have

1, i27n

j dR; j dR(A(-R},8))¢ - E™(r)
4

ky
X[3(5 + R)) — 8(5 — R})exp(2ik,R))]

izkﬂ SOCAG. §) e - E™(r)
1

- % exp{i2ki[s(B) — s(r)]}(A(-$,8))¢ - E™(r). (8.3.3)
1

Let us now recall that the number of particles filling the volume ¥ is assumed to be
very large, and the particles are assumed to be separated by distances greatly exceed-
ing the wavelength (Eq. (4.2.6)). As a consequence, s(r) > 1/k, (except for points
in the immediate vicinity of the boundary), which suggests that the second term on
the right-hand side of Eq. (8.3.3) must be much smaller than the first term. Hence,

I, = ‘ZZ"O S(r)(AG, ) - E™(r). (8.3.4)

1

Consider now the second integral on the right-hand side of Eq. (8.2.7) and denote

it I,. Since R; =r+R]+R;, we have

Ji»
I, = nd J‘dR,'R,-QG(R,-') J dR; Ide,RJZ-I-G(Rj,) I dR ;
A 4
X(A(-R}, =R ;))¢ - (AR, 8)); - ET, (8.3.5)

where

Ei}1C = exp(ik;§- Rj)E};1C
exp(ik;$-R}) exp(ik,$- R ;,)E™(r)

. 2
- [—‘2”} 156+ R exp(—ikiR) = 566~ R exp(iki R)
1 i

X RL[S(é +R ;) exp(-ik R ;) — 8(8 — R ;) exp(ik, R ;)JE™(r).
Ji

(8.3.6)

It is thus clear that only particles with origins on the s-axis contribute to I,. Substi-
tuting Eq. (8.3.6) in Eq. (8.3.5) yields
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2
1|i27zn A o a inc
I, = E{ : 0 s(r)} (A8, 8)) ¢ - (A(S, 8)) s - E™(r). (8.3.7)
1

The remaining integrals in Eq. (8.2.7) are evaluated analogously. The final result is as
follows:

E(r) = exp[lz;mo s(r) (4G, §)>¢} -E™(r), (8.3.8)

1

where the dyadic exponential is defined as

expE’:I+B+5§-B+§B~B~B+-~. (8.3.9)

It is clear from the derivation of Eq. (8.3.8) that the coherent field is a superposi-
tion of the incident field and the fields that are singly and multiply scattered in the
exact forward direction. In other words, all single- and multiple-scattering paths that
contribute to the coherent field at an internal observation point lie on the straight line
parallel to the incidence direction and going through the observation point. Further-
more, all particles that do contribute to the coherent field lie between the source of
illumination and the observation point. It is important to recognize that it was the in-
clusion of all orders of multiple forward scattering that led to the exponential s-
dependence of the coherent field.

The fact that the coherent field is controlled by the forward-scattering dyadic is
not surprising. Indeed, the fluctuating component of the total field is the vector sum of
the partial fields generated by different particles. Random movements of the particles
involve large phase shifts in the partial fields, thereby causing the fluctuating field to
vanish when it is averaged over particle positions. The exact forward-scattering di-
rection is different because the phase of the partial wave forward-scattered by a parti-
cle towards the observation point in response to the incident wave does not depend on
the particle position along the line connecting the source of illumination and the ob-
servation point (see Fig. 8.3.2). Therefore, the interference of the incident wave and
the forward-scattered partial wave is always the same irrespective of the precise posi-
tion of the particle, and the result of the interference does not vanish upon statistical
averaging over particle positions. The same is true of the interference of the incident
field and a wave forward scattered along a multi-particle path of any order as well as
of the mutual interference of different forward-scattered waves.

Since r = r, + s(r)§ (Fig. 8.3.1), we have from Eq. (8.3.8):

127ny

E.(r) = exp(ik;$ - r,) exp[iks(r)] exp{ s(r)(;l(ﬁ, $))e -Einc

= exp[ik(8)s(r)]- E™(r,) (8.3.10)

or
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Figure 8.3.2. The phase of the wave forward scattered by a particle in response to the incident
plane wave is the same irrespective of the exact position of the particle on the line connecting
the source of illumination and the observation point.

E.(s) = 7j(8,5) - E(s =0), (8.3.11)
where

2””!0

k@) = kI + (AGB,8); (8.3.12)

1
is the dyadic propagation constant for the propagation direction §,
7i(8,s) = exp[iK(8)s] (8.3.13)
is the coherent transmission dyadic, and
E.(s=0) = E™(r,) (8.3.14)

is the boundary value of the coherent field. This is the general vector form of the
Foldy approximation for the coherent field (cf. Foldy, 1945). Another form of Eq.
(8.3.10) is

% = i%(3)  E(r). (8.3.15)

These results have several important implications. First, since the products
(AB,8) Ef°,  (AG,8)¢ (4G, 9)¢ -Ef°, etc.

always yield electric vectors perpendicular to 8, the coherent field satisfies the trans-
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versality condition,
E(r)-§ = 0. (8.3.16)

Second, the coherent field describes a superposition of transverse waves propagating
in the direction of § and, therefore, may be associated with the transport of electro-
magnetic energy in the same direction. Third, Eq. (8.3.11) generalizes the optical
theorem to the case of many scatterers by expressing the dyadic propagation constant
in terms of the forward-scattering dyadic averaged over the particle states.

Although Eqgs. (8.3.10) and (8.3.16) may appear to describe a transverse electro-
magnetic wave, the reader should not forget that E (r) is not a real physical field.
Furthermore, the coherent field was computed by taking an average over a uniform
distribution of particle positions as well as over all physically realizable particle
states. Therefore, it is not defined at any given moment in time. The physical meaning
of the coherent field will be further discussed in later sections.

We can exploit the transverse character of the coherent field to rewrite the above
equations in a simpler matrix form. As in Section 2.6, we characterize the direction of
propagation § at the observation point r using the corresponding polar and azimuth
angles in the local coordinate system which is centered at the observation point and
has the same spatial orientation as the laboratory coordinate system (see Fig. 8.3.3).
Then the electric vector of the coherent field can be written as the vector sum of the
corresponding 6- and ¢@-components:

E.(r) = E,(r)0@) + E.,(r)9(S). (8.3.17)

Defining the two-component electric column vector of the coherent field according to

Ecﬁ(r)
E.(r) = ) 8.3.18
(r) {Ew(r)} ( )
we have instead of Eq. (8.3.15)
BB _ iks)E. ), (83.19)
where K(8) is the 2x2 matrix propagation constant with elements
ki(®) = 8(8)- £(9)-0(3), (8.3.20)
kin®) = 0(8)-K()- $(3), (8.3.21)
ki (8) = ¢(8) - K(8)-B(3), (8.3.22)
kxn(8) = @(8)-K(S) - 9(S). (8.3.23)

Obviously,

k@) = k [(1) ﬂ + ZZ”‘] (SG.9)e. (8.3.24)
1
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Observation
point

Figure 8.3.3. The direction of propagation and the electric field vector components of the
coherent field at an observation point r are specified using a local coordinate system with the
same orientation as the laboratory coordinate system centered at O.

where (S(8, §))¢ is the forward-scattering amplitude matrix averaged over the particle
states (cf. Egs. (3.3.8)~(3.3.11)).
It is often convenient to rewrite Eq. (8.3.19) in the form

E.(s) = h(8,5)E (s =0), (8.3.25)
where

hG, s) = exp[isk(§)] (8.3.26)

is the coherent transmission amplitude matrix and the 2X2 matrix exponential is
defined as follows:

1 0
expB = + B + lBB + lBBB + - (8.3.27)
0 1 2! 3!

From Eq. (A.7), the matrix identity (AB)" = BTAT, and the reciprocity relations
(3.4.19) and (3.4.21), we easily derive the following reciprocity relations for the co-
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herent transmission dyadic and the coherent transmission amplitude matrix:

(=8, 5) =[G, 9], (8.3.28)

h(=$, 5) = Lo [h(é,s)]T1 o (8.3.29)
0 -1 0 -1

8.4  Transfer equation for the coherent field

We will now describe the coherent field in terms of quantities having the dimension
of monochromatic energy flux. We first define the coherency column vector of the
coherent field according to

ECHE:G
EE:
J, = L [en | Beoley (8.4.1)
2\ Uy | EcpEy
E., E.,

and easily derive from Egs. (8.3.19) and (8.3.24) the following transfer equation:

Sl @) o) (842)

where K’ is the coherency extinction matrix given by Eq. (3.8.4). The Stokes-vector
representation of this equation is obtained by using the definition

EcH Eo:H + Ec(p E;¢

EwEly—E. E!
I = DJ, = L [€1|Feofeo ™ Bepbep (8.4.3)
2 Ho _2Re(Ec9Ec(p)

2 Im(ECH E:(p)
and Eq. (3.8.7):
% = —ng(KS))¢ L (r), (8.4.4)

where K is the Stokes extinction matrix with elements given by Eqs. (3.8.8)—(3.8.14).
The formal solution of Eq. (8.4.4) can be written in the form

Ic(r) H[§5 S(r)]lc(rA)
H[S, s(r)]I™, (8.4.5)

where I is the Stokes column vector of the incident plane wave and

HG, s) = exp[-nys (K(8)),] (8.4.6)
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is the coherent transmission Stokes matrix. As before, the 4x4 matrix exponential is
defined by

expB = A+B+%BB+%BBB+.~, (8.4.7)

where A is the 4x4 unit matrix. In view of Eq. (3.8.16), the coherent transmission
Stokes matrix obeys the following reciprocity relation:

H(=3,5) = A[HG, 5)]"As. (8.4.8)

8.5 Dyadic correlation function in the ladder
approximation

We are now well prepared to start the derivation of the RTE. Our first step is to intro-
duce the so-called dyadic correlation function, which involves the total electric fields
at two points inside the volume V" and is defined as the following average dyadic
product:

(E(r,) ®[E(r,0]), = (E() ®[EX))er, r.r'el.

Note that the left-hand side of this equation involves the actual electric fields and that
the time-harmonic factors exp(—iw?) and [exp(—i@t)]" cancel each other without
canceling the time average. Also, by equating the time average and the average over
particle coordinates and states we assume the full ergodicity of the particle ensemble.
Obviously, the product

%\/%(E(r) B [ET)]Vre

has the dimension of monochromatic energy flux and can potentially be used to de-
fine appropriate measurable quantities. That this is indeed the case will become clear
in Section 8.12.

Recalling the Twersky approximation, Eq. (8.1.13), and Fig. 8.1.4(b), we con-
clude that the dyadic correlation function is given by the expression shown diagram-
matically in Fig. 8.5.1. To classify the different terms entering the expanded expres-
sion inside the angular brackets on the right-hand side of this equation, we will use
the notation illustrated in Fig. 8.5.2(a). In this particular case, the upper and the lower
scattering paths go through different particles. However, the two paths can involve
one or more common particles, as shown in panels (b)—(d) by using the dashed con-
nectors. Furthermore, if the number of common particles is two or more, they can
enter the upper and lower paths in the same order, as in panel (c), or in the reverse
order, as in panel (d). Panel (e) shows a mixed diagram in which two common
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Figure 8.5.1. The Twersky expansion of the dyadic correlation function.
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Figure 8.5.2. Classification of terms entering the Twersky expansion of the dyadic correlation
function.

particles appear in the same order and two other common particles appear in the re-
verse order. The contribution of this diagram to the dyadic correlation function is
simply

[Brij ' Bijk ! éjkl : Ekln : éan ' Einnc] ® [Er'il : Eilm : Elmk ' Emkn : EknO : Einnc]*‘
By the nature of the Twersky approximation, neither the upper path nor the lower
path can go through a particle more than once. Therefore, no particle can be the origin

of more than one connector.
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Figure 8.5.3. Calculation of the cumulative contribution of the diagrams with no connectors.

To sum and average all the diagrams entering the expanded expression for the dy-
adic correlation function in Fig. 8.5.1 is a very difficult problem which we will not try
to address fully. Instead, we will neglect all diagrams with crossing connectors and
will work with a truncated expansion that includes only the diagrams with vertical or
no connectors. This approximation will allow us to sum and average large groups of
diagrams independently and eventually derive the RTE. The consequences of ne-
glecting the diagrams with crossing connectors will be discussed in Section 8.11.

Let us begin with diagrams that have no connectors. Since these diagrams do not
involve common particles, the ensemble averaging of the upper and lower paths can
be performed independently. Consider first the sum of the diagrams shown in Fig.
8.5.3(a), in which the symbol X indicates both the summation over all appropriate
particles and the statistical averaging over the particle states and positions. According
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Figure 8.5.4. Diagrams with one or more vertical connectors.

to Section 8.3, summing the upper paths yields the coherent field at the point r. This
result can be represented by the diagram shown in Fig. 8.5.3(b), in which the symbol
& denotes the coherent field.

Similarly, summing the upper paths of the diagram shown in panel (c) yields, in
the limit N — oo, the diagram shown in panel (d). Indeed, since one particle is already
“reserved” for the lower path, the number of particles contributing to the upper paths
in panel (c) is N —1. However, the difference between the sum of the upper paths in
panel (c) and the coherent field at r vanishes as /N tends to infinity. We can continue
this process and eventually conclude that the total contribution of the diagrams with
no connectors is given by the sum of the diagrams shown in panel (e).

It is now clear that the final result can be represented by the diagram in panel (f),
which means that the contribution of all the diagrams with no connectors to the dy-
adic correlation function is simply the dyadic product of the coherent fields at the
points r and r’: E (r) ® [E.(r")]". This result explains the usefulness of introducing
the concept of the coherent field in Section 8.2 despite the fact that E (r) does not
represent the actual time average of the electric field.

All other diagrams contributing to the dyadic correlation function have at least one
vertical connector, as shown in Fig. 8.5.4(a). The part of the diagram on the right-
hand side of the right-most connector will be called the tail, whereas the box repre-
sents collectively the part of the diagram on the left-hand side of the right-most con-
nector and can, in principle, be empty. The right-most common particle and the box
form the body of the diagram.

Let us first consider the group of diagrams with the same body but with different
tails, as shown in Fig. 8.5.4(b). We can repeat the derivation of Section 8.3 and verify
that in the limit N — oo, the sum of all diagrams in Fig. 8.5.5(a) gives the diagram
shown in Fig. 8.5.5(c). Indeed, let particle g be the right-most connected particle and
particle p be the right-most particle on the left-hand side of particle ¢ in the upper
scattering paths of the diagrams shown in Fig. 8.5.5(a). Consider the cumulative con-
tribution of all the diagrams on the left-hand side of Fig. 8.5.5(b) to the total electric
field created at the origin of particle p. Writing this contribution in the expanded form
yields

G(R,) AR, 8) -El
N-n
+

noG(R,,) I dR,G(R,) AR ., R,)- (A(R,;,8)): - EI™
14
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Figure 8.5.5. Summation of the tails.

L W= ”)%vz —n=D . G(R,,) J‘VdR,-dR JG(R)G(Ry) AR, R,)

(AR, R, e (AR, 9))e - EM

o= G(R,) AR ,,,8) - E.(R,), (8.5.1)

where n is the number of particles in the common body of the diagrams. The right-
hand side of Eq. (8.5.1) was derived under the assumption that N is so large that all
factors of the type (N —n)!/(N —n—k)! can be replaced by N*. This result is sum-
marized by the right-hand side of Fig. 8.5.5(b).

Analogously, the sum of the diagrams in Fig. 8.5.5(d) is given by the diagram in
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Fig. 8.5.5(e), and so on. We can now sum up all diagrams in Fig. 8.5.5(f) and obtain
the diagram shown in Fig. 8.5.4(c).

Thus the collective contribution to the dyadic correlation function of all the dia-
grams with the same body and all possible tails is equivalent to the contribution of a
single diagram formed by the body alone, provided that the right-most common parti-
cle is excited by the coherent field rather than by the external incident field. This rep-
resents a radical difference from the initial expansion (8.1.13), in which the source of
multiple scattering is the external field. This important result allows us to cut off all
tails and consider only truncated diagrams of the type shown in Fig. 8.5.4(c).

Thus, the dyadic correlation function is equal to E.(r) ® [E.(r")]" plus the statis-
tical average of the sum of all connected diagrams of the type illustrated by panels
(a)—(c) of Fig. 8.5.6. The symbols --- in these diagrams denote all possible combina-
tions of unconnected particles. Let us, for example, consider the statistical average of
the sum of all diagrams of the kind shown in panel (d) with the same fixed shaded
part. We thus must evaluate the left-hand side of the equation shown in panel (f),
where, as before, the symbol X indicates both the summation over all appropriate
particles and the statistical averaging over the particle states and positions. Let parti-
cle w be the right-most particle on the left-hand side of particle p in the upper scat-
tering paths of the diagrams on the left-hand side of panel (f) and « be the left-most
particle on the right-hand side of particle g. The electric field created by particle p at
the origin of particle w via the upper scattering paths of all the diagrams shown on the
left-hand side of panel (f) is given by the left-hand side of the equation shown dia-
grammatically in panel (g) and can be written in expanded form as

E, = G(R,,)G(R,)4,(R,,,R,) 4R, ,R,)E,

+ ) GR(GRG(R,) A, (R, R,) - A(R 1 Ryy)
: Aq(Riq: un))R,.f : Eq

+ ) GRGRDGR)G(R;p) AR, R ) - AR 5, Ry)
ARy, Rjg) - A (R, Ry e g - By
+ o (8.5.2)

where E, is the electric field coming to the origin of particle g via particle u# and the
summations and statistical averaging are performed over all appropriate unconnected
particles (see Fig. 8.5.7). In the limit N — oo, Eq. (8.5.2) takes the form

Ew = G(pr)G(qu) ‘Zp(li lipq) ! Zq(ﬁ liqu) ! Eq

wp» pq°

+ nyG(R,,) j dR,G(R,)G(R,) 4,(R,,. R,) - (AR, R,,))¢
V
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Figure 8.5.6. Derivation of the ladder approximation for the dyadic correlation function.

-4,(R,,R,,) E,

iq>
+ n G(R,,) I dR,;dR; G(R,)G(R;)G(R;) 4,(R,,. R )
Vv
! <Z(Rpis sz))f ! <Z(ﬁy5 R]t[))f : Zq(ﬁqu un) ' Eq
T (8.5.3)

where the angular brackets now denote amplitude matrices averaged over the particle
states.
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5

N

Figure 8.5.7. Calculation of the integrals entering Eq. (8.5.3)

Let us consider the first integral on the right-hand side of Eq. (8.5.3):

explik; (R,; + R;;)] -
ll = nOG(pr) J'de : . p(pr9 )
Rpriq

: <‘2(Rpi’ qu»é . A’aq(liiqr un) . Eq- (854)

Since the factor exp[iki(R,; + Ri,)] is a rapidly oscillating function of R;, the con-
tribution of a major part of V'to I, can be expected to zero out. The only exception is
the small region around the straight line connecting particles g and p, where the phase
ki(Rpi + Riy) is almost constant. Therefore, we can evaluate the integral (8.5.4) using
the method of stationary phase (see Appendix E).
Using the Cartesian coordinate system with origin inside particle ¢ and the z-axis
along the vector R ,,, as shown in Fig. 8.5.7, Eq. (8.5.4) can be rewritten in the form

n G(R )J I '[dZ €Xp lkl(Rpt+Riq)]
l - o wp

Pl 1‘1
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X ‘;ip(liwpr IA{pi) : <‘Z(Rpi’ qu»f : Zq(ﬁiqr un) : Eqa (855)

where x;, y;, and z; are the coordinates of particle i and the integration limits for x;
and y; are set to infinity owing to the fact that only a small part of V" along the z-axis
contributes to I,. According to Eq. (E.10), the integral over z; can be subdivided
into three integrals covering the regions with Z; < z; <0, 0 < z; <R,,, and
R,y < z; < Z, (Fig. 8.5.7). The first and third integrals involve rapidly oscillating

functions of z; and vanish. Indeed,

1
Z R, =2z

where ¢t = k (R, —2z,),
si(y) = - J‘ dr L
y t

is the sine integral, and

Ci(y) = - J' dr £t
¥ t

y

0 . oo . oo .
k(R,, —2z;
J‘ s expliki (R, —22))] _ lJ‘ 4 Pl lJ‘ ()
kR k(R g +21Z)))

2 t 2 t
= L{~Ci(kR,,) — isi(kR,,)
+ Ci[k (R, +2|Z,))] + isi[k (R, +2|Z)])]}
1
=0 \ (8.5.6)
klRPq

(8.5.7)

(8.5.8)

is the cosine integral (see Section 5.2 of Abramowitz and Stegun, 1964 or Section
5.10 of Arfken and Weber, 2001). Similarly,

1

R R, +2z;

rq

Z : oo . oo .
2 k(R,, +2z;
J‘ p, SXPLkR, +22)] 1 I g o 1 J‘ 4 EXPG)
3k R ki (Rpg+225)

2 t 2 t
= L{-Ci3kiR,,) — isi3kiR,,)
+ Cilky(R,, +22,)] + isilk (R, +2Z,)]}
o] ! (8.5.9)
kiR, | o

where ¢t = ki(Rpq +2z;). Thus only the interval 0 < z; < R,, gives a nonzero con-

tribution. We can now use Eq. (E.10),

J.-'—00 dX,- J‘-Hx’dy,' exp[ikl (Rpi + Riq)]

R R. AP(RW[H RP[) ) <A(RPi’ qu)>‘§

pittiq



190 Chapter 8

-4,R,,R,,)E,

ig>

2 exp(ikiR,,) - R - A ~ N R
N AP(RW’ qu) ' <A(qu’ qu»cf ’ Aq(RPq’ un) E,

kl qu
(8.5.10)
to derive
exp(ikR,,) 12znyR,, - . - .
I, = G(R,,) s 2 4R, R ) (AR, R )
R,, k,
' Aq(qu’ un) : Eq- (851 1)

The other integrals on the right-hand side of Eq. (8.5.3) are computed analo-
gously. The final result is

o A expliRR,IR,] < A
Ew = G(pr)Ap(pr’ qu) : R—P‘IP‘? ' Aq(qua un) : Eq (85123)
pq
e o~ Hi(R,L R, - A o
= G(R,)A4,(R,,, qu)-%- 4,(R,,,R,)-E,, (8.5.12b)

Pq

where the dyadic propagation constant ¥ and the coherent transmission dyad 7j are
given by Egs. (8.3.12) and (8.3.13), respectively. These equations are similar to Egs.
(8.3.10) and (8.3.11) for the coherent field and are yet another manifestation of the
forward-scattering optical theorem. Obviously, they can be interpreted as describing
the coherent propagation of the wave scattered by particle ¢ towards particle p
through the discrete scattering medium. The presence of other particles on the line of
sight causes attenuation and, potentially, a change in polarization state of the wave.
The exponential form of the coherent transmission dyad in Eq. (8.5.12a) is again the
consequence of taking into account all orders of multiple forward scattering by un-
connected particles. The notable difference from Egs. (8.3.10) and (8.3.11) is the
factor 1/R,,, which is a reminder that the wave scattered by a particle is spherical,
whereas the coherent field is mathematically represented by a plane wave.

