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UNIDENTIFIED INFRA-RED EMISSION 

UIR emission when there is UV-lit dust 

Emission near 3.3, 6.2, 7.7, 8.6 and 11.2 mm.  

Dying stars, forming stars/planetary systems, ISM 

Other galaxies, z = 2.8 
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M17 – THE SWAN NEBULA 

Bernd Flach-Wilken and Volker Wendel  
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PAHS: SOURCES OF UIR EMISSIONS 

Polycyclic Aromatic Hydrocarbons 

Molecular bands near correct wavelengths 

Reasonable physical model for UV-driven IR emission 



EVERY PAH IS AN INDIVIDUAL 

Spectra for ~1000 PAH species known 

from lab or theoretical work 

neutral, ions, and D, N, Fe,  

Mg-substituted 

 

Each PAH has unique spectral features 



WHY ARE PAHS INTERESTING? 

10-20% of all carbon atoms in the Interstellar Medium (ISM) are in PAH molecules 

 

For this reason, PAH emissions are found in almost every cosmic environment in 
which there are concentrations of dust illuminated by ultraviolet radiation 

 

They could be used to characterize the conditions of the ISM, and could be used as 
a tracer of star formation in the Milky Way 

 

PAHs now appear to be important molecules on the pathway to life 

 



No astrophysical source shows the unique signature of any 

identifiable known PAH 

 

Astrophysical sources appear to have: 

multiple PAH species present 

different PAH-species concentrations depending on: 

UV-intensity, temperature, and composition 

PAH IDENTIFICATION PROBLEM 



COMPLEX SPECTRA 



Any number of thousands of 

PAH species can contribute 

to an observed spectrum. 

NUMEROUS PAH SPECIES 
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PAH contributions 

 cp – PAH concentration 

 p – PAH presence (YES or NO) 

MODELING IMPORTANT FEATURES 
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Planck Blackbody Radiators 

 Ak – Planck Amplitude 

 Tp – Planck Temperature 
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MODELING IMPORTANT FEATURES 
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MODELING IMPORTANT FEATURES 

Mixture of Gaussians 

 Ag – Gaussian Amplitude 

       – Gaussian Mean 

       – Gaussian Mean 



1. PAH contributions (and atomic and ionic transitions) 

2. Planck Radiators 

3. Mixture of Gaussians 

 

These three models describe the spectrum to first order. 





G

g

ggg

K

k

kk

P

p

ppp NATPlanckAPAHcF
111

),;();()()( 

MODELING IMPORTANT FEATURES 



Most source separation problems consist of multiple mixtures and a 

handful of unknown sources with unknown contributions.   

PAH spectral source separation consists of one mixture and numerous 

known sources with unknown contributions (and even some unknown 

sources). 

There are potentially 100s to 1000s of species present.  

 How do we tell which ones? 

 How do we deal with the large number of spectra? 

 

PAHS POSE UNIQUE DIFFICULTIES 



The PAH spectra database at NASA Ames Research Center contains 

~1000 PAH spectra 

 

ASTROPHYSICAL SPECTRUM PORTAL 



ESTIMATING PLANCK BLACKBODIES 



This figure shows a spectrum 

taken from the Orion Bar  

The black curve is the original 

data, the blue curve is the 

background estimation.  

One blackbody radiator is at a 

temperature of 61.043  

0.004 K, and there is possibly 

a second (36.3% chance), at 

a temperature around 18.8 K. 
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ESTIMATING PLANCK BLACKBODIES 

Unrealistic flux 

estimate 



ESTIMATING PAHS 



LINEAR LEAST SQUARES 

187 PAHs in a synthetic mixture 
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187 PAHs in a synthetic mixture 



ESTIMATING BACKGROUND 
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PIECEWISE GAUSSIAN LIKELIHOOD 
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SMOOTHNESS PRIOR (OPTIONAL) 













 



2

2

2

))((
expPrior



 dy




 














2

1 ))()1())(1()2((

)2()1(2)(

2

1
)(

N

i ixixixix

iyiyiy

N
dy 

Gaussian Prior on the Integral of the Second Derivative 
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SYNTHETIC BACKGROUND REMOVAL 
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Recorded IR Spectrum with Fitted Background 

M82 STARBURST 
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PORTION OF THE ORION BAR 



LIVE DEMO 
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