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a b s t r a c t

The T-matrix method is one of the most versatile, efficient, and accurate theoretical

techniques widely used for numerically exact computer calculations of electromagnetic

scattering by single and composite particles, discrete random media, and particles

imbedded in complex environments. This paper presents the fifth update to the

comprehensive database of peer-reviewed T-matrix publications initiated by us in

2004 and includes relevant publications that have appeared since 2012. It also lists

several earlier publications not incorporated in the original database, including Peter

Waterman’s reports from the 1960s illustrating the history of the T-matrix approach and

demonstrating that John Fikioris and Peter Waterman were the true pioneers of the

multi-sphere method otherwise known as the generalized Lorenz–Mie theory.

Published by Elsevier Ltd.

1. Introduction

The comprehensive database of T-matrix publications
was initiated in 2004 [1] and was followed by four
updates [2–5]. It is quite symbolic that this fifth update
appears in the special issue of JQSRT commemorating
Peter C. Waterman and his scientific legacy. As such,
it further demonstrates the vitality of the T-matrix
method and its great usefulness in a wide range of
applications. The total number of newly added references
is 128 [6–133]. They mostly represent publications that
appeared since 2012 in addition to several publications
omitted inadvertently in Refs. [1–5].

As in Refs. [1–5], the current update has been compiled
by adhering to the following general restrictions:

� The database contains only publications dealing with
electromagnetic scattering.
� In general, publications on scattering by isolated infinite

cylinders and systems of parallel infinite cylinders in
unbounded space are excluded.
� Publications on the Lorenz–Mie theory and its various

extensions to radially inhomogeneous, isotropic,
spherically symmetric scatterers are not, generally,
included.
� The database contains only references to books, peer-

reviewed book chapters, and peer-reviewed journal
papers.

Furthermore, we have continued to use the following
operational definition of the T-matrix method:

In the T-matrix method, the incident and scattered
electric fields are expanded in series of suitable vector
spherical wave functions, and the relation between the
columns of the respective expansion coefficients is

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jqsrt

Journal of Quantitative Spectroscopy &
Radiative Transfer

0022-4073/$ - see front matter Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.jqsrt.2013.01.024

n Corresponding author. Tel.: þ1 212 678 5590;

fax: þ1 212 678 5222.

E-mail addresses: michael.i.mishchenko@nasa.gov,

crmim2@gmail.com (M.I. Mishchenko).

Journal of Quantitative Spectroscopy & Radiative Transfer 123 (2013) 145–152



established by means of a transition matrix (or T

matrix). This concept applies to the entire scatterer
or to separate parts of a composite scatterer.

Obviously, this definition is more inclusive than the
original notion of the extended boundary condition
method [134]. As such, it encompasses what is otherwise
called the multi-sphere method or the generalized
Lorenz–Mie theory.

Following the previous practice, the various references
are classified into a set of narrower subject categories. As
before, the inclusion of a publication in the database does
not constitute any formal endorsement or quality certifi-
cation on our part. Also, we do not flag specifically those
publications in which previously known results (such as

the multi-sphere method, the superposition T-matrix
method, or certain symmetry and transformation proper-
ties of the T matrix) are re-discovered.

We have used this opportunity to include several
Peter Waterman’s reports from the 1960s [35,120–123]
helping to trace the origin and evolution of the T-matrix
approach and representing significant historical interest
(see Figs. 1–3). For example, the extended boundary
condition method can be seen as rooted in Ref. [120],
while Ref. [123] lists and documents the first T-matrix
computer program and thereby reveals Peter Waterman
as a pioneer of public-domain scientific software publish-
ing. There is no doubt that the availability of that open-
access computer program had played an important role
in the early dissemination of the T-matrix method.

Fig. 1. Title page of Ref. [120].
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The 1963 report [35] helps restore historical justice by
revealing John Fikioris and Peter Waterman as the true
pioneers of the multi-sphere method—the honor usually
attributed to the well-known papers of 1971 by Bruning
and Lo. Unlike other Waterman’s research results, this
report had not been published in the form of a peer-
reviewed journal paper. The reasons for that remain
uncertain, although a finalized manuscript of 1964
intended for submission to a professional research journal
was discovered in Peter Waterman’s archive in July of
2012 [82]. That manuscript is finally archived as part of
this special issue [36].

Among the many advances documented in the pub-
lications referenced below, we note in particular the
parallelized, optimized, and customized versions of
T-matrix (or T-matrix-based) public-domain computer
programs [45,49,55,102,111], efficient ways of improving
the numerical stability of T-matrix computations
[15,16,107,110,116], the generalization of the extended
boundary condition method to the case of a scattering

target in a parallel plate waveguide [61], and completely
new application areas such as the simulation of the
electron energy loss spectroscopy [81]. The full range of
theoretical developments and practical applications of the
T-matrix method is, of course, much broader.