Equation (8.5.12a) can be summarized by the diagram on the right-hand side of
Fig. 8.5.6(g), thereby yielding the right-hand side of the equation in Fig. 8.5.6(f). The
double rather than a single line indicates that the scalar factor exp(ikiR,q)/R,; has
been replaced by the dyadic factor exp[iZ(R pg)Rpq]/Rpq-

In a quite similar way one can show that the sum of all diagrams of the kind
shown in Fig. 8.5.6(e) with the same fixed shaded part is given by the diagram shown
in Fig. 8.5.6(h).

It is now clear that the total contribution of all diagrams with three fixed common
particles ¢, g, and p to the dyadic correlation function can be represented by the dia-
gram in Fig. 8.5.6(i) or, in expanded form, by the statistical average of the following
product:
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Figure 8.5.8. Ladder approximation for the dyadic correlation function.
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® {% Ap(Rr'w qu) ’ % : Aq(qu’ th)
rp Prq
iR, R) - '
-W-A,(Rq,,s:)'Ec(R»}, (8.5.13)
qt

where the subscripts » and " refer to the observation points r and r’, respectively.

After we have neglected all the diagrams with crossing connectors, computed the
contribution of all the diagrams with no connectors, and figured out how to calculate
the contributions from various diagrams with one or more vertical connectors, we are
perfectly positioned to complete the derivation of the dyadic correlation function. The
final result is shown in Fig. 8.5.8, in which the symbols X have the usual meaning.
Owing to their appearance, the diagrams on the right-hand side of this equation are
called ladder diagrams. Therefore, this entire diagrammatic formula can be called the
ladder approximation for the dyadic correlation function.

8.6  Integral equation for the ladder specific coherency
dyadic

Unlike the dyadic correlation function, which is defined in terms of the electric field
vectors at two different observation points r and r’, the coherency dyadic is a statisti-
cal characteristic of the random electric field at a single observation point and is de-
fined as the time average of the coherency dyad of the total local electric field:
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Figure 8.6.1. Ladder approximation for the coherency dyadic.

C(r) = (p(r, 1)),
= (E(r, ) ® [E(r, )]"),
= (E(r)® [E(r)]*)R,é. (8.6.1)

The ladder approximation for C(r) is shown in Fig. 8.6.1, in which the subscript L
stands for “ladder” and the curly brackets serve to indicate that r’ = r. The expanded
form of this approximation follows from Fig. 8.6.2:
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Observation
point

Figure 8.6.2. Geometry showing the quantities used in Eq. (8.6.2).

+ - (8.6.2)
where
C(r) = E.(r) ®[E (r)]* (8.6.3)

is the coherent part of the coherency dyadic, and we have taken into account Eqgs.
(A.7) and (A.8).

It is convenient to integrate over all positions of particle 1 using a local coordinate
system with origin at the observation point, integrate over all positions of particle 2
using a local coordinate system with origin at the origin of particle 1, integrate over
all positions of particle 3 using a local coordinate system with origin at the origin of
particle 2, etc. Using the notation introduced in Fig. 8.6.2 and taking into account that

dp = r’dpdp, (8.6.4)
dR,, = R122dR21dR217 (8.6.5)

and so on, we get from Eq. (8.6.2)
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Cur) = I dp Z (r, —p). (8.6.6)
4r
where X (r, —p) is the ladder specific coherency dyadic defined by

Z(r,—p) = 3(p+8)Cer)

+ ny | dpd& (=P, p) - A(—P,8) C.(r +p)

AP, ™ - [7(—p, p)I™

+ ”g dpd&, j dRy, dﬁzl dé&,7i(-p, p)- 1‘"11(_137 _RZI)
: ﬁ(_ﬁﬂ’ Ryp)- 1:12(—li21, §)- éc(r +p+Ry)
ARy, $)I™ - [7(=Ray, Ry)I™ - [A4(—P, —R, )™
+ ”8 Idpdé:l JdRZI dR2I dé, I dR;, dli32 d&; 7i(-p, p)
- (=P, —Ry))  7(-Ryy, Ry)) - Ay (R, —Ryy)
: ﬁ(_ﬁazg R3,)- 23(_li32, §)- éc(r +p+R;y +Ry)
[ A3(—Rp, 1™  [7(—Ray, Rip)]™ - [Ay(—Ry;, —R )™
7 (—Rap, Ry)1™ - [A(—p, —Ro)1™ - [P, p)]™
T (8.6.7)

Note that p ranges from zero at the observation point to the corresponding value at the
point where the straight line in the p direction crosses the boundary of the medium
(point C; in Fig. 8.6.2), R, ranges from zero at the origin of particle 1 to the corre-
sponding value at point C,, etc. Importantly, the ladder specific coherency dyadic
has the dimension of specific intensity or radiance (W msr ') rather than that of
intensity (W m™).

It can be easily verified that the ladder specific coherency dyadic satisfies the fol-
lowing integral equation:

Z(r,-p) = 3(p+8)C.(r)
+ ng I dpdp’d&én(-p, p)- A& —p,—p") - SL(r +p, —p)
LA =P, —pO1™ - [7 (D, p)I™. (8.6.8)

Indeed, using 8(p +8)C.(r) as an initial approximation for X\ (r, —p), we can sub-
stitute it in the integral on the right-hand side of Eq. (8.6.8) and obtain an improved
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approximation. By continuing this iterative process, we arrive at Eq. (8.6.7), which is
simply the Neumann order-of-scattering expansion of the ladder specific coherency
dyadic with coherent field serving as the source of multiple scattering.

The interpretation of Eq. (8.6.8) is very transparent: the ladder specific coherency
dyadic for a direction —p at a point r consists of a coherent part and an incoherent
part. The latter is a cumulative contribution of all particles located along the straight
line in the p - direction and scattering radiation coming from all directions —p’ into
the direction —p.

8.7 Integro-differential equation for the diffuse
specific coherency dyadic

To derive the integro-differential form of Eq. (8.6.8), we introduce a g-axis as shown
in Fig. 8.7.1. This axis originates at point C and goes through the observation point in
the direction of the unit vector q = —p (see Fig. 8.6.2). We can now rewrite Eq.
(8.6.8) as

£.(0.9) = 5(q-8)C.(0)
Q - -
+ j dq j aé j W@ 0 - A4 8) Eua.d)
0 'y 4
A& §,a)1™ - [77(6, 0 — 1™ (8.7.1)

The diffuse specific coherency dyadic is defined as the difference between the full
ladder specific coherency dyadic and its coherent component:

240.0) = 2.0, d) - 3(§-8)C.(0). (8.7.2)
The integral equation for £,(Q, q) follows from Eqs. (8.7.1) and (8.7.2):
Z40.0) = ny Lgdq j d&7i(G 0 -q)- 4 4,8)- Culg)-[4(£; 4, 9]
1[77@, 0 — 1™
+ g J.Oqu Idé‘ Lﬂdfl'ﬁ(fl, 0-9) 4&:4.4") £4(q.4)
A &)™ [7@ -, (8.73)

Differentiating both sides of Eq. (8.7.3) and applying the Leibniz rule,

I (x,b)

9 b
Ej‘adxf(x,b) = f(b,b) + _deT’

finally yields
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Figure 8.7.1. Geometry showing the quantities used in the derivation of the integro-differential
form of the RTE.

d2y(0. @)

0 i%(@) - 2o(0, @) — 154(0, @) - [K(@)]"

- j aé j QA 6, §)- 50,0 LA 4.4
4
g jd:ﬁ@; 6,8 C.(0) - LI & 1™ (8.7.4)

For further use, it is more convenient to rewrite Eqs. (8.7.1) and (8.7.4) in the
following form:

Ly, @) = Zu(r, @) - 3@ -8)Co(r), (8.7.5)

dfd(ra (i)

w iR(@) Za(r,q) — 124(r,q) - [R(@]"

+ 1 Idf I d§' A& 6,6 - Zo(r, @) - [4(; 4, G
4r
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+ ny j dEAE; q,8) - Cu(r) - [A(E: q,8)]™, (8.7.6)

where the path-length element dg is measured along the unit vector §. Equation
(8.7.6) is the integro-differential radiative transfer equation for the diffuse specific
coherency dyadic.

8.8 Integral and integro-differential equations for the
diffuse specific coherency matrix

It follows from Eq. (8.7.3) that
q-24(r,q) = Zy(r,d)-G = 0. (8.8.1)

This means that only four out of nine components of the diffuse specific coherency
dyadic are nonzero and allows us to introduce the diffuse specific coherency matrix
P, using the local coordinate system with origin at the observation point and orien-
tation identical to that of the laboratory coordinate system:

1 \/E_T{é@.fd(r,mé(q) 0@ Zur. @) 0@ | g0,
Ho

5d(r’q):_ n A - A A A A pes ~ Aoan |

2 @ Zy(r,@)-0@) @) - 24(r, q)- 6(@)
Note that we use a tilde in order to distinguish between the specific coherency matrix
and the coherency matrix defined by Eq. (2.6.2). We can then rewrite Egs. (8.7.3) and

(8.7.6) in the form of the integral and integro-differential equations for the diffuse
specific coherency matrix:

5.0, 0) = m qu j 4EN(G, 0 - 9)S(E &, 9P.(9)
X[S(&: 4, 1" [h@, 0 - )"
b Lqu j as Lﬂdﬁ’h(fl, 0-9)SE 4 §)ula. )
X[S(& 4, &)1 @ 0-)",  (8.83)
dﬁ%;"” = k@B, §) — iBa(r, DK@
+ jdf J;ﬂdcl’s(é; &, 0)Bu(r, 4)ISE & 4T

+ 1 _[df 8(£: 4. 8)p.(N[S(&:4.9)]", (8.8.4)

where S is the amplitude scattering matrix, h is the coherent transmission amplitude
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matrix given by Eq. (8.3.26), Kk is the matrix propagation constant given by Egs.
(8.3.24), and

o) = L F {?@)gc(r)-g(f) 06) Cr) 90| 055
2Vt [6®)-E0)-06) 66)- Cr)- ()

8.9 Integral and integro-differential equations for the
diffuse specific coherency column vector

The next obvious step is to introduce the corresponding coherency column vectors jd
and J, interms of Py and p.:

Pan(r, q)
Pana(r, @)
Pax(r,q) ,
Pan(r, q)

Jy(r.q) = (8.9.1)

Pl l(r)
3 = | P (8.9.2)
Peai(1)

Peaa(T)

(cf. Eq. (2.6.3)). Again we use a tilde to emphasize that jd has the dimension of spe-
cific intensity. After lengthy, but simple algebraic manipulations, we get

_ 0
Ji(0,9) = ng j dgH’(@, 0~ 9)(Z7(4, )¢ Jc(9)

0

Q ~
+ ny J. dg J. dq’H/ (4,0 -9)(Z'(q, ﬁ'))ng(q, i) (89.3)
0 Ar

d"%;’q) = —ny (K’ (@) Ja(r, @) + 1o f 4’2’ (@, § e Io(r. )
4
+ n0<ZJ(Q> §)>§Jc(r)’ (894)
where
H/(,5) = exp{-nys(K'($))¢}, (8.9.5)

(K’(q)y¢ is the coherency extinction matrix averaged over the particle states, and
(Z7(4,q"))¢ is the ensemble average of the coherency phase matrix given by Eq.
(3.7.5). The column vector J.(r) satisfies the transfer equation (8.4.2).
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8.10 Integral and integro-differential equations for the
specific intensity column vector

Our final step is to define the diffuse specific intensity column vector and the coher-
ent Stokes column vector,

Td(r, q)

O4(r. §)

Uy(r,q)

Va(r, Q)
I.(r)
0.(r)

I.(r) = U.) = DJ (r) (8.10.2)

Ve(r)

(cf. Egs. (2.6.4) and (2.6.5)), and rewrite Egs. (8.9.3) and (8.9.4) in the form

Ty(r,q) = = DJy(r,q), (8.10.1)

- [
L,0.4) = j dqH@, 0 - 0)(Z(@ $):1.(@)

0
Q ~
+ noJ. dq‘[ dq"H@. 0 - 9)(Z(4,4"))¢ lu(q. 6", (8.10.3)
0 4

dTy(r, q)

D K@) T + j 44 2@ )T, §)

4r

+ no(Z(q, $)) ¢l (r), (8.10.4)

where (K(q))¢ is the ensemble average of the Stokes extinction matrix given by Eq.
(3.8.7) and (Z(q,q"))¢ is the ensemble average of the Stokes phase matrix given by
Eq. (3.7.10). The coherent Stokes column vector I.(r) satisfies the transfer equation
(8.4.4).

Equations (8.4.4) and (8.10.4) can also be written as

§-VI(r) = —no (K@) 1.(r), (8.10.5)

q-VTy(r,q) = —no(K@))s Ty(r, §) + nJ' d4'(Z(q, 4" e To(r, 4")

4

+ 19(Z(q, 8))¢ Lo (r). (8.10.6)

These equations represent the classical integro-differential form of the vector RTE
(VRTE) applicable to arbitrarily shaped and arbitrarily oriented particles. They were
initially introduced by Rozenberg (1955) on the basis of heuristic, phenomenological
considerations. In contrast, our detailed microphysical derivation is based on funda-
mental principles of statistical electromagnetics. It naturally replaces the original in-
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cident field as the source of multiple scattering in Eq. (8.1.13) by the decaying coher-
ent field in Fig. 8.5.4(c) and leads to the introduction of the diffuse specific intensity
column vector describing the photometric and polarimetric characteristics of the mul-
tiply scattered light (see the discussion in Section 8.12). Importantly, the microphysi-
cal derivation yields directly the integral form of the RTE, the integro-differential
form being a corollary of the integral form. This is a striking contrast to the phenome-
nological approach, which starts with a confusing notion of an elementary volume
element and the integro-differential form of the RTE (see Section 8.16).
It is often convenient to introduce the full specific intensity column vector,

T.4)

T = | 2V - s@-o1m + L, (8.10.7)
U(r,q)
P(r.4)

and rewrite Egs. (8.10.5) and (8.10.6) as a single integro-differential equation:

q-VI(r,q) = —ny(K@)e 1(r, q) + no f dq’(Z(§, ") 1(r,§). (8.10.8)

4r

Accordingly, Eq. (8.10.3) takes the form
10.d) = 3@-9L©)

Q ~
- j dqj WHG 0- 2@ d ) T@d). (8109
0 4

In the absence of particles, the coherent Stokes column vector, the diffuse specific
intensity column vector, and the full specific intensity column vector become inde-
pendent of the spatial coordinates. This property follows directly from Egs. (8.10.5),
(8.10.6), and (8.10.8) in the limit ny — 0.

8.11 Summary of assumptions and approximations

Since the microphysical derivation of the VRTE is rather lengthy, it is useful to sum-
marize what specific assumptions and approximations had to be made at various
stages:

1. We assumed that the scattering medium is illuminated by a plane electromag-
netic wave. However, as will be discussed in Section 8.15, the VRTE remains
valid in the case of illumination by quasi-monochromatic light.

2. We assumed that each particle is located in the far-field zones of all the other
particles and that the observation point is also located in the far-field zones of
all the particles forming the scattering medium (Section 4.2).
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3. We neglected all scattering paths going through a particle two or more times
(the Twersky approximation). As we have seen in Section 8.1, doing this is
justified when the total number of particles in the medium is very large.

4. We assumed that the scattering system is ergodic and that averaging over
time can be replaced by averaging over particle positions and states.

5. We assumed that (i) the position and state of each particle are statistically in-
dependent of each other and of those of all the other particles, and (ii) the
spatial distribution of the particles throughout the medium is random and sta-
tistically uniform (Section 8.3).

6. We assumed that the scattering medium is convex, which assured that a wave
exiting the medium cannot re-enter it (Section 8.3).

7. We assumed that the number of particles N forming the scattering medium is
very large and replaced all factors of the type (N —n)!/(N—n—k)! by N*
(Sections 8.2 and 8.5).

8. We ignored all diagrams with crossing connectors in the diagrammatic ex-
pansion of the coherency dyadic (the ladder approximation, Sections 8.5 and
8.6).

Assumptions 2 and 7 imply that the overall size of the scattering medium must be
much greater than the wavelength, average particle size, and average distance be-
tween two neighboring particles. They ensure, in particular, that the exponential fac-
tors of the type exp(ik;r) oscillate many times over the distances traveled by the par-
ticles during the measurement, thereby leading to Egs. (8.3.4) and (8.5.11) and, ulti-
mately, to Egs. (8.3.8) and (8.5.12).

Randomly positioned particles located in the far-field zones of each other are
called independent scatterers. Thus, assumptions 2 and 5 explicitly indicate that the
requirement of independent scattering is a necessary condition of validity of the RTT.
It is these assumptions that are largely responsible for the fact that the VRTE contains
single-particle extinction and phase matrices rather than some “group” scattering
properties. In other words, each particle is identified as an individual scatterer with
scattering and absorption properties calculated under the implicit assumption that all
other particles do not exist. Hence the term “independent scattering”.

Another consequence of assumptions 2 and 5 is that the average particle number
density in the scattering medium must be rather small. Therefore, the VRTE may not
be expected to perform well for densely packed media (e.g., Tsang and Kong, 2001).

To justify approximation 8, let us consider, for example, the contributions of two
simple two-particle diagrams, shown in panels (a) and (b) of Fig. 8.11.1, to the coher-
ency dyadic of the total electric field. According to Egs. (8.6.1) and (8.1.11), these

contributions are given by
(PR A Ry) - 4Ry 8)- EfT @ [A(F, Ry) - 4Ry, 8) BT )r e
(8.11.1)

ij>

and
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Figure 8.11.1. Two-particle diagrams with vertical and crossing connectors.

<(”i’"_/Rg?)7l explik, (7; — r; = §'Rij)][2i(f'ia ﬁi]‘) : Zj(lii/'a $)- E%)nc]
®[4;(F;, -R;) - A(-R;.8) - EFT .z, (8.11.2)

respectively, where the notation follows that in Fig. 8.11.1(c). The main difference
between the expressions inside the angular brackets in these formulas is that the latter
contains a rapidly oscillating exponential factor, which changes with r; and r; much
faster than all other participating factors. The presence of this exponential factor
causes the contribution given by Eq. (8.11.2) to vanish upon the configurational aver-
aging. The reader can verify that this is true of any diagram with crossing connectors
and explains why their cumulative contribution to the specific coherency dyadic and
thus to the diffuse specific intensity column vector is negligible relative to the contri-
bution of the diagrams with vertical connectors.

An important exception is the situation where the observation point is located in-
finitely far from the scattering volume and is in the direction opposite to the direction
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of incidence. Then the phase difference
A=k(r—r—- §’ﬁy‘)

vanishes, the exponential factor becomes identically equal to unity, and the contribu-
tion of the diagrams with crossing connectors becomes comparable to the contribution
of the ladder diagrams. This remarkable effect, called coherent backscattering, will be
discussed specifically in Chapter 14.

The assumption that the scattering medium is statistically uniform simplified
greatly the derivation of the VRTE. It is reasonable to expect, however, that the
VRTE remains valid for an inhomogeneous medium provided that the macrophysical
properties of the medium change on spatial scales much greater than the average dis-
tance that light travels between two successive scattering events. In this case the ex-
tinction and phase matrices averaged over particle states and the particle number den-
sity become functions of spatial coordinates, and Egs. (8.10.5), (8.10.6), (8.10.8) take
the form

§-VI(r) = —ny(r){K(r, 8))1.(r), (8.11.3)
q-VIyr, @) = —no(r)(K(r, @) 14(r, §)
+ ny(r) j 442, 4, § ) 1o, )
4

+ no(r)(Z(r, q,8))1.(r), (8.11.4)

q-VI(r,q) = —no(r)(K(r, )¢ 1(r, §) + no(r) j 4§’ (Z(r, 4, @ N 1(r, 4.
4

(8.11.5)

8.12 Physical meaning of the diffuse specific intensity
column vector and the coherent Stokes column vector

It might be fair to say that the way in which we derived the VRTE is rather mathe-
matical. Indeed, what we have done so far was to introduce the coherency dyadic and
a sequence of ad hoc derivative quantities and to see what equations these quantities
satisfy. However, the final result can be meaningful and useful only if we can demon-
strate the physical relevance of the quantities described by the VRTE.

