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Fig. 1.— Surface density map of stars with colors and magnitudes consistent with belonging to metal-poor red giant branch populations
at the distance of M31. The almost uniform underlying background is mainly contributed by foreground stars in the Milky Way together
with a small residual contamination from unresolved compact background galaxies. All of the previously known M31 dwarf spheroidals in
this region covered by the survey are readily visible as well-defined over-densities and are marked with blue circles. The five new dwarf
spheroidals are highlighted in red. (And XIV is the dwarf spheroidal just south of the present survey area, while AndVI and AndVII lie
respectively well to the West and North of the region shown.) NGC147 and NGC185 appear at the top of the map and M33 at the bottom
left. The green circle lies at a projected radius of 150 kpc from the center of M31 within which most of the survey lies. In addition to the
satellite galaxies numerous stellar streams and substructures are visible. Although the majority of small over-densities are satellite galaxies
of M31, a few to the southern end of the map (not circled) are resolved globular cluster systems picked out surrounding nearby low redshift
background elliptical galaxies.

(MW) disk at the top right of the CMD with g− i ∼> 2.0
and i ∼< 23.0. The fainter group of objects centered at
0.0 ∼< g− i ∼< 1.5 and i ∼> 24.0 and most readily visible in
some of the comparison regions are generally caused by
contamination from mis-classified compact background
galaxies.
The right hand panel of Fig. 3 displays the i-band lu-

minosity functions (LFs) of And XXIII - XXVII (black)
computed within two half-light radii of the centers, and
a scaled LF from a nearby reference field of nine times
larger area (red). These large area reference fields have

also been used to measure the distances, magnitudes
and metallicities referred to later in this paper. For
And XXIII, And XXIV, And XXV and And XXVI the
reference regions are described by elliptical annuli with
the same ellipticity and position angle of the dSph in
question (see Table 1), the inner boundary lies at four
half-light radii from the center of the dSph and the outer
boundary is positioned so that the area covered is nine
times larger (after allowing for gaps and edges) than the
area used for the dSph. For And XXVII a circular refer-
ence region was chosen one degree to the North-East to
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• Evidence for 
Hierarchical 
Merging

• Stellar halo 
“substructure” 
found using star 
counts

• Dynamical 
models can be 
applied to 
“extract” recent 
accretion history

• “Phase mixing” 
limits the scope 
of dynamical 
modeling (no 
streams)
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Bullock & Johnston 2005
•“Cosmologically”-motivated simulations track bulk stellar 
distributions
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Reconstructing the Galaxy’s accretion history

•Observations reveal trends in 2-D metallicity-space
➡Metallicity distribution of satellites are correlated with 

their accretion time & mass GISS 2011

green - halo
blue - low mass dSph

yellow - dIrr
red - Sgr

cyan - LMC

(data compilation from 
Geisler et al, 2007)

•Galactic Genealogy 
➡Stars “remember” their 

“genetic” ancestry - that 
is, chemical abundances 
inherited from previous 
generations of stars
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•The simulated halos 
also include a semi-
analytical treatment 
of metal-enrichment 
via star formation
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. . . . . . } ~1500 sim. 
accreted dwarf 
galaxies
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•A group of 
accreted dwarf 
galaxy templates 
are created by 
~1500 sim. 
satellites
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•Luminosity 
contributions are 
then ascertained 
via some fitting 
algorithm, e.g., 
the EM algorithm
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•Can we reconstruct the accretion history of the 
Galactic halo from stellar distributions in 2-D 
metallicity-space?
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A generative finite mixture model

Mixture components Observations

�
Fe

H
,
α

Fe

�N

i=1

i.i.d ∼ f (x , y) =
m�

j=1

πj fj(x , y)

Where the mixing proportions, π, give the formation history.
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Model definition

Let x =
α

Fe
, y =

Fe

H

Given m mixture components, we propose that the density from
which observations are generated is

f (x , y) =
m�

j=1

πj fj(x , y) (1)

� Mixing proportion
� Mixture component j

where
m�

j=1

πj = 1, πj ≥ 0, j = 1, . . . ,m
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Simulations

� Generated observations from 11 realizations of halos

� Generated mixing components for these halos

� Used a 5x5 grid (m = 25), and several 2x2 grids (m = 4)
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Results for a 5x5 grid (m = 25), for one halo realization
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2x2: All 11 halos
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Estimating the mixing proportions π

To estimate the mixing proportions, we can use a maximum
likelihood approach

π̂MLE = argmax
π

L(π)

where L(π) =
n�

i=1

log
� m�

j=1

πj fj(xi , yi )
�

Unfortunately the standard MLE procedure for estimating π is
intractable with this likelihood.