2. Particles in infinite homogeneous space

1. Reviews: [58,76,100,125].
2. History of the T-matrix method: [35,36,82,120,121,122,

123].
3. Mathematics of the T-matrix method: [9,78].
4. Extended boundary condition method and its modifica-

tions, generalizations, and alternatives: [15,16,34,47,
52,61,78,95,120,122,123,131,132].

5. T-matrix theory and computations for anisotropic,

chiral, magnetic, and charged scatterers: [73,80,102].
6. Multi-sphere and superposition T-matrix methods and

their modifications, including related mathematical

tools: [7,8,23,35,36,41,84,91,118,132].

Fig. 2. Title page of Ref. [35].
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7. T-matrix theory and computations of electromagnetic

scattering by periodic and aperiodic configurations of

particles and photonic crystals: [7,8,24,25,48,49,90,92,
113,118].

8. T-matrix theory and computations of electromagnetic scat-

tering by discrete random media: [6,26,36,77,86,115].
9. T-matrix theory and computations for an obstacle in a

parallel plate waveguide: [61].
10. Relation of the T-matrix method to other theoretical

approaches: [15,16,34,66,78,131].
11. Symmetry properties of the T matrix, analytical

ensemble-averaging approaches, and linearization: [54,
55,103,116].

12. Software implementation, parallelization, GPU-accelera-

tion, and customization of T-matrix computer programs:
[45,49,55,102,111,123].

13. Convergence of various implementations of the T-matrix

method: [15,16,63,107,110,116].
14. T-matrix calculations for homogeneous spheroids:

[10,12,15,16,17,27,31,32,33,38,42,43,46,49,50,
52,67,68,70,71,72,74,75,81,87,89,93,97,98,101,103,
104,105,106,110,112,114,119,121,124,127,133].

15. T-matrix calculations for Chebyshev and generalized

Chebyshev particles: [10,33,98,103].
16. T-matrix calculations for finite circular cylinders:

[15,16,18,20,21,33,57,60,74,79,88,
103,104,107,113,116,117].

17. T-matrix calculations for various rotationally symmetric

particles: [15,40,44,51,52,120,132].
18. T-matrix calculations for ellipsoids, polyhedral scat-

terers, and other particles lacking axial symmetry:
[27,38,54,55,57,95,116,129].

Fig. 3. Title page of Ref. [123].
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19. T-matrix calculations for layered and composite parti-

cles: [34,62,63,80,131].
20. T-matrix calculations for clusters of homogeneous

spheres: [6,19,21,26,28,29,30,48,56,59,69,65,77,81,83,
85,86,91,94,96,100,103,115,126,128,130].

21. T-matrix calculations for clusters of nonspherical mono-

mers: [15,24,25].
22. T-matrix calculations for particles with one or several

(eccentric) inclusions: [15,99].
23. T-matrix calculations of optical resonances in nonsphe-

rical particles: [24,25,28].
24. T-matrix calculations of optical and photophoretic forces

and torques on small particles: [20,21,71,100,109,111].
25. T-matrix calculations of internal, surface, and local fields

and near-field energy exchange: [22,60,77,96].
26. T-matrix computations for electron energy loss spectro-

scopy: [81].
27. Illumination by focused beams and non-plane waves:

[11,20,21,100,109,111].
28. Use of T-matrix calculations for testing other theoretical

techniques: [48,56,74,75,77,86,91,93,112,115,129].
29. Comparisons of T-matrix and controlled laboratory

results: [32,91].
30. Use of T-matrix calculations for analyzing laboratory

and in situ data: [10,32].
31. T-matrix modeling of scattering properties of mineral

aerosols in the terrestrial atmosphere and soil particles:
[27,29,33,67,87,97,114,117,119,124].

32. T-matrix modeling of scattering properties of carbonac-

eous and soot aerosols and soot-containing aerosol and

cloud particles: [56,69,83,126,130].
33. T-matrix modeling of scattering properties of cirrus

cloud particles: [10,17,88,104,108,127].
34. T-matrix modeling of scattering properties of hydrome-

teors and atmospheric radar targets: [31,39,40,
50,51,53,64,70,72,98,101,105,106].

35. T-matrix modeling of scattering properties of noctilucent

cloud particles: [46].
36. T-matrix modeling of scattering properties of aerosol and

cloud particles in planetary atmospheres: [79].
37. T-matrix modeling of scattering properties of interstellar,

interplanetary, cometary, and planetary-ring particles:
[37,59].

38. T-matrix computations for industrial and military appli-

cations: [68].
39. T-matrix computations for biomedical applications:

[14,42,43,62,63,131].
40. T-matrix computations of anisotropic and aggregation

properties of colloids and other disperse media:
[19,44,94].
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