It turns out that the physical interpretation of the diffuse specific intensity column
vector is rather transparent and follows directly from the integral form of the VRTE.
Indeed, imagine a well-collimated polarization-sensitive detector centered at the ob-
servation point and facing the direction ¢ (#8§) (Figs. 8.7.1 and 8.12.1). Let AS be
the area of the sensitive surface of the detector and AL2 its (small) acceptance solid
angle. Each infinitesimal element of the detector surface reacts to the radiant energy
coming from the directions confined to a narrow cone with the small solid-angle
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Observation

Figure 8.12.1. Physical meaning of the diffuse specific intensity column vector.

aperture AL centered around ¢. On the other hand, we can use Eq. (8.10.3) to write

~ R H "’
AQT(r,d) ~ WOJ. dp%

AV
X |:<Z(€la §)>§ Ic(r + p) + J. dq, <Z((Ala q,»de(r +p, fl’) ’
4r

(8.12.1)

where p originates at the observation point r (Fig. 8.7.1) and the integration is per-
formed over the conical volume element AV having the solid-angle aperture A2
and extending from the observation point to point C as shown in Fig. 8.12.1. The
right-hand side of Eq. (8.12.1) is simply the integral of the scattering signal per unit
surface area perpendicular to § per unit time over all particles contained in the coni-
cal volume element. It is, thus, clear what quantity describes the total polarized signal

measured by the detector per unit time: it is the product

ASAQTy(r, §),
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Detecto” 2 @

Detecto E
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Figure 8.12.2. Detectors facing the external light.

which has the dimension of power (W). The fact that the diffuse specific intensity
column vector can be measured by a polarization-sensitive optical device as well as
computed theoretically by solving the VRTE explains the practical usefulness of this
quantity in a great variety of applications.

Let us now consider a collimated detector aligned such that the direction § of the
external incident wave falls within its acceptance solid angle A£2. Applying Egs.
(8.10.9) and (8.10.7) to the conical volume element shown in Fig. 8.12.2, we con-
clude that the polarized signal measured by detector 1 per unit time is given by

AS1(r) + ASAQ Ty(r,$), (8.12.2)

where r is the position vector of the observation point. This result explains the physi-
cal meaning of the coherent Stokes column vector. Indeed, if the acceptance solid
angle of the detector were infinitely small and the axis of the detector were perfectly
parallel to the incidence direction (q =§) then the detector response would be equal
to ASI,(r), which means that the detector would measure only the Stokes column
vector of the coherent field.
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The interpretation of Egs. (8.4.5) and (8.12.2) is most transparent when the aver-
age extinction matrix is diagonal:

(K$)e = (Cox)eA, (8.12.3)

where (Cex )¢ is the extinction cross section per particle averaged over particle states.
This happens, for example, when the particles are spherically symmetric and are made
of an optically isotropic material. In this case Eq. (8.4.5) becomes

l.(r)

exp[—71g{Cex ) e S(0)] 1™
eXp[—Qexes(0)]1™, (8.12.4)

which means that the elements of the Stokes column vector of the coherent field are
exponentially attenuated with increasing s. The attenuation rates for all four compo-
nents are the same, which means that the polarization state of the coherent field does
not change with s. Equation (8.12.4) is the standard Bouguer—Beer law, in which

Qexy = n0<Cext>§ = n0[<Csca>§ + <Cabs>§] (8125)

is the attenuation (or extinction) coefficient. We see that the exponential attenuation
of the Stokes parameters of the coherent field is an inalienable property of all scatter-
ing media, even those composed of nonabsorbing particles with (Caus)s = 0. The
attenuation is a combined result of scattering of the coherent field by particles in all
directions and, possibly, absorption inside the particles. It is also important to remem-
ber that it was the inclusion of all orders of multiple scattering in the coherent field
that ultimately led to the exponential attenuation in the Bouguer—Beer law (8.12.4) as
well as to the exponential s-dependence of the general coherent transmission matrix
(8.4.6).

In general, the extinction matrix is not diagonal and can explicitly depend on the
propagation direction. This occurs, for example, when the scattering medium is com-
posed of nonrandomly oriented nonspherical particles. Then the coherent transmission
matrix H in Eq. (8.4.5) may also have nonzero off-diagonal elements, thereby yield-
ing different attenuation rates for different components of the Stokes column vector
and causing a change in the polarization state of the coherent field with increasing s.
This effect is called dichroism. A typical example of dichroic scattering media are
clouds of nonspherical interstellar grains preferentially oriented by galactic magnetic
fields. Unpolarized light emitted by spherically symmetric stars becomes partially
polarized after it passes one or several such dust clouds. Observations of this phe-
nomenon, traditionally called interstellar polarization, can provide valuable informa-
tion about sizes, shapes, and refractive indices of cosmic dust particles (Martin, 1978;
Dolginov et al., 1995).

In reality, AL2 is never equal to zero, and detectors always pick up at least some
of the diffuse light. Still if both A2 and Td(r, §) are sufficiently small and I (r) is

sufficiently large then the response of a detector facing the incident light is mostly
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(a) (b)

Figure 8.12.3. Physical meaning of (a) coherent intensity and (b) diffuse specific intensity.

determined by the Stokes column vector of the coherent field and is given by the first
term of Eq. (8.12.2). It is reasonable to expect that this happens when the detector is
located close to the volume boundary illuminated by the incident light (detector 2 in
Fig. 8.12.2) so that the coherent field is still weakly attenuated and there is not much
diffuse light propagating in directions close to the direction of incidence §.

As the detector moves farther from the boundary (detector 1), the coherent field is
increasingly attenuated and more diffuse light propagates in directions close to §,
thereby making the second term in Eq. (8.12.2) comparable to the first term. Ulti-
mately, when the detector is placed deeply inside an optically thick medium (detector
3), the detector response is heavily dominated by the diffuse light and is given by the
second term of Eq. (8.12.2).

We chose to discuss the physical meaning of Td(r, q) and I (r) in terms of the
concept of a detector of electromagnetic energy just to emphasize the polarization
content of these quantities. It is clear, however, that they describe the directional flow
of electromagnetic radiation through an arbitrary element of surface area and can be
used to quantify the energy budget of objects such as cloud and aerosol layers in
planetary atmospheres. This explains the usefulness of the RTE in radiation balance
as well as remote sensing and particle characterization applications.

The fundamental difference between the coherent Stokes column vector and the
diffuse specific intensity column vector is that the former describes a monodirectional
whereas the latter describes an uncollimated flow of electromagnetic energy. In par-
ticular, the first element of the coherent Stokes column vector, i.¢e., the coherent inten-
sity I.(r), is the electromagnetic power per unit area of a small surface element per-
pendicular to §, whereas the first element of the diffuse specific intensity column
vector, i.e., the diffuse specific intensity 7,(r, q), is the electromagnetic power per
unit area of a small surface element perpendicular to § per one steradian of a small
solid angle centered around q (Fig. 8.12.3).

The intensity can be considered to be the limit of a “highly collimated” specific
intensity, which explains the presence of the solid-angle delta-function factor &(q —§)
in the definition of the full specific intensity vector, Eq. (8.10.7). The dimension of a
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delta function is that of the inverse of its argument, which ensures that the dimension
of the product 6(q —$)I.(r) is that of specific intensity.

Perhaps the most important conclusion to remember is as follows. Since the mi-
crophysical derivation of the RTE involved statistical averaging over particle states
and positions, neither the coherent Stokes column vector nor the diffuse specific in-
tensity column vector characterize the instantaneous distribution of the radiation field
inside the scattering medium. Instead, they characterize the directional flow of elec-
tromagnetic radiation averaged over a sufficiently long period of time. Although the
minimal averaging time necessary to ensure ergodicity may be different for different
scattering systems, it is safe to say that the longer the averaging time the more accu-
rate should be the theoretical prediction based on the RTE.'

8.13 Energy conservation

A fundamental and practically important property of the RTE is that it satisfies pre-
cisely the energy conservation law. Indeed, using the vector identity

a-Vf =V-(af) - fV-a, (8.13.1)

where f'is any scalar function of spatial coordinates, and taking into account that q is
a constant vector, we can rewrite Eq. (8.11.5) in the form

VAT @] = —no(0)Kr, @)¢ 1(r, @)
+ no(r) I d§(Z(r, 4.4 1(r, Q). (8.13.2)
4

Let us now introduce the flux density vector as

F(r) = J. dqq7(r,q). (8.13.3)

4r

Obviously, the product p - F(r)dS gives the amount and the direction of the net flow
of power through a surface element dS normal to p (see Fig. 8.13.1). Integrating both
sides of Eq. (8.13.2) over all directions q and recalling Egs. (3.9.9)—(3.9.11), we ob-
tain

—V-F(r) = ny(r) I dG(Cups (r, Q) 1 (r, @) (8.13.4)
4

The physical meaning of this formula is very transparent: the net inflow of electro-

! Note that accumulating a signal over an extended period of time is often used to improve the
accuracy of a measurement by reducing the effect of random noise. However, the situation with
the RTT is fundamentally different in that averaging the signal over an extended period of time
is necessary to ensure the very applicability of the RTE.
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-

Figure 8.13.1. Electromagnetic power flow through an elementary surface element.

magnetic power per unit volume is equal to the total power absorbed per unit volume.
If the particles forming the scattering medium are nonabsorbing so that {Caps (T, q))e
= 0, then the flux density vector is divergence-free:

V-F(r) = 0. (8.13.5)

This is a manifestation of the conservation of the power flux, which means that the
amount of electromagnetic energy entering a volume element per unit time is equal to
the amount of electromagnetic energy leaving the volume element per unit time. This
important result can be used for testing various numerical techniques for solving the
RTE and is a particularly attractive feature of the RTT.

The previous discussion clearly shows that the VRTE follows from the Maxwell
equations only after several simplifying assumptions are made. Still it is very re-
warding to see that these approximations are sufficiently consistent with each other in
that the final result fully complies with the energy conservation law.

8.14 External observation points

The derivation of the VRTE presented in the previous sections implied that the obser-
vation point was located inside the scattering volume. In this section we will explain
how the solution of the VRTE can be used to calculate the response of a collimated
detector placed outside the scattering volume. This problem is important in practice
since scattering objects are often studied using external detectors of electromagnetic
radiation. Typical examples are remote-sensing observations of the terrestrial atmos-
phere from earth-orbiting satellites, ground-based telescopic observations of other
planets and various astrophysical objects, and bi-directional (polarized) reflectometry
of particle suspensions and particulate surfaces.
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Figure 8.14.1. Coherency field at external observation points.

8.14.1 Coherent field

Let us first consider the computation of the coherent field at an external observation
point r ¢ V. The analysis described in Sections 8.2 and 8.3 indicates that only for-
ward-scattering particles that lie on the line connecting the source of illumination and
the observation point can contribute to the coherent field. Hence, let us consider three
possible types of location of the observation point with respect to the scattering vol-
ume as shown in Fig. 8.14.1. The line connecting the source of illumination and ob-
servation point 1 does not go through the scattering volume, whereas the lines through
the source of illumination and observation points 2 and 3 do. However, only in the
case of observation point 3 does the scattering volume lie between the source of illu-
mination and the observation point. Therefore, repeating the derivation of Sections
8.2 and 8.3 yields

E&(r) = E™(r), (8.14.1)
EZ(r,) = E™(ry), (8.14.2)

127n,

E(r;) = exp{ As (A, §)>§]Einc(r3), (8.14.3)

1

where “ex” stands for external and As is the length of the light path inside the scat-
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tering volume as shown in Fig. 8.14.1. This result can be summarized by the follow-
ing formula:

E™(r) if r is not "shadowed" by V,

B = exp{lzkﬂAs(r)(fl(é, §))§]Einc(r) if r is "shadowed" by V,
1

(8.14.4)

where As is a function of r.
By analogy with Section 8.4, Eq. (8.14.4) can be rewritten in terms of the Stokes
column vector of the external coherent field 1$*(r):

) = {I"’C | if r is not "shadowed" by V,
exp[—ny As(r)(K@$))]I"™ if r is "shadowed" by 7,
(8.14.5)
fine

where is the Stokes column vector of the incident field. The physical interpreta-

tion of this formula is very simple: the intensity of the coherent wave is exponentially
attenuated and its polarization state changes if and only if the wave travels through
the scattering medium.

8.14.2 Ladder coherency dyadic

The derivation of the ladder approximation for the coherency dyadic
C(r) = (E(r) ®[E(M)] )

defined in terms of the total electric field E(r) at an external observation point
r ¢ V is very similar to that for the coherency dyadic at an internal point, as de-
scribed in sections 8.5 and 8.6. The only significant difference is that now only a part
of the line connecting the observation point and particle 1 (see Fig. 8.14.2) lies inside
the scattering volume (cf. Fig. 8.6.2). Therefore, the final result is as follows:

CN(r) = J' dp Z*(r, -p), (8.14.6)
4r

where the vector p originates at the observation point, p = p/p is the unit vector in
the direction of p, and the external ladder specific coherency dyadic is the sum of the
coherent and diffuse parts:

I, —p) = E&(r,—p) + E(r,—p). (8.14.7)
The coherent part is given by
Z(r,—p) = 3(p+8)C(r), (8.14.8)

where
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Figure 8.14.2. Coherency dyadic at an external observation point.
(8.14.9)

C&r) = EG(n) @ [EX ()]’
is the coherent part of the “external” coherency dyadic C**(r) and the external co-
herent field EZ*(r) is given by Eq. (8.14.4). The diffuse part of the external ladder

specific coherency dyadic vanishes if p ¢ Q2(r), where Q(r) is the solid angle
subtended by the scattering volume when it is viewed from the external observation

point r (see Fig. 8.14.2). Otherwise it is given by
r(Cy)

dp | d& 7P, p) - 4(-p,8) - C.(r + p)

E(r,—p) = ny
p(C)
AP, 8™ - [ (=P, p)I™
fdél J'dRZIdﬁmdfz (=P, p) - A(—p,—Ry)

p(Cy)
dp

+nd
p(C)
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. ﬁ(_ﬁZI: Ry)- 22(_ﬁ21, $)- éc(r +p+Ry)
T A (-Ry, 1™ - [7(-Ryy, Ry)I™
[A(=p, —Ro)]™ - [77(=p, p)I"*

p(Cy)

+ 1 dp J‘dél de21dR21d§2 JdR32 dﬁn d&;7i(-p, p)
p(C)

: 21(_137 _ﬁZI) : ﬁ(_RZD R21) . 22(_1i215 _li32)
: ﬁ(—ﬁsza Ry)- ;13(_ﬁ32: §)- éc(r +p+ Ry +Ry)
[As(—Rip, )™ - [7(—Rp, Ryp)]™
. [22(_R21’ _RBZ)]T* : [ﬁ(—ﬁzl» RZI)]T*
[A(=p, —R)I™ - [7i(=p, p)]™
+ o pe Q). (8.14.10)

The notation is clear from Fig. 8.14.2. Note that R,, ranges from zero at the origin of
particle 1 to the corresponding value at point C,, Rj, ranges from zero at the origin
of particle 2 to the corresponding value at point C;, etc.

Direct comparison of Eq. (8.14.10) with Eq. (8.6.7) leads us to a fundamental
conclusion: the external diffuse specific coherency dyadic for a direction —p such
that p € 2(r) is equal to the internal diffuse specific coherency dyadic at a boundary
point C where the line drawn through the observation point in the direction p enters
the scattering volume (see Fig. 8.14.2). Thus,

. 0 if pe Q2
25 (r,—p) ={ . o 1 f’ # 2(r), (8.14.11)
Zd[rC(ra p)a _p] if PE Q(r)a

where 1. is the position vector of the point C (see Fig. 8.14.2). Obviously, r. is a
function of r and p. Equations (8.14.6) and (8.14.7) then demonstrate that the ladder
coherency dyadic at the external observation point can be expressed in terms of the
internal diffuse specific coherency dyadic at those boundary points of the scattering
volume that are “visible” from the observation point (the part of the boundary visible
from the observation point r is highlighted in Fig. 8.14.2).

8.14.3 Specific intensity column vector

It is straightforward to rewrite Egs. (8.14.7)—(8.14.9) and Eq. (8.14.11) in terms of the
full specific intensity column vector at the external observation point:

T(r,—p) = 18(r,—p) + 1$(r,—p), (8.14.12)

where



214 Chapter 8

T(r,—p) = 8(p +8§)I(r) (8.14.13)

is the external coherent specific intensity column vector,

- 0 if pe Q
1§(r,—p) ={ P e 2w, (8.14.14)

Tylre(r,p),—p]  if pe Q(r)

is the external diffuse specific intensity column vector, Ig*(r) is given by Eq.
(8.14.5), and 0 is a 4x1 zero column. As was the case with the external diffuse spe-
cific coherency dyadic, the external diffuse specific intensity column vector for a di-
rection —p such that p € £2(r) is equal to the internal diffuse specific intensity col-
umn vector at that boundary point where the line drawn through the observation point
in the direction P enters the scattering volume (Fig. 8.14.2). Furthermore, it vanishes
for all directions —p such that p ¢ Q(r).

8.14.4 Discussion

The physical significance of these results is illustrated in Fig. 8.14.3. All four external
polarization-sensitive, well-collimated detectors have a small surface area AS and a
small angular aperture. However, the orientations of the detectors and their positions
are different. In order to emphasize the difference in the orientations of the four de-
tector acceptance solid angles, we denote the latter as A€, A€2,, AL;, and ALQ,,
whereas the position vectors of the respective observation points will be denoted as
r, Iy, Ij and r,.

Detector 1 faces the incident wave, but its acceptance solid angle A2, captures
no boundary points of the scattering volume. Therefore, the polarization signal meas-
ured by the first detector per unit time is given by

Signal1 = ASI™ (8.14.15)

Detector 2 is positioned and oriented such that its acceptance solid angle A£2,
does not capture the incidence direction, but captures all points of the part of the
boundary denoted S,. Therefore, the polarized signal measured by this detector per
unit time is given by

Signal2 = AS I dp T§* (rp, —p)
AQ,

AS j dp Talre(ry, B), —P1, (8.14.16)
AR,

where, as before, the unit vector p originates at observation point 2 and ro€ V is
the position vector of the point where the line drawn through the observation point in
the direction p crosses the boundary of the scattering volume (see Fig. 8.14.2).

The acceptance solid angle of detector 3 captures both the incidence direction and
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Figure 8.14.3. Polarized signal measured by an external collimated detector depends on the
detector position and orientation with respect to the scattering volume.

all points of the part of the boundary denoted S;. Therefore, the polarized signal
measured by detector 3 per unit time is

Signal 3 = ASexp[—n, As(r3)<K(§)),§]lin° + AS J' dp I [rc(rs, p), —Ppl,

A,

(8.14.17)

where, as before, As(r;) is the length of the path traveled by the coherent wave inside
the scattering volume before it reaches observation point 3 (see Fig. 8.14.1).

Finally, neither the incidence direction nor any boundary point is captured by the
acceptance solid angle of detector 4. Therefore, this detector measures no signal:

Signal4 = 0. (8.14.18)

After the VRTE has been solved and, as a result, the diffuse specific intensity col-
umn vector is known at all points of the scattering volume, Egs. (8.14.15)—(8.14.18)
can be used to calculate the polarization response of an external collimated detector
arbitrarily oriented and positioned with respect to the scattering volume V. Although
heuristic equivalents of these formulas have been widely used in the framework of the
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Figure 8.14.4. First-order scattering.

phenomenological RTT (see the discussion in Section 18.16), it is highly rewarding to
see that they can be consistently derived using the microphysical approach.

8.14.5 Illustrative example: first-order scattering

To give an example of applying the above formulas, let us now assume that the num-
ber of particles in the scattering volume is sufficiently small that

|no LIKK(@)) ¢ 0] <1 (8.14.19)
and

1o LICZ(q, 4 e],pg] < 1 (8.14.20)
forp,g=1, ...,4 and for any q and q’, where L is the largest linear dimension of the

volume element. As a consequence, one may neglect all terms proportional to powers
of n, higher than the first and, thus, all orders of scattering higher than the first.

The scattering situation is shown schematically in Fig. 8.14.4, in which the di-
ameter of the sensitive area of the detectors is assumed to be significantly greater than
L and their angular aperture A£2 is large enough to encompass the entire scattering
volume. We will further assume that the distance » from the volume element to the
detectors is much greater than L so that the waves scattered by different particles to-
ward either detector propagate in essentially the same direction and the distance from
the observation point to any particle inside the volume element is approximately the
same. The electromagnetic response of either detector is calculated by integrating the
full specific intensity column vector over the detector sensitive area and angular ap-
erture. Let us recall the integral form of the VRTE, Eq. (8.10.3). We can now use Egs.
(8.14.5) and (8.14.14) to derive that the polarized signal measured by detector 1 per
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unit time is given by
H inc a inc AS 4 a inc
Signal1 = ASI™ — N(K@E) ™ + — N(Z(, ) 1™, (8.14.21)
r
whereas that measured by detector 2 per unit time is given by
. AS A A i
Signal2 = — N(Z(q,9)) I, (8.14.22)
r

where N = nyV is the total number of particles in the volume element. Not surpris-
ingly, this is the same result as that obtained in the framework of the first-order-
scattering approximation for a small volume element, Egs. (7.7.13) and (7.7.14).

8.15 Other types of illumination

The above microphysical derivation of the VRTE was explicitly based on the as-
sumption that the incident light is a plane electromagnetic wave. This was done pri-
marily to make more natural the introduction of concepts such as the coherent field
and to facilitate the comparison of the microphysical and phenomenological ap-
proaches to radiative transfer. However, we could have made the derivation of the
VRTE more general by using the terminology introduced in Section 3.10. Specifi-
cally, one can express the total electric field everywhere in space and at any moment
in terms of the transformation dyadic of the entire multi-particle group,

E(r,7) = T(t, o, r,8) - Ei exp(—iwr), re R, (8.15.1)
and then use the following Twersky approximation for the ’f'(t, w,r,8):
T(t, o,r,8) = exp(ik$-r)]
N N N
+ z exp(ik§ - R,) B,y + Z Z exp(iki§ - R ) B,; - Byo
i=1 i=1

=1

j#i
N N N
e S expliks R By By - B
i=1 j=1 I=1
j#Ei 1#i
1#j
N N N N
i=1 j=1[I=1 m=1
J#Ei I#i m#i
I#£j m#j
m#l
. (8.15.2)

(cf. Eq. (8.1.13)). The transformation dyadic depends on time explicitly in order to
account for the temporal variability of the multi-particle configuration. Equation
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(8.15.2) is valid at any point located in the far-field zones of all the particles forming
the scattering medium. The next step is to consider one of the illumination scenarios
discussed in Sections 3.10-3.12 and compute the time average of the coherency dy-
adic of the total field by using the diagrammatic technique introduced in the previous
sections and the ladder approximation. This procedure also yields the VRTE.