The Expectation Maximization (EM) algorithm provides an
alternative way to estimate π̂MLE
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Expectation Maximization

Suppose we knew which mixture component fj each observation
came from:

zij = 1(xi , yi ∼ fj) =

�
1 (xi , yi ) ∼ fj

0 otherwise

The log likelihood can then be expressed as

(π) =
n�

i=1

m�

j=1

zij log
�
πj fj(xi , yi )

�

The addition of the latent variable z actually makes things easier
because it is easily differentiable in π.
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Estimating π̂ using expectation maximization

We don’t know z, so we replace z with the expected value of z,
conditioned on the data and the last known π̂:

π̂(t) = argmax
π

E
�
(π)

��x, y, π̂(t−1)
�

Starting with some random initial value for π̂(0), we iteratively

� Find the expected value of (π) using the current expected
values of the latent variable z

� Set π̂(t) to the argmax
π

of this expectation, which is simple to

compute

And repeat until (π) stabilizes to a range < 10−4
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Find the expected value of (π) using the current expected
value of the latent variable

The expected value of (π), with respect to the conditional
distribution of z, given observed data and π̂(t−1) is

Eπ

�
(π)

��x, y, π̂(t−1)
�
=

n�

i=1

m�

j=1

Eπ
�
zij |xi , yi

��
log fj(xi , yi ) + log πj

�

Since zij is an indicator, its expected value is simply the probability
that data point i comes from model j

Eπ

�
zij |xi , yi

�
= Prπ(zij |xi , yi )

=
p(xi , yi |zij = 1)p(zij = 1)

p(xi , yi )

=
πj fj(xi , yi )�m

k=1 πk fk(xi , yi )
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Find the argmax
π

of this expectation

Now that we have the expected value of (π) with respect to the
conditional distribution of z, we need only evaluate

π̂(t) = argmax
π

E
�
(π)

��x, y, π̂(t−1)
�

Which can be analytically specified, at each time t, as:

π̂(t)
k =

�n
i=1 w

(t−1)
ij

n

where w
(t+1)
ij =

π(t)
j fj(xi , yi )

�m
k=1 π

(t)
k fk(xi , yi )
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Convergence and minimum observation size
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� Produces reasonable results few as 1,000 observations
� Confidence intervals narrow with more data
� Insensitive to initialization of π
� Large weights identified after 10 iterations
� (π) stops changing appreciably after 60 (m=4) or 600

(m=25) iterations
� Always converges
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Covariance and confidence intervals
The asymptotic covariance matrix of π̂ can be approximated by
the inverse of the observed Fisher information matrix, I :

I (π�|x, y) = − ∂2 (π�)

∂π�∂π�T

Cov(π̂p, π̂q) =
�
I
−1(π̂�)

�
pq

with variance and correlation given by

Var(π̂j) = σ2
j =

�
Cov(π̂)

�

jj

Corr(π̂p, π̂q) =
Cov(π̂p, π̂q)�

σ2
pσ

2
q
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Confidence Intervals: 2x2 results
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Correlation between π̂
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Conclusion

� We were able to reconstruct the formation history
� For multiple halo realizations
� With a single finite mixture model
� With good accuracy on a 2x2 grid
� Relatively quickly
� Equally well for large and small values of πj
� With more data, more granular grids could be used

� We found confidence intervals and covariance matrices for the
mixing proportions

� Fisher information and n-out-of-n bootstrapping produced
nearly identical results

Future work

� Adaptive partitioning of mass and time since accretion

� Mixing components from smoothed metallicity curves
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•Final Comments

• 2-D metallicities are a start... more dimensions to 
come!

• Our method should be strengthened by larger data 
sets (also necessary when expanding to higher 
dimensions)!

• Adding a more physical interpretation of models to 
sorting galaxies may help increase the effectiveness of 
the model templates in “extracting” reliable accretion 
histories
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