Specifically, let us first assume that the discrete scattering medium is illuminated
by a parallel quasi-monochromatic beam and that significant changes of the transfor-
mation dyadic occur much more slowly than the random oscillations of the electric
field amplitude. It is then straightforward to show that Egs. (8.4.5), (8.10.3) and
(8.10.4) remain unchanged provided that the Stokes column vector of the incident
plane wave in Eq. (8.4.5) is replaced by the time-averaged Stokes column vector of
the quasi-monochromatic beam.

Second, if the medium is illuminated by N quasi-monochromatic beams with ar-
bitrary propagation directions then it can be shown that the total specific intensity
column vector is given by

N
T = ) T a. (8.15.3)
i=1

where
Ti(r,4) = 3§ — $)1(r) + Ty(r, @) (8.15.4)

is the ith “partial” specific intensity column vector obtained by solving the VRTE
under the assumption that the scattering medium is illuminated only by the ith quasi-
monochromatic beam propagating in the direction §,.

Finally, Eq. (8.15.3) remains valid if the medium is illuminated by N plane elec-
tromagnetic waves provided that all of them have different angular frequencies.

These important properties of the VRTE can be used to extend significantly its
range of applications. In particular, the VRTE can be applied to situations in which
the external source of light is multispectral, such as the sun.

8.16 Phenomenological approach to radiative transfer

After we have presented the detailed derivation of the VRTE from the Maxwell equa-
tions, it is interesting to compare the self-consistent microphysical methodology with
the traditional phenomenological approach to radiative transfer (e.g., Chandrasekhar,
1950; Rozenberg, 1955; Preisendorfer, 1965). Since the latter cannot be used to de-
rive many facts that appear as corollaries of classical electromagnetics in the frame-
work of the microphysical approach, one has to postulate them. For example, it natu-
rally follows from the microphysical derivation that the average (coherent) field in-
side the discrete random medium is exponentially attenuated and serves to replace the
constant-amplitude incident field as the de facto source of multiple scattering (cf. the
original order-of-scattering expansion (8.1.11), in which multiple scattering is initi-
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ated by the incident field, and Diagram 8.5.4(c), in which the source of multiple scat-
tering is the coherent field). In contrast, the phenomenological approach begins with a
postulate that the incident parallel beam of light is exponentially attenuated as it
propagates through the medium and serves as the initial source of multiple scattering.

Another postulate of the phenomenological approach is that the diffuse radiation
field at each point r inside the scattering medium and at each moment in time can be
represented by a collection of elementary “rays” with a continuous distribution of
propagation directions ¢ and can be characterized by the local four-component dif-
fuse specific intensity column vector:

Iy(r, @)
Ty(r,q) = g“g 2; . (8.16.1)
d\ts
Va(r, @)

The elementary rays are postulated to be mutually incoherent and make independent
contributions to Td(r, q). The elements Qd(r, q), Uy(r,q), and V,(r,q) describe the
polarization state of the ray propagating in the direction q through the observation

point specified by the position vector r, whereas the product
dSdtdR27T,(r,q)

gives the amount of electromagnetic energy transported through a surface element
dS normal to q and centered at r in a time interval d¢ in all directions confined to a
solid angle element d£2 centered at the direction of propagation q. All elements of
the specific intensity column vector have the dimension of radiance. The direct
propagation of the incident parallel beam of light through the medium is described by
the “monodirectional” four-component Stokes column vector |.(r) having the di-
mension of intensity.

Thus, there is a fundamental difference between how the phenomenological and
microphysical approaches treat the random radiation field. The phenomenological
approach begins with a postulate of existence of the diffuse specific intensity column
vector and the Stokes column vector of the direct light at each moment in time. In the
framework of the microphysical approach these quantities are derived from more fun-
damental ones and are shown to describe the directional flow of electromagnetic ra-
diation averaged over a sufficiently long period of time (Section 8.12).

It is easy to understand why the phenomenological way to introduce the specific
intensity column vector is wrong. At a moment of time ¢ = ¢, the particles constitut-
ing a turbid medium form a distinct configuration, as illustrated in Fig. 8.16.1. The
straight line extending through the observation point r in the —q, direction does not
go through any particle. Therefore, one has to conclude that

Tur.q)|_ =0

g}



220 Chapter 8

e O *ZQ o F ° @ ¢
. PN
& ® . 8% e\ L. o & . ®
\ ! g
N B - o a I: (=) & . e ©
* e ¢ ° e Y. ® A o
‘ e b Y k) (] .
@ g » @ ° W e e
: 2 B Observation . e
s % H e 8 0
o A Y ] ° & FS pOI‘nt o ° @
.‘ @ o * & @ & v . :. ¢ o ®
Te ® o . o » . & . @
© B <9 o ® B ° o *q dy p - ¢ ®

Figure 8.16.1. Specific intensity column vector cannot be defined at a moment in time.

The straight line extending through the observation point in the —q, direction goes
through three particles, which suggests that
L) #0

1

Thus, the phenomenological specific intensity column vector is not a continuous
function of propagation direction at any moment in time. Rather, it is the explicit av-
eraging of the coherency dyadic over particle positions in the microphysical approach
that ensures that the specific intensity column vector depends on propagation direc-
tion continuously.

Another reason why it is impossible to define an instantaneous diffuse specific
intensity column vector of the radiation field is as follows. The Stokes parameters can
only be defined for a transverse electromagnetic wave or a superposition of transverse
waves propagating in the same direction, whereas the instantaneous total field created
by an N-particle group at an observation point is a superposition of the incident plane
wave and N spherical waves coming from the N individual particles. The resulting
field is neither a plane nor a spherical wave with a specific propagation direction and
its electric and magnetic vectors are not always orthogonal, contrary to the assump-
tion made on p. 393 of Preisendorfer (1965). Again, it is the explicit averaging of the
coherency dyadic over particle positions in the microphysical approach that ultimately
allows one to quantify the polarization response of a detector of electromagnetic en-
ergy in terms of an incoherent sum of the Stokes parameters of the spherical waves
generated by the N individual particles.
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T,r +dgd, q)

Figure 8.16.2. Phenomenological interpretation of the RTE.

The phenomenological RTT treats the medium filled with a large number of dis-
crete, sparsely and randomly distributed particles as continuous and locally homoge-
neous and is fundamentally based on the concept of an elementary (or differential)
volume element of the scattering medium. Specifically, it replaces the concept of sin-
gle scattering and absorption by an individual particle with the concept of single
scattering and absorption by an elementary volume element. It is assumed that the
result of scattering is not the electromagnetic transformation of a plane incident wave
into a spherical scattered wave in the far-field zone of the volume element, but rather
the transformation of the diffuse specific intensity column vector of the incident light
into the diffuse specific intensity column vector of the scattered light. This assump-
tion appears to be especially artificial because the scattering transformation law is
then written in the form

Ty(r,q) o« Zgp(§,G") To(r,q")

A A2

and Z4,(q,q"), called the phase matrix of the elementary volume element, is com-
puted from electromagnetics. Specifically, it is postulated that

Z,(4,9") = nodV(Z(q. 4

where n, is the particle number density, dV is the size of the elementary volume
element, Z(q,q’) is the single-particle phase matrix describing the transformation of
an incident plane electromagnetic wave into the scattered spherical wave, and (---)¢
denotes an average over all physically realizable particle states.

It is further postulated that the change of the Stokes column vector of direct light
I.(r) over a differential length ds parallel to the incidence direction is caused by ex-
tinction and dichroism and can be described by Eq. (8.4.4) in which, again, the single-
particle extinction matrix is computed from Maxwell’s electromagnetics.

In addition, it is postulated that the cumulative change of the diffuse specific in-
tensity column vector over the length dg of an elementary cylindrical volume element
having bases of an area d4 perpendicular to ¢ (see Fig. 8.16.2) is caused by:
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The effect of extinction and dichroism.

e The contribution of the diffuse light illuminating the volume element from all
directions §’ and scattered into the direction 4.

e The contribution of the attenuated external beam scattered into the direction

q.
These three components are described by the first, second, and third terms, respec-
tively, on the right-hand side of Eq. (8.10.4).

It is thus clear that the phenomenological approach is based on a rather eclectic
combination of concepts borrowed from pure radiometry (light rays as geometrical
trajectories along which radiant energy is assumed to be propagated, the concept of
incoherent radiance) and pure electromagnetism (electromagnetic scattering of plane
waves, Stokes parameters, phase and extinction matrices).

The concept of an elementary volume element is implicitly based on the modified
uncorrelated single-scattering approximation discussed in Section 7.3. A fundamental
problem here is that the MUSSA is only valid in the far-field zone of the elementary
volume element as a whole and cannot be applied to adjacent volume elements having
common boundaries. In particular, we have seen in Section 7.6 that the far-field zone
of a volume element may begin at a distance exceeding the volume element’s size by
several orders of magnitude.

Another problem is caused by the assumption that the RTE describes the instanta-
neous state of the radiation field. Indeed, in order to justify the use of the phase and
extinction matrices averaged over all particle states in Egs. (8.4.4) and (8.10.4), one
has to require that all physically realizable particle states (sizes, shapes, orientations,
refractive indices, etc.) be well represented in each elementary volume element at any
moment in time (e.g., West et al., 1994). Since this requirement may imply an unre-
alistically large size of an elementary volume element, it has been concluded that the
RTE may need a substantial modification when it is applied to scattering media such
as terrestrial water clouds (e.g., Knyazikhin et al., 2002). However, this conclusion
does not take into account the following important consequences of the microphysical
derivation of the RTE: (i) the concept of an elementary volume element has no actual
relevance to the RTT, and (ii) the RTE describes a time average of the directional
flow of electromagnetic radiation rather than its instantaneous pattern. Therefore, the
range of applicability of the RTE is significantly wider than what the phenomenologi-
cal approach may imply.

Of course, there is nothing wrong with the conception of postulating certain basic
physical laws. In fact, any advanced physical theory must ultimately be based on a
self-consistent set of well-defined axioms and have the formal structure of a mathe-
matical theory (e.g., Sappes, 2002). The seemingly self-evident phenomenological
concepts of radiative transfer have been taken for granted for more than a century
and, with a few exceptions, have been traditionally presented as something that does
not need proof. However, postulating phenomenological concepts such as the notion
of the diffuse specific intensity or the Bouguer—Beer extinction law has the adverse
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effect of implying that the transfer of electromagnetic energy in discrete random me-
dia is controlled by fundamental physical laws other than the Maxwell equations.

One might argue that the microphysical derivation of the RTE from the Maxwell
equations is too complicated and, unlike a half-a-page phenomenological “deriva-
tion”, requires many pages of formulas and graphs. However, the microphysical ap-
proach has several decisive advantages. First, one can make certain that the RTT does
not need any basic physical postulates other than the Maxwell equations. Second, the
exact physical meaning of all participating quantities and their relation to more fun-
damental physical quantities become clear and unambiguous. Third, the range of ap-
plicability of the RTE becomes well characterized. Fourth, it becomes possible to
establish the relation of the RTT to the effect of coherent backscattering (Chapter 14).

Another phenomenological way to introduce the RTE is to invoke Einstein’s con-
cept of photons (e.g., Ivanov, 1973), describe the radiation field in terms of a “photon
gas”, and postulate that the photon gas satisfies the Boltzmann kinetic equation (see,
for example, Pomraning, 1991; Fernandez et al., 1993; Thomas and Stamnes, 1999;
Mobley and Vo-Dinh, 2003). This approach is based on associating energy transport
with the directional flow of localized particles of light, photons, each carrying energy
of amount /4v, where % is Planck’s constant and v is frequency. The diffuse specific
intensity is then given by

Iy(r,@) = hvef(r,q),

where c is the speed of light and f(r, q) is the photon distribution function such that
dSdQcf(r,q) is the number of photons crossing an element of surface area dS
normal to § and centered at r in directions confined to an element of solid angle d(2
centered around q per unit time.

The concept of a photon as a localized particle of light was proposed by Albert
Einstein in his 1905 paper on the photoelectric effect. Specifically, he suggested that
the energy of a light ray spreading out from a point source is not continuously distrib-
uted over an increasing space but consists of a finite number of energy quanta which
are localized at points in space (see Arons and Peppard, 1965).

However, it is known from quantum electrodynamics that there is no position op-
erator for a photon and that it is impossible to introduce a photon wave function in the
coordinate representation (e.g., Section 2.2 of Akhiezer and Berestetskii, 1965). In
fact, photons are quantum excitations of the normal modes of the electromagnetic
field and as such are associated with plane waves of definite wave vector and definite
polarization but infinite lateral extent (Mandel and Wolf, 1995). This means that
photons are not localized particles (Lamb, 1995; see also Section 8.18 below). Thus,
the quantum theory of radiation does not allow one to associate the position variable r
with a photon and even to speak about the probability of finding a photon at a par-
ticular point in space (Wolf, 1978). It is, therefore, impossible to define f(r,q) as a
function of photon coordinates and claim that it satisfies the Boltzmann transport
equation.
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Another fundamental problem with the “photonic” approach is that it is unclear
why the phase and extinction matrices entering the VRTE are still defined and com-
puted in the framework of classical macroscopic electromagnetics. Furthermore, it
remains unknown whether there is a relation between the RTT and the effect of co-
herent backscattering.

It is worth emphasizing again that the detailed microphysical derivation of the
VRTE described in this chapter leads quite naturally to the definition of the coherent
and diffuse Stokes column vectors, clarifies the physical meaning of all quantities
entering Egs. (8.10.5) and (8.10.6), and makes unnecessary the multiple controversial
assumptions of the phenomenological approach. In particular, it eliminates the need to
introduce the troublesome and vague notion of an elementary volume element and
avoids completely the use of the misleading “photonic” language.

8.17 Scattering media with thermal emission

If the absolute temperature of the particles forming the scattering medium becomes
sufficiently high, the emitted component of the total radiation field can become com-
parable to the multiply scattered component, thereby making necessary a modification
of the VRTE. This is usually accomplished by assuming that the emission process is
not related directly to the scattering process. This implies that the light emitted by a
particle at an angular frequency @ is optically independent of the light incident on
and scattered by the particle at this frequency and depends only on the particle tem-
perature, size, shape, orientation, and refractive index.> As a result, the radiation
emitted by the particle is added incoherently to the radiation scattered by the particle,
thereby contributing another term to the right-hand side of Eq. (8.11.5):

q-VI(r,§ o) = —n@)Kr,§ ) 1(r,§, o)
+ n(r) J' d§"(Z(r, 4,4, @) 1(r,§’, 0)
4r

+ ny(r)(K([r,q,7(r), @], (8.17.1)

where (K([r,q,T(r), w])¢ is the single-particle emission Stokes column vector (Sec-
tion 3.13) averaged over particle states. Note that we have allowed the particle tem-
perature to vary with r and added the argument @ to explicitly indicate the depend-
ence of the radiation field on angular frequency. The dimension of the elements of the
frequency-dependent specific intensity column vector is Wm™ st rad' s rather than
Wm? s

In the following chapters, we will study only the emission-free VRTE (8.11.5),
thereby assuming that the particle temperature is not high enough to make the emis-

2 The particle temperature may itself depend on the characteristics of the incident radiation,
most of all on its intensity and spectral distribution.
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sion component of the radiation field comparable to the multiply scattered one.

8.18 Historical notes and further reading

The derivation of the VRTE in this chapter largely follows that given in Mishchenko
(2002, 2003). Important early contributions to the microphysical derivation of the
VRTE for discrete random media were made by Borovoy (1966) and Dolginov ef al.
(1970). Many aspects of the multiple-scattering theory for discrete random media are
discussed by Tsang and Kong (2001).

The phenomenological RTT is outlined in the classical texts by Kourganoff (1952,
1969), Chandrasekhar (1950), Preisendorfer (1965), and Ishimaru (1978) (see also
Mobley, 1994; Thomas and Stamnes, 1999). The early history of the phenomenologi-
cal theory of radiative transfer is described by Ivanov (1994). He traces the origin of
the simplest form of the RTE (no account of polarization, isotropically scattering par-
ticles) to papers by Lommel (1887) and Chwolson (1889). Unfortunately, those early
publications have remained largely unnoticed, and the first introduction of the RTE
has traditionally been attributed to the paper by Schuster (1905).

Gans (1924) was the first to consider the transfer of polarized light in a plane-
parallel Rayleigh-scattering atmosphere; however, he analyzed only the special case
of perpendicularly incident light and considered only the first two components of the
Stokes column vector. The case of arbitrary illumination and arbitrary polarization
was first studied by Chandrasekhar (1947a). Rozenberg (1955) introduced the most
general form of the VRTE for scattering media composed of arbitrarily shaped and
arbitrarily oriented particles.

The concept of photons has been thoroughly misused in the phenomenological
treatment of radiative transfer. It is important to remember that photons are not local-
ized particles (e.g., Section 4.10 of Bohm, 1951; §88 of Kramers, 1957; Section 5.1 of
Power, 1964), which makes the words like “photon position”, “photon path”, “photon
trajectory”, or “local flow of photons” physically meaningless. Although the term
“photon” is ubiquitous in quantum electrodynamics and quantum optics, there it
means nothing more than a quantum of a single normal mode of the electromagnetic
field (Mandel and Wolf, 1995). Since the normal modes have an infinite lateral ex-
tent, they cannot be interpreted as “particles”. If the solution of a specific problem
does require quantization of the electromagnetic field then the most one can say is
that the photons represent a discrete character of light in that specific application but
not a “particle” character.

If one is tempted to use the word “photon” to describe a relatively localized
“packet” of radiation, it should be remembered that the Fourier analysis requires a
wavepacket to consist of a superposition of normal modes. The drawback of this
“particle” interpretation is that each source emits its own kind of wavepackets, which
leaves one with a wide variety of analytical representations of a wavepacket or worse,
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no analytical representation at all (Meystre and Sargent, 1999).

The quest for a photon as a universal localized quantum of light appears to be as
hopeless now as it has ever been, as revealed by the October 2003 supplement to Op-
tics and Photonics News titled “The Nature of Light: What is a Photon?”” (Roychoud-
huri and Roy, 2003). Unfortunately, most undergraduate textbooks on modern physics
and even many graduate texts remain profoundly confusing and often misleading on
this issue.® Their authors keep relishing the so-called “wave-particle duality” of light
which was discarded following the development of quantum electrodynamics seven
decades ago. Furthermore, they appear not to realize that one does not need the con-
cept of a photon as a particle of light to explain the photoelectric and Compton effects
and that this concept is inconsistent with the Planck energy distribution law, the facts
established in the 1910s and 1920s (see, for example, Kidd ez al., 1989 and references
therein).* An excellent remedy to these textbooks are the thorough discussions of the
concept of a photon and its history in Kidd ef al. (1989) and Lamb (1995). In the for-
mer, the authors boldly assert that elementary texts would do well to drop the corpus-
cular photon (except, perhaps, as a historical topic) and switch to the semi-classical
treatment as the first approximation to the modern quantum electrodynamics ap-
proach.

Unfortunately, the word “photon” is invoked most commonly in circumstances in
which the electromagnetic field is classical and has no quantum character whatsoever.
The word “photon” then serves as nothing more than a catchy synonym for “light”.
This usage of the word “photon” is especially misleading and should be avoided.

An interesting theoretical study of the range of applicability of the RTE was per-
formed by Roux ef al. (2001). They used an exact Monte-Carlo solution of the elec-
tromagnetic scattering problem for a slab containing randomly located parallel infinite
cylinders and compared the results with those obtained using the corresponding two-
dimensional radiative transfer theory (Mishchenko et al., 1992).

There have been a few successful attempts to solve numerically the general VRTE
without making overly restrictive assumptions about the morphology of the scattering
medium. They have been documented in Haferman et al. (1997), Emde et al. (2004),
and Battaglia and Mantovani (2005).

In this chapter, we derived the RTE for a medium composed of discrete scattering
particles. However, a similar equation describes multiple scattering of light in a con-
tinuous medium with random fluctuations of the refractive index. The reader is re-
ferred to Barabanenkov et al. (1972), Papanicolaou and Burridge (1975), and Fante
(1981) for discussions of this other branch of the RTT.

? The textbook by Lipson ef al. (2001) is a rare exception.
* For modern semi-classical treatments of the photoelectric effect, see Chapter 11 of Schiff
(1968) and the paper by Fearn and Lamb (1991).
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Calculations and measurements of single-particle
characteristics

It follows from the structure of the VRTE that the first step in solving this equation
for a specific scattering medium must be the determination of the single-particle ex-
tinction and phase matrices averaged over the relevant range of particle states. These
quantities are also necessary to describe single scattering by an individual random
particle as well as a small random particle group (Chapters 6 and 7). Given the un-
limited variability of particles in natural and anthropogenic environments, as illus-
trated by Fig. 9.0.1, the computation of (K(8))¢ and (Z(q, q"))¢ can be a rather non-
trivial problem. The case of spherically symmetric particles is an exception since it
can be handled easily using the classical Lorenz—Mie theory or one of its extensions.
However, the optical properties of nonspherical and heterogeneous particles must be
either computed using a sophisticated theory or measured experimentally, both ap-
proaches having their strengths, weaknesses, and limitations.

The aim of this chapter is to provide a brief summary of the existing theoretical and
experimental techniques for determination of the single-particle characteristics. More
detailed information and further references can be found in MTL, in the book edited by
Mishchenko et al. (2000a), and in a recent review by Kahnert (2003).

9.1  Exact theoretical techniques

Most of the existing exact theoretical approaches belong to one of two broad categories.
Differential equation methods yield the scattered field via the solution to the Maxwell
equations or the vector wave equation in the frequency or in the time domain, whereas
integral equation methods are based on the volume or surface integral counterparts of the
Maxwell equations.

227
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(d) (e)

Figure 9.0.1. Examples of man-made and natural small particles. (a) Commercial glass
spheres (after Bangs and Meza, 1995). (b) Sahara desert sand (after Volten et al., 2001). (c)
Dried sea-salt particles (after Chamaillard et al., 2003). (d) Fly ash particles (after Ebert ez a/.,
2002). (e) Biological microparticles (after Ebert et al., 2002). (f) Cirrus cloud crystals (after
Armott et al., 1994).

The prime example of a differential equation method is the Lorenz—Mie theory (van
de Hulst, 1957; Bohren and Huffman, 1983; MTL). The incident, internal, and scattered
fields are expanded in suitable sets of vector spherical wave functions (VSWFs). The
expansion coefficients of the incident plane wave can be computed analytically, whereas
those of the incident and scattered fields are determined by satisfying the boundary con-
ditions, Section 2.2, on the sphere surface. Owing to the orthogonality of the VSWFs,
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each expansion coefficient of either the internal or the scattered field is determined sepa-
rately. This makes the Lorenz—Mie theory extremely efficient and numerically exact.
Several computer implementations of the Lorenz—Mie solution are available on the
World Wide Web. Section 5.10 of MTL provides a detailed user guide to the Lorenz—
Mie code posted at http:/www.giss.nasa.gov/~crmim. By implementing a recursive
procedure, one can generalize the Lorenz—Mie solution and treat concentric multi-layer
spheres (e.g., Babenko et al., 2003 and references therein).

The separation of variables method (SVM) for spheroids provides the solution of
the electromagnetic scattering problem in the spheroidal coordinate system by means
of expanding the incident, internal, and scattered fields in vector spheroidal wave
functions (Oguchi, 1973; Asano and Yamamoto, 1975). The expansion coefficients of
the incident field are computed analytically, whereas the unknown expansion coeffi-
cients of the internal and scattered fields are determined by applying the boundary
conditions, Section 2.2. Because the vector spheroidal wave functions are not or-
thogonal on the spheroid surface, this procedure yields an infinite set of linear alge-
braic equations for the unknown coefficients which must be truncated and solved nu-
merically. The obvious limitation of the SVM is that it applies only to spheroidal
scatterers, whereas its main advantages are the ability to produce very accurate results
and the applicability to spheroids with extreme aspect ratios. This technique was sig-
nificantly improved by Voshchinnikov and Farafonov (1993) and was extended to
core-mantle spheroids by Onaka (1980), Cooray and Ciric (1992), and Farafonov et
al. (1996). Further references can be found in the review by Ciric and Cooray (2000)
and the book by Li et al. (2002).

The finite element method (FEM) is a differential equation technique that yields
the scattered field by means of solving numerically the vector Helmholtz equation
subject to the standard boundary conditions. The particle is imbedded in a finite com-
putational domain discretized into many cells with about 10 to 20 cells per wave-
length. The electric field values are specified at the nodes of the cells and are initially
unknown. Using the boundary conditions, the differential equation is converted into a
matrix equation for the unknown node field values. The latter is solved using the
standard Gaussian elimination or preconditioned iterative techniques such as the
conjugate gradient method. Although scattering in the far-field zone is an open-space
problem, the FEM is always implemented in a finite computational domain in order to
limit the number of unknowns. Therefore, approximate absorbing boundary condi-
tions must be imposed at the outer boundary of the computational domain in order to
suppress wave reflections back into the domain and permit the numerical analogs of
the outward-propagating wave to exit the domain almost as if it were infinite. The
FEM can be applied to arbitrarily shaped and inhomogeneous particles and is simple in
concept and implementation. However, FEM computations are spread over the entire
computational domain rather than confined to the scatterer itself, thereby making the
technique slow and limited to size parameters less than about 10. The finite spatial dis-
cretization and the approximate absorbing boundary condition limit the accuracy of the
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method. Further information about the FEM can be found in the books by Silvester and
Ferrari (1996), Volakis et al. (1998), and Jin (2002).

Unlike the FEM, the finite difference time domain method (FDTDM) yields the
solution of the electromagnetic scattering problem in the time domain by directly
solving the Maxwell time-dependent curl equations (2.1.2) and (2.1.4) (Yee, 1966).
The space and time derivatives of the electric and magnetic fields are approximated
using a finite difference scheme with space and time discretizations selected so that
they constrain computational errors and ensure numerical stability of the algorithm.
Since the scattering object is imbedded in a finite computational domain, absorbing
boundary conditions are employed to model scattering in the open space. Modeling
scattering objects with curved boundaries using rectangular grid cells causes a stair-
casing effect and increases numerical errors, especially for particles with large rela-
tive refractive indices. Since FDTDM yields the near field in the time domain, a spe-
cial near-zone to far-zone transformation must be invoked in order to compute the
scattered far field in the frequency domain. The FDTDM shares the advantages of the
FEM as well as its limitations in terms of accuracy and size parameter range. Additional
information on the FDTDM and its applications can be found in the books by Kunz and
Luebbers (1993) and Taflove and Hagness (2000) as well as in the review by Yang and
Liou (2000).

The point-matching method (PMM) is a differential equation technique based on
expanding the incident and internal fields in VSWFs regular at the origin and ex-
panding the scattered field outside the scatterer in outgoing VSWFs. The expansion
coefficients of the incident field are computed analytically, whereas the coefficients
of the internal and scattered fields are found by truncating the expansions to a finite
size and matching the fields at the surface of the scatterer via the application of the
boundary conditions. In the simple PMM, the fields are matched at as many points on
the surface as there exist unknown expansion coefficients (Oguchi, 1973). The simple
PMM often produces poorly converging and unstable results, which may be attributed
to the fact that it relies on the so-called Rayleigh hypothesis. The convergence prob-
lem of the simple PMM appears to be partly ameliorated in the generalized PMM
(GPMM) by creating an overdetermined system of equations for the unknown coeffi-
cients by means of matching the fields in the least squares sense at a number of sur-
face points significantly greater than the number of unknowns (Morrison and Cross,
1974). The performance of the GPMM is further improved by employing multiple
spherical expansions to describe the fields both inside and outside the scattering ob-
ject. This multiple-expansion GPMM (ME-GPMM) does not rely on the Rayleigh
hypothesis and is otherwise known as the generalized multipole technique, discrete
sources method, and Yasuura method (Wriedt, 1999; Doicu et al., 2000).

As we have seen in Section 3.1, the interaction of an incident electromagnetic
wave with an object of volume Vi is fully described by the volume integral equa-
tion (3.1.21). The calculation of the scattered field using Eq. (3.1.22) would be
straightforward except that the internal electric field is unknown. Therefore, this
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equation must first be solved for the internal field. The integral in Eq. (3.1.21) is ap-
proximated by discretizing the interior region into N cubic cells of a volume AV with
about 10 to 20 cells per wavelength and assuming that the electric field and the re-
fractive index within each cell are constant:

N
Er,) = E™(r,) + kaVZ G(r,r)-E(r)[m*(c) -1,  i=1..,N,

[E)
J=1

(9.1.1)

where r; € Viyr 1s the central point of the ith cell. Equations (9.1.1) form a system of
N linear algebraic equations for the N unknown internal fields E(r;) and are solved
numerically. Once the internal fields are found, the scattered field is determined from

N
E“(r) = kleVZ G(r,r))-E(r))[m*(r;) -1,  re Vi (9.1.2)

Jj=1

This version of the volume integral equation method (VIEM) is known as the method
of moments (MOM). Since the free space dyadic Green’s function becomes singular
as |r—r’| — 0, special techniques must be used to handle the self-interaction term
(j = i) in the sum on the right-hand side of Eq. (9.1.1). The straightforward ap-
proach to solving the MOM matrix equation using the standard Gaussian elimination
is not practical for size parameters exceeding unity. The conjugate gradient method
together with the fast Fourier transform (Peterson ef al., 1998) can be applied to sig-
nificantly larger size parameters and substantially reduces computer memory re-
quirements. The standard drawback of using a preconditioned iterative technique is
that computations must be fully repeated for each new illumination direction.

Another version of the VIEM is the so-called discrete dipole approximation (DDA).
Whereas the MOM deals with the actual electric fields in the central points of the cells,
the DDA exploits the concept of exciting fields and is based on partitioning the particle
into a number N of elementary polarizable units called dipoles. The electromagnetic re-
sponse of the dipoles to the local electric field is assumed to be known. The field exciting
a dipole is a superposition of the external field and the fields scattered by all other di-
poles. This allows one to write a system of N linear equations for /V fields exciting the N
dipoles. The numerical solution of the DDA matrix equation is then used to compute the
N partial fields scattered by the dipoles and thus the total scattered field. Although the
original derivation of the DDA by Purcell and Pennypacker (1973) was heuristic, Lak-
htakia and Mulholland (1993) showed that the DDA can be derived from Eq. (3.1.21)
and is closely related to the MOM.

The major advantages of the MOM and the DDA are that they automatically satisfy
the radiation condition at infinity, Eq. (3.2.16), are confined to the scatterer itself, thereby
resulting in fewer unknowns than the differential equation methods, and can be applied to
inhomogeneous, anisotropic, and optically active scatterers. However, the numerical ac-
curacy of the methods is relatively low and improves slowly with increasing N, whereas
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the computer time grows rapidly with increasing size parameter. Another disadvantage of
these techniques is the need to repeat the entire calculation for each new direction of in-
cidence. Further information on the MOM and the DDA and their applications can be
found in Miller et al. (1991) and Draine (2000).

Equation (3.1.21) is a Fredholm-type integral equation with a singular kernel at
r’ = r. Holt et al. (1978) removed the singularity by applying the Fourier transform
to the internal field and converting the volume integral into an integral in the wave
number coordinate space. Discretization of the latter integral results in a matrix equa-
tion which is solved numerically and gives the scattered field. A limitation of this
Fredholm integral equation method (FIEM) is that the matrix elements must be evalu-
ated analytically, thereby requiring different programs for each shape and restricting
computations to only a few models such as spheroids, triaxial ellipsoids, and finite
circular cylinders. The majority of reported FIEM computations pertain to size pa-
rameters smaller than five and tend to be rather time consuming (Holt, 1982).

The Lorenz—Mie theory can be extended to clusters of spheres by using the transla-
tion addition theorem for the VSWFs (Bruning and Lo, 1971a,b). The total field scattered
by a multi-sphere cluster can be expressed as a superposition of individual fields scat-
tered from each sphere. The external electric field illuminating the cluster and the indi-
vidual fields scattered by the component spheres are expanded in VSWFs with origins at
the individual sphere centers. The orthogonality of the VSWFs in the sphere boundary
conditions is exploited by applying the translation addition theorem in which a VSWF
centered at one sphere origin is re-expanded about another sphere origin. This procedure
ultimately results in a matrix equation for the scattered-field expansion coefficients of
each sphere. Numerical solution of this equation for the specific incident wave gives the
individual scattered fields and thereby the total scattered field. Alternatively, inversion of
the cluster matrix equation gives sphere-centered transition matrices (or 7 matrices) that
transform the expansion coefficients of the incident wave into the expansion coefficients
of the individual scattered fields. In the far-field region, the individual scattered-field
expansions can be transformed into a single expansion centered at a single origin inside
the cluster. This procedure gives the 7" matrix that transforms the incident-wave expan-
sion coefficients into the single-origin expansion coefficients of the total scattered field
(Mackowski, 1994) and can be used in the analytical averaging of scattering characteris-
tics over cluster orientations (Mackowski and Mishchenko, 1996; Borghese et al., 2003).
The superposition method (SM) has been extended to spheres with one or more eccentri-
cally positioned spherical inclusions (Fuller, 1995; Videen et al., 1995; Borghese et al.,
2003) and to clusters of dielectric spheroids in an arbitrary configuration (Ciric and Coo-
ray, 2000). Because of the analyticity of its mathematical formulation, the SM is capable
of producing very accurate results. Fuller and Mackowski (2000) gave a detailed review
of the SM for compounded spheres.

The T-matrix method (TMM) is based on expanding the incident field in VSWFs
regular at the origin and expanding the scattered field outside a circumscribing sphere of
the scatterer in VSWFs regular at infinity. The 7 matrix transforms the expansion coeffi-
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cients of the incident field into those of the scattered field and, if known, can be used to
compute any scattering characteristic of the particle. The TMM was initially developed
by Waterman (1971) for single homogeneous objects and was generalized to multi-
layered scatterers and arbitrary clusters of nonspherical particles by Peterson and Strom
(1973, 1974). For spheres, all TMM formulas reduce to those of the Lorenz—Mie theory.
In the case of clusters composed of spherical components, the 7-matrix method reduces
to the multi-sphere SM.

The T matrix for single homogeneous and multilayered scatterers is usually computed
using the extended boundary condition method (EBCM; Waterman, 1971), which ex-
plicitly avoids the use of the Rayleigh hypothesis. The EBCM can be applied to any par-
ticle shape, although computations become much simpler and more efficient for bodies
of revolution. Special procedures have been developed to improve the numerical stability
of EBCM computations for large size parameters and/or extreme aspect ratios. Recent
work has demonstrated the practical applicability of the EBCM to particles without axial
symmetry, e.g., ellipsoids, cubes, and finite polyhedral cylinders. The computation of the
T matrix for a cluster assumes that the 7 matrices of all components are known and is
based on the use of the translation addition theorem for the VSWFs (Peterson and Strom,
1973). The loss of efficiency for particles with large aspect ratios or with shapes lacking
axial symmetry is the main drawback of the TMM. The main advantages of the TMM
are high accuracy and speed coupled with applicability to particles with equivalent-
sphere size parameters exceeding 180. Mishchenko (1991a), Khlebtsov (1992), and
Mackowski and Mishchenko (1996) have developed analytical orientation averaging
procedures which make TMM computations for randomly oriented particles as fast as
those for a particle in a fixed orientation.

Figure 9.1.1 gives examples of particles that can be treated using various implemen-
tations of the TMM. Further information on this technique can be found in Chapter 5 of
MTL and in Kahnert (2003). A representative collection of public-domain 7-matrix
codes is posted on the World Wide Web at http://www.giss.nasa.gov/~crmim.

The only methods yielding very accurate results for particles comparable to and
larger than a wavelength are the SVM, SM, and TMM. The SVM, SM, TMM, and
ME-GPMM have been used in computations for particles significantly larger than a
wavelength. The first three techniques appear to be the most efficient in application to
bodies of revolution. The analytical orientation averaging procedure makes the TMM
the most efficient technique for randomly oriented particles with moderate aspect
ratios. Particles with larger aspect ratios can be treated with the SVM, an iterative
EBCM, and the ME-GPMM. Computations for anisotropic objects and homogeneous
and inhomogeneous particles lacking rotational symmetry often have to rely on more
flexible techniques such as the FEM, FDTDM, MOM, and DDA. These techniques
are simple in concept and computer implementation and have comparable perform-
ance characteristics, although their simplicity and flexibility are often accompanied
by lower efficiency and accuracy and by stronger practical limitations on the maximal
size parameter. A comprehensive collection of computer programs based on a variety
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Figure 9.1.1. Types of particles that can be treated with the 7-matrix method (after Wriedt,
2002 and Penttild and Lumme, 2004).

of exact numerical techniques is posted at http://www.iwt-bremen.de/vt/laser/wriedt/
index_ns.html.

9.2 Approximations

Any approximate theory of light scattering is based on a simplifying assumption that
substantially limits its range of applicability. For example, Rayleigh (1897) derived
an approximation for scattering in the small-particle limit (x < 1) by assuming that
the incident field inside and near the particle behaves almost as an electrostatic field
and the internal field is homogeneous. The conditions of validity of the Rayleigh—
Gans approximation (otherwise known as the Rayleigh-Debye or Born approxi-
mation) are x|m—1| < 1 and |m—1| < 1. Hence particles are assumed to be not too
large (although they may be larger than in the case of Rayleigh scattering) and
optically “soft”. The fundamental RGA assumption is that each small-volume element
of the scattering object is excited only by the incident field. The scattered field is then
computed from Eq. (3.2.14) after substituting E(r’) = E™(r"). The anomalous
diffraction approximation (ADA) was introduced by van de Hulst (1957) as a means
of computing the extinction cross section for large, optically soft spheres with x > 1
and |m—1| < 1. Since the second condition means that rays are weakly deviated as
they cross the particle boundary and are negligibly reflected, the ADA assumes that ex-
tinction is caused by absorption of light passing through the particle and by the inter-
ference of light passing through and around the particle.

The practical importance of approximate theories diminishes as various exact
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Figure 9.2.1. Ray-tracing diagram.

techniques mature and become applicable to a wider range of problems, while com-
puters become ever more powerful. However, approximate theories still remain a
valuable source of physical insight into the process of scattering and absorption by
nonspherical particles. Furthermore, it is likely that at least one approximation, the
geometrical optics method, will never become obsolete because its accuracy only
improves as the particle size parameter grows, whereas all exact theoretical tech-
niques for nonspherical particles cease to be practical when the size parameter ex-
ceeds a certain threshold.

The geometrical optics approximation (GOA) is a universal method for computing
electromagnetic scattering by arbitrarily shaped particles with sizes much larger than
the wavelength of the incident light. The GOA assumes that the incident plane wave
can be represented as a collection of independent parallel rays. The history of each
ray impinging on the particle surface is traced using Snell’s law and Fresnel’s formu-
las (see Fig. 9.2.1). Each incident ray is partially reflected and partially refracted into
the particle. The refracted ray may emerge after another refraction, possibly after one
or more internal reflections, and may be attenuated by absorption inside the particle.
Each internal ray is traced until its intensity decreases below a prescribed cutoff
value. Varying the polarization state of the incident rays, sampling all escaping rays
into predefined narrow angular bins, and adding incoherently the respective Stokes
parameters yields a quantitative representation of the particle’s scattering properties in
terms of the ray-tracing phase matrix ZX". Because all rays impinging on the particle
surface are either scattered or absorbed irrespective of their polarization state, the ray-
tracing extinction matrix is always diagonal and is given by K*T = CRTA. The ray-
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tracing extinction cross section CRI does not depend on the polarization state of the
incident light and is equal to the geometrical area G of the particle projection on the
plane perpendicular to the incidence direction. Since the presence of the particle
modifies the incident plane wave front by eliminating a part that has the shape and
size of the geometrical projection of the particle, the ray-tracing scattering pattern
must be supplemented by the computation of Fraunhofer diffraction of the incident
wave on the particle projection. The diffraction component of the phase matrix ZP is
confined to a narrow angular cone centered at the exact forward-scattering direction
and is usually computed in the Kirchhoff approximation (Jackson, 1998), thereby
contributing only to the diagonal elements of the total phase matrix. The diffraction
component K of the total extinction matrix is equal to KX, We thus have

Z60 = ZRT 4 ZD = ZXT 4 ZDA, 9.2.1)

K = KR + KP = C9OA, (9.2.2)
where

Cai = C&i + Ca = 2G. (9.2.3)

The total scattering cross section is the sum of the ray-tracing and diffraction compo-
nents:

C = Cii + C (9.2.4)

Since the diffracted energy is not absorbed, the diffraction scattering cross section is
equal to the diffraction extinction cross section:

Ch =P =G. (9.2.5)

The ray-tracing scattering cross section CXy is found from Z®" and Eq. (3.9.10).

The main advantage of the GOA is that it can be applied to essentially any shape.
However, this technique is approximate by definition, and its range of applicability in
terms of the smallest size parameter must be checked by comparing GOA results with
exact numerical solutions of the Maxwell equations. It appears that although the main
geometrical optics features can be qualitatively reproduced by particles with size pa-
rameters less than 100, obtaining good quantitative accuracy in GOA computations of the
phase matrix still requires size parameters exceeding a few hundred. Even then the GOA
fails to reproduce scattering features caused by interference and diffraction effects.

To improve the GOA, Ravey and Mazeron (1982) (see also Muinonen, 1989; Liou et
al., 2000) developed the so-called physical optics or Kirchhoff approximation (KA). This
approach is based on expressing the scattered field in terms of the electric and magnetic
fields on the exterior side of the particle surface. The latter are computed approximately
using Fresnel formulas and the standard ray-tracing procedure. The KA partially pre-
serves the phase information and reproduces some physical optics effects completely
ignored by the standard GOA.
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9.3 Measurement techniques

Existing laboratory measurement techniques fall into two categories:

e  Scattering of visible or infrared light by particles with sizes from several hun-
dredths of a micron to several hundred microns.
e  Microwave scattering by millimeter- and centimeter-sized objects.

Measurements in the visible and infrared benefit from the availability of sensitive detec-
tors, intense sources of radiation, and high-quality optical elements. They involve
cheaper and more portable instrumentation and can be performed in the field as well as in
the laboratory. However, they become problematic when experimental data for a fixed
scattering object are needed and may be difficult to interpret because of lack of inde-
pendent information on sample microphysics and composition. Microwave scattering
experiments require more cumbersome and expensive instrumentation and large meas-
urement facilities, but allow a much greater control over the scattering object.

Many detectors of electromagnetic energy in the visible and infrared spectral re-
gions are polarization-insensitive, which means that the detector response is deter-
mined only by the first Stokes parameter of the beam impinging on the detector.
Therefore, in order to measure all elements of the scattering matrix one must use
various optical elements that can vary the polarization state of light before and after
scattering in a controllable way (see Sections 2.10 and 3.7). Figure 9.3.1 (adapted
from Hovenier, 2000) depicts the scheme of an advanced laboratory setup used to
measure scattering matrix elements for random groups of natural and artificial parti-
cles. The light beam generated by a laser passes through a linear polarizer and a po-
larization modulator and then illuminates particles contained in the scattering cham-
ber. Light scattered by the particles at an angle @ relative to the incidence direction
passes a quarter-wave plate and a polarization analyzer, after which its intensity is
measured by a detector. Assuming that the scattering volume satisfies the criteria of
applicability of the MUSSA (see Chapter 7), we can write for the Stokes column
vector of the beam reaching the detector, I, the following expression:

I' « AQZ(@)MPI = AQN(Z(6)):MPI, (9.3.1)

where | is the Stokes column vector of the beam leaving the light source, A, Q, M,
and P are 4x4 Mueller transformation matrices of the analyzer, quarter-wave plate,
modulator, and polarizer, respectively, Z(©) is the total phase matrix of the particles
contributing to the scattered beam, N is the number of the particles, and (Z(@))¢ is
the ensemble-averaged phase matrix per particle. It is assumed that the plane through
the incidence and scattering directions serves as the azimuthal plane for defining the
Stokes parameters. The Mueller matrices of the polarizer, modulator, quarter-wave
plate, and analyzer depend on their orientation with respect to the scattering plane and
can be precisely varied. Because the detector measures only the first element of the
Stokes column vector I, several measurements with different orientations of the opti-
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Figure 9.3.1. Schematic view of an experimental scattering setup using visible or infrared
light.

cal components with respect to the scattering plane are required for the full determi-
nation of the phase matrix. This procedure is repeated at different scattering angles in
order to determine the angular profile of the phase matrix.

Hunt and Huffman (1973) developed the technique of a high-frequency sinusoidal
modulation in time of the polarization of light before scattering (Fig. 9.3.1) combined
with intensity normalization. Followed by lock-in detection, this technique increases the
experimental accuracy by enabling direct measurements of the phase matrix elements
normalized by the (1, 1) element and yields the capability to determine several elements
from only one detected signal.

In accordance with the scale invariance rule (Section 3.5), the main idea of the
microwave analog technique is to manufacture a centimeter-sized scattering object
with desired shape and refractive index, measure the scattering of a microwave beam
by this object, and finally extrapolate the result to other wavelengths (e.g., visible or
infrared) by keeping the ratio size/wavelength fixed. In a modern microwave scatter-
ing setup (see Fig. 9.3.2), radiation from a transmitting conical horn antenna passes
through a collimating lens and a polarizer. The lens produces a nearly flat wave front
which is scattered by an analog particle model target. The scattered wave passes
through another polarizer and lens and is measured by a receiving horn antenna. The
receiver end of the setup can be positioned at any scattering angle from 0° to @, , =~
170°, thereby providing measurements of the angular distribution of the scattered
radiation. By varying the orientations of the two polarizers, one can measure all ele-
ments of the phase matrix.



Calculations and measurements of single-particle characteristics 239

Polarizer
Transmitting Analog particle

horn antenna :O|:| model
\ \ Polarizer

Lens Lens
S //

Receiving
horn antenna

A
C |
Absorber/
Network deflector
analyzer
assembly

Figure 9.3.2. Layout of a modern microwave analog facility. (After Gustafson, 2000.)

9.4  Further reading

In addition to MTL, the collective monograph edited by Mishchenko ez al. (2000a),
and the recent review by Kahnert (2003), a plentiful source of information on elec-
tromagnetic scattering by nonspherical particles is the collection of special issues of
the Journal of Quantitative Spectroscopy and Radiative Transfer edited by Hovenier
(1996), Lumme (1998), Mishchenko ef al. (1999a), Videen ef al. (2001), Kolokolova
et al. (2003), and Wriedt (2004). The book by Babenko et al. (2003) gives a detailed
account of electromagnetic scattering by radially inhomogeneous and anisotropic
spherical particles. A useful compendium of approximate formulas was provided by
Kokhanovsky (2004).
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Radiative transfer in plane-parallel scattering media

In order to use the radiative transfer theory in analyses of laboratory measurements or
remote-sensing observations, one needs efficient theoretical techniques for solving the
VRTE in either the integral or the integro-differential form. Unfortunately, like many
other integral and integro-differential equations, the VRTE is very difficult to solve
analytically or numerically. In order to facilitate the solution, we will have to make
several simplifying assumptions. The most important of them, which will be used
throughout the remainder of the book, are the assumptions that the scattering medium:

e Isplane parallel.

e Has an infinite horizontal extent.

e Is illuminated from above by a plane electromagnetic wave or a parallel
quasi-monochromatic beam of light of infinite lateral extent.

These assumptions mean that all properties of the medium and of the radiation field
may vary only in the vertical direction and are independent of the horizontal coordi-
nates. Taken together, these assumptions specify the so-called standard problem of
atmospheric optics and provide a model relevant to a great variety of applications in
diverse fields of science and technology. In this chapter we will not make any further
assumptions and will derive several important equations describing the internal dif-
fuse radiation field as well as the diffuse radiation exiting the medium.

10.1 The standard problem
Let us consider a plane-parallel layer extending in the vertical direction from z = z,

to z = z,, where the z-axis of the laboratory right-handed coordinate system is per-
pendicular to the boundaries of the medium and is directed upwards, and “b” and “t”

240
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X

Figure 10.1.1. Plane-parallel scattering medium illuminated from above by a parallel quasi-
monochromatic beam of light.

stand for “bottom” and “top”, respectively (Fig. 10.1.1). A propagation direction i at
a point in space will be specified by a couplet {u, ¢}, where u = —cos@ € [-1,+1]
is the direction cosine, and @ and ¢ are the corresponding polar and azimuth angles
with respect to the local coordinate system having the same spatial orientation as the
laboratory coordinate system. It is also convenient to introduce a nonnegative quantity
U = |u| € [0,1]. In order to make many formulas of this and the following chapters
more compact, we will denote by (I the pair of arguments {u, ¢} and by —4 the
pair of arguments {—u, @} (note that 4 and —f are not unit vectors). A 4 always
corresponds to a downward direction and a —# always corresponds to an upward
direction. We also denote

1 2r
Jdﬁ = J.dyJ. de. (10.1.1)
0 0

Let us assume that the scattering layer is illuminated from above by a plane elec-
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tromagnetic wave or a parallel quasi-monochromatic beam of light propagating in the
direction f, = {4y, ®y}. The uniformity and the infinite transverse extent of the
wave or the beam ensure that all parameters of the internal radiation field and those of
the radiation leaving the scattering layer are independent of the coordinates x and y.
Therefore, Eq. (8.11.5) can be rewritten in the form

—u % = —ny(2)K(z,0) T(z,A) + ny(z) J di’Z(z,8,1") 1(z, /")
" (10.1.2)
and must be supplemented by the boundary conditions
1o ) = 8~ 1) 39 ~ o)\, (10.1.3)
T(zy,—f1) = 0, (10.1.4)

where
T(z,8) = (A —ng)l.(2) + T4(z, 0)

is the full specific intensity column vector including both the coherent and the diffuse
components, K and Z are the extinction and the phase matrix, respectively, averaged
over particle states (note that we have omitted the angular brackets for the sake of
brevity), |, is the Stokes column vector of the incident radiation, and 0 is a zero four-
element column. As in Chapter 8, the tilde distinguishes specific intensity column
vectors from Stokes column vectors. The boundary conditions follow directly from
the integral form of the VRTE, Eq. (8.10.9), and mean that the downwelling radiation
at the upper boundary of the layer consists only of the incident radiation and that there
is no upwelling radiation at the lower boundary. Equations (10.1.2)—(10.1.4) collec-
tively represent what we have called the standard problem.

Since ny(z) is a common factor in both terms on the right-hand side of Eq.
(10.1.2), it is convenient to eliminate it by introducing a new vertical “coordinate”
¥ (z) according to diy = —ny(z)dz or

y(z) = j de’no(Z’). (10.1.5)

Clearly, y(z) has the dimension m™ and is the number of particles in a vertical col-
umn having a unit cross section and extending from z” = z to infinity. It is, therefore,
natural to call it the “particle depth”. Unlike the z-coordinate, which increases in the
upward direction, the y-coordinate increases in the downward direction. We then
have

LUV
dy

100, 2) = 8(u — o) 3( — Po) o, (10.1.7)

—K(y,n) T(,h) + j di’ Z(y,a,0") T(w, /"),  (10.1.6)

4r
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Figure 10.1.2. The standard problem.
T%¥,-p) =0, (10.1.8)

where ¥ = y(z,) is the “particle thickness” of the layer (Fig. 10.1.2).

10.2 The propagator

Before attempting to solve the full VRTE, let us first consider the solution of the ho-
mogenous differential transfer equation

dl(y, g o~
u% - KT, v (10.2.1)
supplemented by the initial condition
TWo ) = T, (10.2.2)

It is convenient to express l(y, £1) in terms of the solution of the following auxiliary
initial-value problem:

dX(y. wo. 1) _
dy

X(Wo, ¥o, 1) = A, (10.2.4)

Ky, DX, vo. 1), v 2y, (10.2.3)
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where, as before, A is the 4x4 unit matrix and X(y,w,, 1) is a 4x4 real matrix
called the matrizant (Frazer et al., 1957; Birkhoff and Rota, 1969), the evolution op-
erator (Landi Degl’Innocenti and Landolfi, 2004), or the propagator (Flatau and Ste-
phens, 1988). Specifically, if the propagator is known then the solution of Eqgs.
(10.2.1)-(10.2.2) is simply

Tw. n) = X, v ) T, (10.2.5)
The propagator has the obvious semi-group property
Xy, w0, 1) = X, v, ) X, Wo, 1), (10.2.6)

where w, < w, < w. Indeed, since the matrix Y(w,w, 1) = X(y,y,, Q)
X X(w,, Wy, (1) is the solution of the same differential matrix equation (10.2.3) with
the same initial condition Y(w,, ¥, ) = A, the property (10.2.6) follows from the
well-known mathematical fact that the differential equation (10.2.3) has only one so-
lution satisfying the initial condition (10.2.4).

If the scattering layer is homogeneous then K(y, 1) = K(£), and the propagator
can be written in the form of a matrix exponential:

X(w, w0, ) = exp[-(¥ —wo) K(D)/ 1]. (10.2.7)

If the layer is inhomogeneous, one should exploit the semi-group property (10.2.6) by
subdividing the interval [w,, ] into a number N of equal subintervals [y, ], ...,
W,_, W1, ..., [Wn_1, ] and calculating the propagator in the limit N — co:

Xy, yo, ) = lim {exp[—(Ay/m)K(yy + Ay /2, )]
xexp[— (Ay /WKy, + Ay /2, Q)]
xexp[—(Ay /WKy, + Ay/2, D]}
lim {[A — Ay/ KW+ Ay/2, )]
x[A - (Ay /WKWy, + Ay/2, D)]--
<[A — (Ap/mKW, + Ay/2, D]}, (10.2.8)

where Ay = (W — y)/N and v, = ¥, + nAy.
Similarly, the solution of the equation

di.-4) _

g K. - Tw.-), v <y, (10.2.9)
supplemented by the initial condition
Two.-) = T, (10.2.10)

can be expressed in terms of the solution of the auxiliary initial-value problem

dX (. wo. —11) _

ay Ky, - Xy, yo.— 1), Y <y, (10.2.11)

—u
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X(Wo,wo.—1) = A (10.2.12)

as
Twy.-0) = X@.po.~m T, (10.2.13)
The propagator X(y, ¥, —£1) has the semi-group property

XW,vo,—1) = XW,p,,— )XW, Wo,—[1), ¥ <y <y, (10.2.14)
and is given by
Xy, wo.—f1) = expl-(y, —y)K(=2)/u] (10.2.15)
if the layer is homogeneous and by
Xy, o, =) = lim {exp[—(Ay/ i)KWy - Ay/2,-D)] -
xexp[-(Ay /WKW, — Ay/[2,-0)] -
x exp[— (A /1)Ky, - Ay/2, -]}
= lim {[A - Ay/wKWy - Ay/2, -]
<[A — Ay WKW, ~ Ay/2,~D)]-
X[A - Ay /WKy - Ay/2,-D]}  (10.2.16)

if the layer is inhomogeneous, where Ay = (y, — ¥)/N and v, = ¥, — nAy.

10.3 The general problem

The standard problem (10.1.6)—(10.1.8) implies that the scattering layer is illuminated
only from above by a monodirectional source of light. It is useful, however, to con-
sider the following more general boundary values, which include the boundary condi-
tions (10.1.7) and (10.1.8) as a particular case:

100, 2) = Ty (), (10.3.1)
1%,-0) = (=), (10.3.2)

where Ti(,[t) and TT(—,&) are arbitrary (Fig. 10.3.1). We will call Egs. (10.1.6),
(10.3.1), and (10.3.2) the general problem.

Let us now assume that the incident light is quasi-monochromatic, meaning that
the specific intensity column vectors 1 1(f) and TT (—4) represent “bundles” of un-
correlated quasi-monochromatic beams with intensity and polarization state poten-
tially varying with direction of incidence. The results of Section 8.15 allow us to ex-
press the radiation field T(l//, n) for y € [0,%¥] in terms of the 1 1(A) and TT (=40
as follows:
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Figure 10.3.1. The general problem.

T = XeoT,@ + 1 jdﬂ'u'nwf, .0 T, (@)
L I A, 1) T (47, (1033)
T, = X 2 - Ty + L j A O, 1, )T, ()
+ % Idﬁ'ﬂ'DT(l/I,ﬂ,ﬂ')TT(—ﬂ'), (10.3.4)

where the 4x4 matrices U and D describe the response of the scattering layer to the
radiation incident on the upper boundary from above, while the 4x4 matrices UT
and D' describe the response to the radiation illuminating the bottom boundary of the
layer from below. The first terms on the right-hand side of Egs. (10.3.3) and (10.3.4)
describe the direct (coherent) propagation of the incident light, whereas the remaining
terms describe the result of multiple scattering. The corresponding reflection and
transmission matrices determine the Stokes parameters of the radiation exiting the
layer and are defined as

R(a, ) = U, a,4a", (10.3.5)
T(a, 4"y = D, 0, 4°), (10.3.6)
RY(a, 4"y = U, 4.0, (10.3.7)

TH(a, &) = D'(0, 4, "), (103.8)
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The matrices R and T describe the response of the layer to the external radiation fal-
ling from above, whereas the matrices R" and T' describe the response to the exter-
nal radiation falling from below.

It is easy to verify that the solution of the standard problem can now be expressed
as

- R 1 .

Ly, @) = (U —1o) (@ — o) X, 0, o)1y + ;ﬂoD(W:ﬂ,ﬂo)lm (10.3.9)
~ R 1 -

l(y,-0) = ;.Uou(l//,,u,,uoﬂo, (10.3.10)
S . 1 -

1, 1) = (U — o) (@ — o) X(F0, 1)1y + ;,UOT(#,#O)'o, (10.3.11)

~ . 1 A
100,-4) = ;uoR(u,ﬂo)lo- (10.3.12)

104 Adding equations

In this section we will describe an elegant mathematical scheme for computing the
matrices U, D, U", D", R, T, R, and T for an arbitrary scattering slab based on so-
called adding equations. Let us divide the slab [0,¥] into layers [0,y] and [y, %]
(Fig. 10.4.1). Applying Egs. (10.3.3)—(10.3.8) to the two component layers and to the
combined slab yields

A AL ~ Y4 AL 1 Y A 4 ~ AN AN A
Uy, &, ') = Ry(f, )Xy, 0,4°) + ;jdﬂﬂ Ry(a, 4Dy, 17, 1),

(10.4.1)
~ 4 ~ AL 1 4 4 ~ AN Y4 AL
Dy, i, ") = T, ') + = jdﬂ WRI(@, U, 4% 1),  (10.4.2)
UT(W!/&’:&/) = R}-(ﬂ,ﬂ/)X(!//,'fl,—ﬂ’)
1 AN i ~ Y4 i AN AL
t— jdﬂﬂ RI(a, 4D (v, 4", i), (10.4.3)

A Y4 1 Y A 4 ~ AN AN AL
T)(a,4) + - jdﬂﬂ R (2, AU (w. 4", "), (10.4.4)

D'y, &, i)
where the subscripts 1 and 2 denote the reflection and transmission matrices of iso-
lated layers 1 and 2, respectively. Indeed, we can apply Egs. (10.3.3), (10.3.6), and
(10.3.7) to layer 1 and write

T A ANT A 1 N A AT A7
. ) = Xy, 0,a) 1 (4) + ;jdﬂﬂ T, @)V (@)

1 A7 7 A AINT ~r
+;J-d/1/1 Ri(a, 4" Wy, —4")
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Figure 10.4.1. Illustration of the adding principle.

- X 0T + L Idﬁ'u'n(ﬂ,ﬁ'm(ﬂ')
+ % J dﬂ’ﬂ'RT(ﬂ,ﬂ’)[X(w, ¥, )T ()
+%jmeWJM6lmﬁ
+ % jdﬁ”u”DT(W,ﬁ'»ﬁ”)TT(‘ﬁ”)}’

(10.4.5)

which, after comparison with Eq. (10.3.3), gives Egs. (10.4.2) and (10.4.3). Similarly,
Egs. (10.4.1) and (10.4.4) follow from

T A ANT A 1 Nl A AT A
M=) = X@ Y- Ty () + — Jduu T, @) 1 (=41)
1 ~? 7 A AINT A7
+;Idﬂﬂ Ry(a, @) Wy, ")
AN ~ 1 A? 7 A AT A2
= X ¥ - 1 (0) + — J.duu T (2. 2) 1y (-4")

1 Al A AP ANT N
o Iduu R,(4, ){X(V/,O,ﬂ ) (@)
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1 N noarNT 7
+ ;J‘dyﬂ D(y, 2, a") 1, ,(4")

1 ~w ” ~r AnNT ~ 7
+ ;Idﬂﬂ Uiy, 2, 27) 11 (-4 )}

(10.4.6)
and Eq. (10.3.4). By analogy, one can derive

RULA) = R ) + X0, v, ~)U(w, i, i)

L j AN S ) (10.4.7)
T@ ') = Tyt )XW, 0, 2°) + X(¥, v, ))Dw, 1, 1)

. j 41 T, 17Dy ' ). (10.4.8)
RY(@ ') = RYL ) + X, w, U, 1, 1)

+ o | T O (10.49)
T ) = T 2R, ¥, + XO,y,~@)D (. 4, 2')

+ | aau i a0t ), (10.4.10)

The interpretation of Egs. (10.4.1)-(10.4.4) and (10.4.7)—(10.4.10) is rather trans-
parent. For example, Eq. (10.4.1) indicates that the upwelling radiation at the inter-
face between layers 1 and 2 in response to the beam incident on the combined slab
from above is simply the result of reflection of the corresponding downwelling radia-
tion by layer 2. This downwelling radiation consists of:

e The attenuated direct component represented by the propagator X(i,0, 2°)
(scattering path 1 in Fig. 10.4.2).

e The diffuse component represented by the matrix D(w, 27, 4") (scattering
path 2 in Fig. 10.4.2).

Similarly, Eq. (10.4.7) shows that the reflected radiation in response to the beam il-
luminating the combined slab from above consists of three components:

e The scattering paths that never reach the interface between layers 1 and 2 (the
first term on the right-hand side of Eq. (10.4.7) and scattering path 1 in Fig.
10.4.3).

e The scattering paths “reflected” by layer 2 and “transmitted” by layer 1 with-
out scattering (the second term on the right-hand side of Eq. (10.4.7) and
scattering path 2 in Fig. 10.4.3).

e The scattering paths “reflected” by layer 2 and “diffusely transmitted” by
layer 1 (the third term on the right-hand side of Eq. (10.4.7) and scattering
path 3 in Fig. 10.4.3).
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Figure 10.4.2. Physical interpretation of Eq. (10.4.1).
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Figure 10.4.3. Physical interpretation of Eq. (10.4.7).

The reader may find it a useful exercise to give similar graphical interpretations of
Egs. (10.4.2)-(10.4.4) and (10.4.8)—(10.4.10).

Equations (10.4.1)~(10.4.4) and (10.4.7)—(10.4.10) are called adding equations
because they allow one to compute the scattering properties of the combined slab
provided that the scattering properties of each component layer are known. Indeed, if
the matrices R,, T;, R}, and T, for layer 1 in isolation from layer 2 and the matrices
R, T,, R;, and T2T for layer 2 in isolation from layer 1 are known then one can
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solve Egs. (10.4.1)~(10.4.4) and find the matrices U, D, U', and D' describing the
radiation field at the interface between the layers in the combined slab. A numerical
implementation of this procedure can involve replacing the angular integrals by ap-
propriate quadrature sums (Appendix D). For example, Eq. (10.4.1) becomes

U i 055 i @) = Ro(li, 05 e, 0) X(W, 05 ., @)

N, N,
N %ZZ Wttty Ro(ty, @ s 0,)

m=1n=1

XDW; Uy 05 My, P1)s

where u; and w; (i =1,..,N,) are quadrature division points and weights on the
interval [0,1], and ¢; and u; (i=1,..,N,) are quadrature division points and
weights on the interval [0, 27r]. The resulting system of linear algebraic equations for
the unknown values of the matrices U, D, U, and D' at the quadrature division
points can be solved using one of the many available numerical techniques. After the
matrices U, D, U, and D at the quadrature division points have been found, the
reflection and transmission matrices of the combined slab can be calculated using the
discretized version of Egs. (10.4.7)—(10.4.10). Adding two identical layers is tradi-
tionally called the doubling procedure.

Furthermore, let us assume that the matrices U,, D, UIT, and DlT for a level inside
layer 1 are known, where the subscript 1 indicates that these matrices pertain to layer
1 taken in isolation from layer 2. Then the matrices U, D, U’, and D for the same
level in the combined slab can also be easily calculated. Indeed, applying Egs.
(10.3.3) and (10.3.4) to each component layer and to the combined slab, we derive

Ul(l///s /2, /:z/) + X(W: 88 _ﬁ)U(l//a ,[ls ﬂ,)

1 AN N 7 A Y4 AN AL
t— Idu W'Dy, o, AUy, 4", i), (10.4.11)

U’ 4. 4°)

7 A~ AL 7 A AL 1 Y A 4 7 A~ AN AN AL
D(l//:/u’/u) Dl(l//’/’laﬂ)+;jdﬂ/’l UI(‘//:IU’IU )U('//,,U nu)a

(10.4.12)
Uf(l//,,ﬂ,,a,) = UI(E[/’,‘[I,,&’)X(I/I,'{’, —ﬂ')
1 AR " q 7 A AN AN AL
t Idﬂ W, 4, 47Dy, 47, 40, (10.4.13)
DT(‘//,a Ian Ia,) = DI(‘/I,n Iaa ﬂ,)x(w7¥lﬂ_ﬂ’) + X(l//: vla _ﬂ)DT(l//aﬂa lal)
1 Y 4 4 7 A~ AN AN AL
t— Idu W'Dl o, /")y, 4", 1) (10.4.14)

for w’e [0,y] (Fig. 10.4.4(a)). Similarly, if we know the matrices U,, D,, U}, and
D; for a level inside layer 2 taken in isolation from layer 1 then
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Figure 10.4.4. Internal radiation field.

U’ a,0") = Uy -y, i, ) X(y,0,2")
. jdﬁ”u”uz(w’— v D, ), (104.15)
Dy’ 2, 4") = Doy’ ~ vy, 2, ) X(w,0,2) + X', v, 1)D(y, 2, ")
= j 4D, o fr D A ), (104.16)

Uiy, a.0) = Uiy - v, i, 2°) + X', w. HU (v, 4, 2")
1

+ ; dﬁ”lu”DZ(l//,_l//s ﬁ’ ﬁ,’)UT(l//, ;a”a la,)$ (10417)

D'y’ . 4") = DYy -y, 4. 1)

-
1 Y 4 ~

+— | aau U,(W'-v. . a0 (. 2" ") (10.4.18)

for ¥’ e [w,¥] (Fig. 10.4.4(b)).

The physical meaning of these formulas is rather transparent. For example, the
first term on the right-hand side of Eq. (10.4.11) represents the contribution of scat-
tering paths that never reach the interface between layers 1 and 2, as shown schemati-
cally by scattering path 1 in Fig. 10.4.5. The second term describes the contribution of
the scattering paths that cross the interface at least once, exit layer 2 in the direction
[, and reach the level ¥’ without scattering, as illustrated by scattering path 2 in
Fig. 10.4.5. The last term gives the contribution of the scattering paths that cross the
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Layer 1

Layer 2

Figure 1

0.4.5. Physical interpretation of Eq. (10.4.11).

interface at least once and are “scattered” at least once inside layer 1 before they

reach th

e level ¥’ (scattering path 3 in Fig. 10.4.5).

A practical implementation of the adding method can involve the following three

basic steps:

A vertically inhomogeneous slab of particle thickness ¥ is approximated by
a stack of N partial homogeneous layers having particle thicknesses ¥, ...,
¥, such that

N
Y = nyn
n=1

(Fig. 10.4.6). The number of partial layers and their particle thicknesses can
depend on the degree of vertical inhomogeneity of the original slab as well as
on the desired numerical accuracy of computations.

The reflection and transmission matrices R, T,, RI, and T/ of partial layer
n in isolation from all other layers are computed by using the doubling
method (Fig. 10.4.7). The doubling process can be started with a layer having
a particle thickness A¥, = ¥, /2% small enough that the reflection and
transmission matrices for this layer can be computed by considering only the
first order of scattering. Specifically, choosing the number of doubling events
k, sufficiently large that all elements of the matrices A¥,Z, and A¥,K,
are much smaller than unity, using Egs. (10.1.6), (10.2.7), (10.2.15), and
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Figure 10.4.6. Representation of a vertically inhomogeneous scattering slab by a stack of N
homogeneous layers.

(10.3.1)—(10.3.8), and neglecting all terms proportional to (A¥,)" with
m > 1, we derive

X,(A%,0,4) = A - 2Tk (@), (104.19)
U
X,(0,A%,,~) = A - 20K (), (10.420)
N Ay TAY, o,
Ryy, (4. 07) = L (A, 00), (10.4.21)
i
Ny TAY, Ny
Tyy, (L. 127) = 2,0, 40, (10.4.22)
i
N Ay TAY, L,
R, (2,4) = - Z,(0,-[), (10.4.23)
g
N s TAY, A
Tl (1.4 = w7 Z,(-4,—f). (10.4.24)

Obviously, the doubling procedure will also yield the matrices U,, D,, U},
and D] at 2% —1 equidistant levels inside the nth partial layer (Fig. 10.4.7).

e The N partial homogeneous layers are recursively added starting from layer 1
and moving down or starting from layer N and moving up. This process gives
the reflection and transmission matrices of the combined slab and the matri-
ces U, D, U’ and D' atthe N —1 interfaces between the partial layers as
well as at the XY, (2% —1) levels inside the partial layers rendered by the

doubling procedure.
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Figure 10.4.7. The doubling procedure.

10.5 Invariant imbedding equations

Adding computations can become inefficient if the specific vertical structure of the
scattering slab necessitates partitioning the slab into a very large number N of homo-
geneous layers in order to ensure the requisite numerical accuracy. In such cases one
may prefer to resort to solving numerically differential so-called invariant imbedding
equations for the reflection and transmission matrices as functions of the particle
thickness of the slab ¥.

To derive the invariant imbedding equations, let us assume that y in Fig. 10.4.1
is so small that all terms proportional to ™ with m > 1 can be neglected. We then

have

Xw,0,2) = A - LK, ), (105.1)
yli

XO0.y,-2) = A - YK0,-2), (10.5.2)
U

P /4 N A
R A) = X 2(0,~1, '), (105.3)
o

A AL 7[ A Y4
T i) = 2L z0,0,07), (10.5.4)
i
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A~ AL 7[ ~ AL
Ri(a.40') = ﬂZ, Z(0, 4, —f2), (10.5.5)
N v/ N 1
T(a.0) = y’, Z(0,—4a,—{) (10.5.6)
i

(cf. Egs. (10.4.19)—(10.4.24)). Substituting these formulas in Eqgs. (10.4.1)—(10.4.4),
we obtain in the limit ¥ — 0

Uy, 4, &) = Ry(a ') — %R(ﬁ,ﬂ’)K(O,ﬂ’)
- [arranzon. i)

. j aa" j AR, 4720, 47— R, ),

(10.5.7)
A AL ” ~ AL Y4 A AN AN AL
Dy, 4,4") = ﬂZ/, Z(0, 4, 47) +%jdﬂ Z(0, a4,—aA")R", '),
(10.5.8)
+ A AL T ~ AL AL
Uy, . 0') = W,Z(O,/J,—/J )X(0,%¥,-4")
uu
+ % Idﬂ”Z(O,ﬂ,—ﬁ”)T*(ﬂiﬂ’), (10.5.9)

Diy, 4. 2) = T{(a. ')

+ % I dta”R(;aa ﬂ”)Z(O, ﬁ”y _ﬁ,)x(oa '{Ia _,a')

L j dﬂ”jdﬁ”’R(W”)zm,ﬂi AT ).

(10.5.10)
Finally, substituting Egs. (10.5.1)—(10.5.10) into Egs. (10.4.7)—(10.4.10) yields
oR(a, i 1 O y 1 . N n
RUL) _ _ LR(a, 1)K, i) — ~ KO, ~)R(, )
0¥ % u

V4 S 1 r s A A Al
+— Z(0,-4, 4") +—,Idu R(a, 4")Z(0, 4" 2"
Hu u

1 AN ~ Y 4 AN AL
+ o Idu Z(0,-4,-A")R(A"% 1)

l Y4 AWM ~ Y4 AN A AN AL
+;Idﬂ jdﬂ R4, A7)Z(0, 4", -a")R(A", ),
(10.5.11a)
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ML) _ g g KO ) + 2 X0, 1)Z(0, 1, 1)
J¥; u i
1 AN A~ AN AN AL
+ P _[dﬂ T, 47)Zo, 47, 4%)
1 ~ AN ~ AN AN AL
+ —X(T,O,ﬂ)Jdu Z(0, 4, -a")R", @)

i
1 Y 4 ~m ~ Y 4 AN Y 4 AWM A7
+ ;jdﬂ Idﬂ T(a, 4")Z(0, 2", —4")R(A", &),

(10.5.12a)
aRT(ﬂ,ﬂ,) T A ~ 4 4
—— = — X(¥,0,)Z(0, i, - ") X(0,%¥,—4")
0¥ i
1 A~ AN ~ AN AN AL
+ ;X(Ta 0: ,U) jd/u Z(07 H,—H )TT(ILl e )
1 AN ~ AN AN AL AL
+ 7 Idﬂ T(/uhu )Z(Oalu ,—H )X(Oa'{la_,u )
1 AN Y 4 ~ AN Y 4 ~m AN AL
+ ;Idﬂ jdu T2, 2")Z©O, 4" -a")Ti@a" 4,
(10.5.13a)
oT' (. 2" 1 e T o, g
——— = ——K(O,-D) T, 4") + — Z(0,—2,— ") X(0, ¥, —1")
0¥ U i

1 LY 4 ~ AN AN AL
+ o Idﬂ Z©O,—,-a")T @)

1 AN A AN AN AL AL
+ v Idu R(a, 47)Z(0, 4", — ") X(0,¥,-4")

1 AN Y 4 A AN AN Y 4 AN A7
+ ;Idu Idﬂ R(2, 2720, 2", -a") TN a”, i),
(10.5.14a)

where the subscript T indicates that the infinitesimally thin layer is added on top of
the slab. Equations (10.5.11a)—(10.5.14a) are called invariant imbedding equations
and must be supplemented by the initial conditions

R 4"\, _, = 0, (10.5.15)
T2, _, =0, (10.5.16)
R'(a.4)|,_, =0 (10.5.17)
@), =0, (10.5.18)

where 0 is the 4x4 zero matrix.
In practice, the angular integrals in Egs. (10.5.11a)—(10.5.14a) are replaced by ap-
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propriate quadrature sums, thereby yielding a system of ordinary differential equa-
tions. This system along with Egs. (10.5.15)—(10.5.18) forms an initial-value problem
which can be solved with one of the available numerical techniques.

Notice that Eqs. (10.5.11a) and (10.5.12a) are independent of Eqs. (10.5.13a) and
(10.5.14a) and can be solved separately if only the matrices R and T are required.
Furthermore, solving Eq. (10.5.11a) alone is sufficient if only the matrix R is re-
quired.

Although the invariant imbedding equations do not yield the internal radiation
field directly, the latter can be found by combining the invariant imbedding equations
and the adding method. Specifically, let us assume that one needs to find the radiation
field at a level y inside a scattering slab having a particle thickness ¥ > v (Fig.
10.4.1). One can first compute the reflection and transmission matrices of layers 1 and
2 by solving the invariant imbedding equations and then find the internal radiation
field at the level y from Eqgs. (10.4.1)—(10.4.4). This procedure is easily generalized
if the internal radiation field is required at more than one level.

The reader may find it a useful exercise to derive a system of four companion in-
variant imbedding equations which have on the left-hand side the derivatives
OR(A, A)[0¥,, aT(A,A')fo¥,. OR'(.A)[d¥,. and AT'(1i)/d%W,, where
the subscript | indicates that the infinitesimally thin layer is added to the bottom of
the slab. Obviously, this is done by evaluating the limit (¥ — ) — 0. We will refer
to these equations symbolically as Eqs. (10.5.11b)—(10.5.14b). If the scattering layer
is homogeneous, it does not matter whether the infinitesimally thin layer is added to
the top or to the bottom of the main layer. Therefore, by equating the right-hand sides
of Egs. (10.5.11a) and (10.5.11b), Egs. (10.5.12a) and (10.5.12b), Egs. (10.5.13a) and
(10.5.13b), and Egs. (10.5.14a) and (10.5.14b), one can obtain a system of four non-
linear integral equations for the matrices R, T, R, and T'. Unfortunately, this sys-
tem of equations allows an infinite continuous set of solutions, only one of which is
physically relevant, and is very difficult to solve numerically (de Rooij and Domke,
1984).

10.6 Ambarzumian equation

If the scattering slab is homogeneous and semi-infinite, its reflection matrix for illu-
mination from above must be independent of ¥. Therefore, by equating the deriva-
AL

tive oR(4, &1
nonlinear integral equation for the reflection matrix:

)/0¥; in Eq. (10.5.11a) to zero, we obtain the following Ambarzumian

1 ~ AL Y4 1 ~ ~ AL
P R(a, a)Ka") + ;K(—,U)R(/J,/l )

Jz. A~ Y4 1 AN ~ AN AN AL
= —Z(-4.0) +—,J‘dﬂ R4, 4"z’ a’
ML u
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1 AN A~ Y4 AN AL
+; Jdﬂ Z(-4,-A")R, %)
1 AN Y. 4 ~ AN AN Y 4 AN AT
+ ;Idu Idﬂ R, 4" Z(@",-a" )R, 4°). (10.6.1)

This equation permits only a discrete set of solutions, and the physically relevant so-
Iution can be selected using a simple linear constraint (de Rooij and Domke, 1984).
For example, when the semi-infinite slab is composed of nonabsorbing particles, the
linear constraint can be derived from the obvious fact that the net flow of power
through the boundary of the layer must be equal to zero: all electromagnetic energy
entering the layer must eventually leave it. The actual numerical procedure involves
replacing the integrals in Eq. (10.6.1) with appropriate quadrature sums and solving
the resulting system of nonlinear algebraic equations using the method of iterations.

10.7 Reciprocity relations for the reflection and
transmission matrices

Assuming that the solution of the initial value problem (10.5.11a)—(10.5.18) is unique,
one can easily derive that the reflection and transmission matrices obey the following
reciprocity relations:

R, ¢ +m;u, p+m) = D[R, o; 1,9 )]" A, (10.7.1)
R, @' +m 1, 0+m) = D[R (u, 0514, 0")]" A, (10.7.2)
T, @'+, 0+m) = BD[T(u, 05 1,00 A, (10.7.3)

where, as before, A; = diag[l, 1, —1, 1]. Equations (10.7.1)—(10.7.3) ultimately fol-
low from the reciprocity relations for the phase and extinction matrices, Egs. (3.7.31)
and (3.8.16), which can be written in the form

Z(-p" @' +m—p, p+ 1) = Bi[Z(u, ;191" As, (10.7.4)

K-, 0+7) = Ds[K(u, 9)]" As. (10.7.5)
Indeed, Egs. (10.2.8) and (10.2.16) along with the matrix identity (AB)" = BTAT
yield

XO0,%;—u, p+7m) = D[XW,0; 1, )" A, (10.7.6)

The initial conditions (10.5.15)—(10.5.18) obviously satisfy the reciprocity relations
(10.7.1)~(10.7.3). We can then add an infinitesimally thin layer to the “initial slab” of
particle thickness zero and find out from Eqs. (10.5.11a)—(10.5.14a) that the reflection
and transmission matrices of the resulting slab also satisfy the reciprocity relations
(10.7.1)~(10.7.3). We can continue this recursive process of adding infinitesimally
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thin layers and find out that at each recursive step the resulting reflection and trans-
mission matrices satisfy the reciprocity relations (10.7.1)—(10.7.3). Therefore, the
reflection and transmission matrices of the final slab also satisfy these relations.

The reciprocity relations are fundamental properties of the reflection and trans-
mission matrices and can be used in practice to check the accuracy of add-
ing/doubling or invariant imbedding computer codes. Alternatively, they can be used
to considerably shorten the requisite computer time by reducing the number of inde-
pendent scattering geometries (i.e., the number of couplets {{, 2’} for which the
reflection and transmission matrices are computed explicitly) by a factor of almost
two.

10.8 Notes and further reading

The adding concept goes back to Stokes (1862), who analyzed the reflection and
transmission of light by a stack of glass plates, and it was introduced to radiative
transfer by van de Hulst (1963). Equations (10.3.3) and (10.3.4) generalize the inter-
action principle introduced by Redheffer (1962) and later used by Grant and Hunt
(1969) to derive formulas of the so-called matrix operator method closely related to
the adding method (see Hunt, 1971; Plass et al., 1973). The invariant imbedding
equations can be derived using heuristic so-called principles of invariance pioneered
by Ambarzumian (1943) and Chandresekhar (1947b) (see also Chandrasekhar, 1950).
Our derivation of the vector adding and invariant imbedding equations for vertically
inhomogeneous scattering slabs containing arbitrarily oriented nonspherical particles
follows that in Mishchenko (1990a).

Ishimaru et al. (1984) solved the boundary-value problem (10.1.6)—(10.1.8) for a
homogeneous slab filled with spheroids having vertically aligned axes using the so-
called eigenvalue-eigenvector technique (Ishimaru, 1978). Liou and Takano (2002)
used the adding method to compute the reflectance of a slab comprising ice crystals
randomly oriented in the horizontal plane. Picard er al. (2004) modeled the radar
backscatter from forested areas by solving the plane-parallel VRTE with the so-called
discrete ordinate method.
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Macroscopically isotropic and mirror-symmetric
scattering media

An important particular type of discrete scattering medium is a macroscopically iso-
tropic and mirror-symmetric medium (hereinafter isotropic and symmetric medium,
or ISM). By definition, an ISM comprises spherically symmetric and/or randomly
oriented nonspherical particles. Furthermore, each nonspherical particle must have a
plane of symmetry and/or must be accompanied by a mirror counterpart.

Although this type of scattering medium might be thought to be a rather special
case, it nonetheless provides a very good numerical description of the scattering prop-
erties of many particle collections encountered in practice and is by far the most often
used theoretical model. Moreover, we shall see below that the assumption of micro-
scopic isotropy and mirror symmetry leads to significant mathematical simplifications
and allows one to develop efficient computer algorithms.

It turns out that a convenient concept in analyses of single and multiple scattering
of light by ISMs is that of a scattering matrix. As we have seen before, the phase ma-
trix is defined such that it relates the Stokes parameters of the incident and scattered
waves defined relative to the meridional planes containing the incidence and scatter-
ing directions. In contrast, the scattering matrix F relates the Stokes parameters of the
incident and scattered waves defined with respect to the scattering plane, that is, the
plane through the unit vectors 1™ and A% (Perrin, 1942; van de Hulst, 1957).

A simple way to introduce the scattering matrix is to direct the z-axis of the refer-
ence frame along the incident beam and superpose the meridional plane with ¢ = 0
and the scattering plane (Fig. 11.0.1). Then the scattering matrix F can be defined as

F(O*) = Z(6*, 9* = 0;6™ = 0, p™ = 0). (11.0.1)

In general, all 16 elements of the scattering matrix are nonzero and depend on the

261
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Figure 11.0.1. On the definition of the scattering matrix.

particle orientation with respect to the incident and scattered beams.

This choice of laboratory reference frame, with the z-axis along the incidence di-
rection and the xz-half-plane with x > 0 coinciding with the scattering plane, can
often be inconvenient because any change in the incidence direction and/or orienta-
tion of the scattering plane also changes the orientation of the scattering particle with
respect to the coordinate system. However, we will show in this chapter that the no-
tion of the scattering matrix can be very useful in application to ISMs because then
the scattering matrix becomes independent of incidence direction and orientation of
the scattering plane, depends only on the angle ® = arccos(i™ - n***) between the
incidence and scattering directions, and has a simple block-diagonal structure.

11.1 Symmetries of the Stokes scattering matrix

We begin by considering special symmetry properties of the amplitude scattering
matrix that exist when both the incidence and the scattering directions lie in the xz-
plane (van de Hulst, 1957). For the particle shown schematically in Fig. 11.1.1(a), let

S, S
{ ! ”} (11.1.1a)
S21 S22

be the amplitude scattering matrix that corresponds to the directions of incidence and
scattering given by n'™ and n**?, respectively (Fig. 11.1.2). Rotating this particle by
180° about the bisectrix (i.e., the line in the scattering plane that bisects the angle

o 2 sca

7 — O between the unit vectors —i™ and n** in Fig. 11.1.2) puts it in the orienta-
tion schematically shown in Fig. 11.1.1(b). It is clear that the amplitude scattering

matrix (11.1.1a) is also the amplitude scattering matrix for this rotated particle when
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(a) (b) () (d)

Figure 11.1.1. Two orientations of an arbitrary particle and two orientations of its mirror
counterpart that give rise to certain symmetries in scattering patterns. (After van de Hulst
1957.)

» X

~~Bisectrix

A sca

—n

A inc

-1

Figure 11.1.2. The xz-plane of the reference frame acts as the scattering plane. The arrows
perpendicular to the unit fi vectors show the corresponding unit 0 vectors. The symbols &
and © indicate the corresponding unit @ vectors, which are directed into and out of the paper,
respectively.

the directions of incidence and scattering are given by —A*® and —h™™, respectively.
Therefore, the reciprocity relation (3.4.21) implies that the amplitude scattering ma-
trix of the particle shown in Fig. 11.1.1(b) that corresponds to the original directions

of incidence and scattering, A" and A%, is simply
S -S
{ ! 21} (11.1.1b)
=S S»

Mirroring the original particle, Fig. 11.1.1(a), with respect to the scattering plane
gives the particle shown in Fig. 11.1.1(c). If we also reversed the direction of the unit
vectors §" and ¢** in Fig. (11.1.2), then we would have the same scattering prob-
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lem as for the particle shown in Fig. 11.1.1(a). We may thus conclude that the ampli-
tude scattering matrix for the particle shown in Fig. 11.1.1(c) that corresponds to the

A sca

directions of incidence and scattering A" and n°® is

S, -S
{ : lz}. (11.1.1¢)
_S21 SZ2

Finally, mirroring the original particle with respect to the bisectrix plane (i.e., the
plane through the bisectrix and the y-axis) gives the particle shown in Fig. 11.1.1(d).
Since this particle is simply the mirror-symmetric counterpart of the particle shown in
Fig. 11.1.1(b), its amplitude scattering matrix corresponding to the directions of inci-

7 sca

dence and scattering A'™ and n** is

S, S
{ " 2‘} (11.1.1d)
SlZ S22

It can be seen that any two of the three transformations shown in Figs. 11.1.1(b)—
11.1.1(d) give the third.

We will now discuss the implications of Egs. (11.1.1a)—(11.1.1d) for Stokes scat-
tering matrices of collections of independently scattering particles, by considering the
following four examples (van de Hulst, 1957):

1. Letus first assume that there is only one kind of particle and that each particle
in a specific orientation, say Fig. 11.1.1(a), is accompanied by a particle in
the reciprocal orientation, Fig. 11.1.1(b). It then follows from Egs. (3.7.11)—
(3.7.26), (11.0.1), (11.1.1a), and (11.1.1b) that the single-particle scattering
matrix averaged over particle states has the following symmetry:

(Fipe  (Fo)e  (Fa)e  (Fuae
(Fiade  (Fp)e  (Fu)e  (Fu)e
—(Fs)e —(Fu)e (F)e (Fae |
(Fide  (Fade  —(Fu)e (Fu)e

(11.1.2)

The number of independent matrix elements is 10.

2. As asecond example, let us assume that for each particle in orientation (a) a
mirror particle in orientation (c) is present (Fig. 11.1.1). This excludes, for
example, scattering media composed of only right-handed or only left-handed
helices. It is easy to verify that the resulting average scattering matrix in-
volves eight independent elements and has the following structure:

(Fe (Fae 0 0
<F21><§ <F22>§ 0 0 i (11.1.3)
0 0 (Fi)e (Fue

0 0 (Fu)s (Fue
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3. As a third example, assume that any particle in orientation (a) is accompanied
by a mirror counterpart in orientation (d), Fig. 11.1.1. The average scattering
matrix becomes

(Fe  (Fe (Fa)e  (Fae
(Fioye  (Fn)e  (Fu)e (Fu)e
(Fis)e  (Fu)e  (Fu)e (Fue
—(Fla)e —(Fau)e —(Fu)e (Fus)e

(11.1.4)

and has 10 independent elements.

4. Finally, let us make any two of the preceding assumptions. The third assump-
tion follows automatically, so that there are equal numbers of particles in ori-
entations (a), (b), (c), and (d). The resulting average scattering matrix is

(F: (F)e 0 0
(Fo)e (Fn): 0 0 s
0 0 (Fe (Fu
0 0 By (Fu

and has eight nonzero elements, of which only six are independent.

11.2 Macroscopically isotropic and mirror-symmetric
scattering medium

Now we are ready to consider scattering by a medium containing randomly oriented
particles. This means that there are many particles of each type and their orientation
distribution is uniform (see Eq. (5.3.9)). In this case the assumptions of example 1
from the previous section are satisfied, and the average scattering matrix is given by
Eq. (11.1.2). Furthermore, if particles and their mirror counterparts are present in
equal numbers or each particle has a plane of symmetry, then the assumptions of ex-
ample 4 are satisfied, and the resulting average scattering matrix is given by Eq.
(11.1.5).

As a consequence of random particle orientation, the scattering medium is macro-
scopically isotropic (i.e., there is no preferred propagation direction and no preferred
plane through the incidence direction). Therefore, the scattering matrix becomes in-
dependent of the incidence direction and the orientation of the scattering plane and
depends only on the angle between the incidence and scattering directions, that is, the
scattering angle

O = arccos(h’™-A*?), @ e [0, 7].

Furthermore, the assumptions of example 4 ensure that the scattering medium is mac-
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roscopically mirror-symmetric with respect to any plane and make the structure of the
scattering matrix especially simple. Therefore, scattering media composed of equal
numbers of randomly oriented particles and their mirror counterparts and/or of ran-
domly oriented particles having a plane of symmetry can be called macroscopically
isotropic and mirror-symmetric. To emphasize that the scattering matrix of an ISM
depends only on the scattering angle, we rewrite Eq. (11.1.5) as

(Fu(@)) (Fa(9))¢ 0 0
FO): - (Fa(0))e  (Fn(0))¢ 0 0 . 112.1)
0 0 (F3(0)  (Fu(0))
0 0 —(F4(0));  (Fu(9))¢

As a direct consequence of Eqgs. (3.7.29) and (3.7.30) we have the inequalities
(Fi)e 20, (11.2.2)
KEpel < (Fides 6 =1...,4 (11.2.3)

Additional general inequalities for the elements of the scattering matrix (11.2.1) are as
follows:

(Fi)e + (Fap)el’ + 4F) el < KR e +(Fo)el” = 4Fp) e, (11.24)

KE3s)e = (Faadel < (Fie = (Fo)e, (11.2.5)
KFo)e — (Fidel < (Fe — (Fio)es (11.2.6)
KEpnde + (Fip)el < (Fije + (Fo)e (11.2.7)

The proof of these and other useful inequalities is given in Hovenier et al. (1986).

11.3 Phase matrix

Knowledge of the matrix (F(@))¢ can be used to calculate the average Stokes phase
matrix for an ISM. Assume that 0 < ¢** — @™ < 7 and consider the phase matrices
(Z(65%2, @52, 0™, p™°))s and (Z(6°?, p™; 6, p**))¢. The second matrix involves
the same polar angles of the incident and scattered beams as the first, but the azimuth
angles are switched, as indicated in their respective scattering geometries; these are
shown in Figs. 11.3.1(a) and (b). The phase matrix links the Stokes vectors of the
incident and scattered beams, specified relative to their respective meridional planes.
Therefore, to compute the Stokes vector of the scattered beam with respect to its me-
ridional plane, we must:

e Calculate the Stokes vector of the incident beam with respect to the scattering
plane.
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X

Figure 11.3.1. Illustration of the relationship between the phase and scattering matrices.

e  Multiply it by the scattering matrix, thereby obtaining the Stokes vector of the
scattered beam with respect to the scattering plane.

e Compute the Stokes vector of the scattered beam with respect to its meridi-
onal plane (Chandrasekhar, 1950).

This procedure involves two rotations of the reference plane, as shown in Figs.
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11.3.1(a) and (b), and yields
2O, 96", 9™); = L(-0) FONL(x -0

(F ()¢ Ci{F(0));

| CFa@)s GOy Fn(O)s - 582 (Fi(O))e

| =S Fa(@):  —CiSy(Fon(O)) — 8, Co(Fia(O))¢
0 S| (Fyy(0))¢

Si{F2(0))¢ 0
S1Co(Fp(0)) e + C1 82 (Fis(O))  S2(F34(0))
—818:(F(@)) ¢ + C,Cr(Fi3(@);  Cr(Fu(O)) |
—Ci(F4(0))¢ (Fiuu(O)) ¢
(11.3.1)
(Z(O°*, 9" 0™, 0**)) = L(0, - 1)(F(O)):L(0))

(F1(O))¢ Ci{F2(0))¢
| ClFa(0))s CO(Fn(0)) = S 5:(F33(0))¢
| S:(Fa(0))  CiSy(Fn(0)) + S, Co(Fis(@))g
0 —Si1{F34(0))¢

—S1(F2(0))¢ 0
=81 Co(Fp(@)) e — C S2(F33(0)) e —S5:(F34(0))
=818, (Fn(@)) s + CiCo(F55(0)) s Cr(F34(O))¢ '

—C(F34(0))¢ (F4(@)) ¢
(11.3.2)
where
C; = cos20,, S; = sin20,, i=12, (11.3.3)

and the rotation matrix L is defined by Eq. (2.8.4). (Recall that a rotation angle is
positive if the rotation is performed in the clockwise direction when one is looking in
the direction of propagation; see Section 2.8.) The scattering angle @ and the angles

o, and o, can be calculated from 6%, 8™, @*?, and @™ using spherical trigo-
nometry:

cos@ = cosf? cosO'™ + sin B sin O™ cos(¢*? — ™), (11.3.4)
c0s 6% — cosf™™ cos @
coso; = —— , (11.3.5)
sin6"° sin @
s = cos™ — cosf°* cos O
, =

- - . (11.3.6)
sin 8% sin @
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Equations (11.3.1) and (11.3.3)—(11.3.6) demonstrate the obvious fact that the
phase matrix of an ISM depends only on the difference between the azimuthal angles
of the scattering and incidence directions rather than on their specific values. In par-
ticular,

<Z(esca, 27T — ¢inc; einc’ 27 — ¢sca)>5 — <Z(esca’ ¢sca; einc’ ¢inc)>§ (1 137)
or, formally allowing negative azimuth-angle values,
<Z(95ca, _¢inc; einc, _¢sca)>§ — <Z(esca’ (Dsca; einc’ ¢in0)>§. (1 138)

Comparison of Eqs. (11.3.1) and (11.3.2) yields the symmetry relation (Hovenier,
1969):

<Z(Hsca’ (pinc; einc’ (osca»é — <Z(esca’ _q)sca; einc’ _(pinc»f
D, (Z(6%, 9> 0™, 9N Ay, (11.3.9)

where

(= R =
(=
|
—_
=]

Obviously, Eq. (11.3.9) is a manifestation of mirror symmetry with respect to the me-
ridional plane of the incidence direction (cf. Fig. 11.3.1) or, equivalently, with respect
to the xz-half-plane with x > 0. It is also easy to see from either Eq. (11.3.1) or Eq.
(11.3.2) that (Hovenier, 1969)

<Z(7Z' _0sca’ (0503; T _ainc’ (oinc»g — A34<Z(esca’ q)sca; ainc’ (Dmc)>§A34,
(11.3.11)

which is a manifestation of mirror symmetry with respect to the xy-plane. Finally, we
can verify that

(Z(m = 6™, 9™ + 1,0 — 0%, 9 + 7)) ¢
= (Zr - 0", g™ 7w - 6", )
= D[(Z(6°, 9™, 0™, 9™)) 1" As, (11.3.12)
where the matrix A, is given by Eq. (3.7.32). Obviously, this is the reciprocity rela-
tion (3.7.31). Other symmetry relations can be derived by forming combinations of

Egs. (11.3.9), (11.3.11), and (11.3.12). For example, combining Eqgs. (11.3.9) and
(11.3.11) yields

<Z(7Z' _ esca’ (pinc; - Hinc’ (Dsca)>§ — <Z(esca’ (psca; einc’ ¢in0)>§. (1 1313)

Although Eq. (11.3.1) is valid only for 0 < ¢ — '™ < 7, combining it with Eq.
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(11.3.9) yields the phase matrix for all possible incidence and scattering directions.
The symmetry relations (11.3.11) and (11.3.12) further reduce the range of independ-
ent scattering geometries and can be very helpful in theoretical calculations or con-
sistency checks on measurements.

11.4 Forward-scattering direction and extinction matrix

By virtue of spatial isotropy, the extinction matrix of an ISM is independent of the
direction of light propagation and orientation of the reference plane used to define the
Stokes parameters. It also follows from Eqgs. (3.8.10)—(3.8.13) and (11.1.1a)—(11.1.1d)
that

<K13>§ = <K14>§ = <K23>5 = <K24>§
= <K31>§ = <K32>§ = <K41>§ = <K42>§ = 0.

Furthermore, we are about to show that the remaining off-diagonal elements of the
average extinction matrix also vanish.

We will assume for simplicity that light is incident along the positive direction of
the z-axis of the laboratory reference frame and will use the xz-half-plane with x > 0
as the meridional plane of the incident beam. Let us affix a reference frame to the
particle and call it the particle reference frame. We will also assume that the initial
orientation of a particle is such that the particle reference frame coincides with the
laboratory reference frame. The forward-scattering amplitude matrix of the particle in
the initial orientation computed in the laboratory reference frame is thus equal to the
forward-scattering amplitude matrix computed in the particle reference frame. We
will denote the latter as S p.

Let us now rotate the particle along with its reference frame through an Euler an-
gle o about the z-axis in the clockwise direction as viewed in the positive z-direction
(Figs. C.1 and 11.4.1) and denote the forward-scattering amplitude matrix of this ro-
tated particle with respect to the laboratory reference frame as S¢. This matrix re-
lates the column of the electric field vector components of the incident field to that of
the field scattered in the exact forward direction:

Esca Einc
T (11.4.1)
oL oL

where the subscript L indicates that all field components are computed in the labora-
tory reference frame. Figure 11.4.1 shows the directions of the respective unit - and
@-vectors for the incident and the forward-scattered beams. Simple trigonometry al-
lows us to express the column of the electric vector components in the particle refer-
ence frame in terms of that in the laboratory reference frame by means of a trivial
matrix multiplication (see Fig. 11.4.1):



Macroscopically isotropic and mirror-symmetric scattering media 271

y
, /
y A
y AQnc  Asca x'
~inc A sca “pL ’ (PL
p > ®Pp
o
Ainc Asca
8,6,
W(Z
> » X
Ainc  Agsca
0,50,

Figure 11.4.1. Rotation of the particle through an Euler angle & about the z-axis transforms
the laboratory reference frame L {x, y, z} into the particle reference frame P{x’, ), z}. Since
both the incident and the scattered beams propagate in the positive z-direction, their respective

unit  and @ vectors are the same.

Einc C S Einc
= o (11.4.2)
Egp =S C||Ey
where C = cosa and S = sinc. Conversely,
[ frsca] C -S| Esc
o= o (11.4.3)
| Eol | S C ||EZp
Rewriting Eq. (11.4.1) in the particle reference frame,
[ rsca ] Einc
-7 (11.4.4)
| Egp | Egp

and using Eqs. (11.4.2) and (11.4.3), we finally derive
c -S c S
ST = S,
s C -5 C
_ |:C2S11P —8CSpp = SCSy1p+ 8*Snp

SCSy1p=8*S1p + C?Syp = SCSyp

SCSy1p+ C*Sppp = 82Sy1p = SCSyp

) R (1145)

For ¢ = 0 and & = 7/2,

S21P S22P

S0 - {Sm’ Sm’} (11.4.6)
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Spp -8
§7? = | 7 e (11.4.7)
_S12P SllP

Because we are assuming random orientation of the particles in the small volume
element, for each particle in the initial orientation, & = 0, there is always a particle
of the same type but in the orientation corresponding to & = 7/2. It, therefore, fol-
lows from Egs. (3.8.9), (3.8.14), (11.4.6), and (11.4.7) that

<K12>§ = <K21>5 = <K34>§ = <K43>§ = 0.

Finally, recalling Eq. (3.9.9), we conclude that the extinction matrix of a small vol-
ume element containing equal numbers of randomly oriented particles and their mir-
ror-symmetric counterparts and/or randomly oriented particles having a plane of
symmetry is diagonal:

K@)y, = Ky = (Coxp)eA, (11.4.8)
where (Cex)¢ is the average extinction cross section per particle which is now inde-
pendent of the direction of propagation and polarization state of the incident light.
This significant simplification is useful in many practical circumstances.

The scattering matrix also becomes simpler when @ = 0. From Egs. (3.7.12),
(3.7.15), (3.7.22), (3.7.25), (1.4.6), and (1.4.7), we find that

<F12(0)>§ = <F21(0)>§ = <F34(0)>§ = <F43(0)>§ = 0.
Equation (11.4.5) gives for a = 7/4:

Siip—Spp—S,p+S Sip+Spp—Syp—=9S
S,L,/4 _ 1] 01p =012p =021p +922p  Suip+312p = O21p = O02p (1149
2| 81p=Sip+S2p = Snp SuptSinptSauprtSup

Equations (3.7.16), (3.7.21), (11.4.6), and (11.4.9) and a considerable amount of alge-
bra yield
(F(0)); = (F33(0))e.

Thus, recalling Eq. (11.2.1), we find that the forward-scattering matrix for an ISM is
diagonal and has only three independent elements:

(F(0))¢ 0 0 0
_ 0 (F(0)) 0 0
(F(0))e = 0 0 (O 0 (11.4.10)
0 0 0 (Fua(0))

(van de Hulst, 1957).

Rotationally-symmetric particles are obviously mirror-symmetric with respect to
the plane through the direction of propagation and the axis of symmetry. Choosing
this plane as the x’z’-plane of the particle reference frame, we see from Eq. (11.1.1¢)
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that S;,p = S,;p = 0. This simplifies the amplitude scattering matrices (11.4.6) and
(11.4.9) and ultimately yields

(Fuu0))e = 2(Fn(0)¢ — (F11(0)), (11.4.11)

0 < (Fn(0))s < (Fi(0))¢ (11.4.12)

(Mishchenko and Travis, 1994a; Hovenier and Mackowski, 1998).

11.5 Backward scattering

Equation (11.0.1) provides an unambiguous definition of the scattering matrix in
terms of the phase matrix, except for the exact backscattering direction. Indeed, the
backscattering direction for an incidence direction (8™, ") is given by (7 — 8™,
@™ + 7). Therefore, the complete definition of the scattering matrix should be as
follows:

Z(6%*,0,0,0)  for 6 e [0, 7),

F(gsca) —
{Z(ﬂ', ;0,0) for 0% = r,

which seems to be different from Eq. (11.0.1). It is easy to see, however, that
Z(7,0;0,0) = L(7)&(7, 7;0,0) = Z(x, 7;0,0),

see Eq. (2.8.3), which demonstrates the equivalence of the two definitions.

We are ready now to consider the case of scattering in the exact backward direc-
tion, using the complete definition of the scattering matrix and the backscattering
theorem derived in Section 3.4. Let us assume that light is incident along the positive
z-axis of the laboratory coordinate system and is scattered in the opposite direction;
we use the xz half-plane with x > 0 as the meridional plane of the incident beam. As
in the previous section, we consider two particle orientations relative to the laboratory
reference frame:

e The initial orientation, when the particle reference frame coincides with the
laboratory reference frame.

e The orientation obtained by rotating the particle about the z-axis through a
positive Euler angle «.

Figure 11.5.1 shows the respective unit 8- and ¢@-vectors for the incident beam and
the backscattered beam. Denote the backscattering amplitude matrix in the particle
reference frame as S, and the backscattering amplitude matrix in the laboratory ref-
erence frame for the rotated particle as S¢. A derivation similar to that in the previ-
ous section gives
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Figure 11.5.1. Asin Fig. 11.4.1, but for the case of scattering in the exact backward direction.

c s c s
s = S,
-s c| f|-s ¢

_ C*Siip—SCSy2p +SCSy1p —S8*Syp
—SCSy1p +8%S12p +C*Sy1p =SCSysp

, , . (11.5.1)
=S8°S11p =SCSpp +SCS1p +C7Syp

This formula can be simplified, because the backscattering theorem (3.4.22) yields
Sy1p = —Si»p. Assuming that particles are randomly oriented and considering the
cases =0 and o =7/2, we find that

(Fa(m))e = (Fy(m))e = (F(m))e = (Fp(m))e = 0.
Similarly, considering the cases & =0 and o =7/4 yields
(F53(7m))e = —(Fp(7))e.

Finally, recalling Egs. (3.7.38) and (11.2.1), we conclude that the backscattering ma-
trix for an ISM is diagonal and has only two independent elements:

(Fahe 0 0 0

B 0 (Fy(7)) e 0 0

F@e=1 0 —(Fn()e 0
0 0 0 (Fym): - 2(Fu(n):

(11.5.2)
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(Mishchenko and Hovenier, 1995). According to Eq. (11.2.3) (Fi)e < (Fii)e, so we
always have

(F(m))e 2 0. (11.5.3)

11.6 Scattering cross section and asymmetry parameter

Like all other macroscopic scattering characteristics, the average scattering cross sec-
tion per particle for an ISM is independent of the direction of illumination. Therefore,
we will evaluate the integral on the right-hand side of Eq. (3.9.10) assuming that the
incident light propagates along the positive z-axis of the laboratory reference frame
and that the xz-half-plane with x >0 is the meridional plane of the incident beam.
Figure 11.6.1 shows that in order to compute the Stokes column vector of the scat-
tered beam with respect to its own meridional plane, we must rotate the reference
frame of the incident light by the angle ¢, thereby modifying the Stokes column
vector of the incident light according to Eq. (2.8.3) with 7 = ¢, and then multiply
the new Stokes column vector of the incident light by the scattering matrix. There-
fore, the average phase matrix is simply

(Z@*,5"), = (F(O)¢L(p)

(Fl@)e (Fy(0))gcos2¢  —(F5(0))ssin2¢ 0
(Fi2(0))e  (Fn(0))ecos2p  —(Fpn(0))esin2gp 0

0 (F33(0)) ¢ sin2¢ (F3(0)) e cos2p  (F34(0)) .
0 —(F34(0))gsin2¢  —(F34(0)) g cos2¢ (Fyy(0))e
(11.6.1)

Substituting this formula in Eq. (3.9.10), we find that the average scattering cross
section per particle is independent of the polarization state of the incident light and is
given by

(Cua)e = 2;:_[ d6'sin 6 (F,(0)).. (11.6.2)
0

The corresponding asymmetry parameter must also be independent of n™™, and
Egs. (3.9.15), (3.9.19), and (11.6.1) yield

(cos @) = 2z J- d@sin@ cosO (F},(0)) . (11.6.3)
<Csca>§ 0

Obviously, (cos®) is polarization-independent. The average absorption cross sec-

tion,

<Cabs>.§ = <Cext>§ - <Csca>§a (1164)
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X

Figure 11.6.1. Illustration of the relationship between the phase and scattering matrices when
the incident light propagates along the positive z-axis.

and the single-scattering albedo,

_ <Csca>§

- , 11.6.5
<Cext>§ ( )

are also independent of the direction and polarization state of the incident beam. The
same, of course, is true of the extinction, scattering, and absorption efficiency factors,
defined as

_ <Cext>§

_ <Csca>§
Qext <G>§ s

_ (Caps)e
QSCa <G>§ bl

Qabs - <G>§ >

(11.6.6)

respectively, where (G), is the average area of the particle projection.

11.7 Thermal emission

Because the ensemble-averaged emission Stokes column vector for an ISM must be
independent of the emission direction, we will calculate the integral on the right-hand
side of Eq. (3.13.6) for light emitted in the positive direction of the z-axis and will use
the meridional plane ¢ = 0 as the reference plane for defining the emission Stokes
column vector. It is then obvious from Fig. 11.7.1 that the corresponding average
phase matrix can be calculated as
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Figure 11.7.1. Tllustration of the relationship between the phase and scattering matrices when
the scattered light propagates along the positive z-axis.

(Z®, 1) = L(-¢")(F("))¢

(F(0")¢ (Fa(0"))¢ 0 0
(Fio(@ ) cos2g’  (F(@)ecos2p’  (Fu(@ )esin2g  (Fyu(6))sin2g’
_<F12(9/)><f sin 2¢’ —<F22(9')>§ sin 2¢’ <F33(‘