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 Space (and time)
 Position measurements

 Wavelength
 Spectroscopy: narrow bins

 Photometry: broad bands

 For example, SDSS
 Spectro: r < 17.7   1.6M sources

 Photo:    r < 22+   360M sources

Binning Photons
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Information Content
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 Incredible amount of information in the images

 Traditionally very pragmatic approaches

THERE IS MORE IN THE DATA!

 Models are useful

 Source catalogs are model-based extractions

 Statistical and theoretical models of SEDs
GISS
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 Cross-identification of sources
 To assemble multicolor catalogs

 Drop-outs from sky coverage
 To constrain fluxes not detected

 Constraining physical properties
 To interpret the data

Multicolor Challenges
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 Empirical methods 

 Template fitting

Photometric Redshifts6
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Historical Overview

 Baum (1962) 
 Compared average SEDs (9 bands) of ellipticals in clusters

 Koo (1985)
 Color-shape diagrams of and Bruzual-Charlot iso-z tracks (-U+J+F-N)

 Loh & Spillar (1986)
 Template fitting with 6 non-standard filters and 34 known galaxies

 Connolly et al. (1995)
 Redshift assumed to be a linear or quadratic function of magnitudes

 Steidel et al. (1996)
 U dropout due to Ly-alpha blanketing (< 912Å) to select z > 2.25
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Empirical Methods
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 Regression z = F(m)
 Polynomial fitting

 Piecewise linear fits

 Nearest neighbors

 Neural Nets

 Support Vector Machines

 Errors?
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Template Fitting
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 Compare reference spectra to measurements

 At different redshifts – MLE with Gaussian
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Eigenspectra
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Interpolation

 Two mixing angles encode the spectral type when using 
three eigenspectra

1D type parameter connects 
the CWW templates:

Ell 0

Sbc 0.13

Scd 0.35

Irr 0.56

blue 1

1111
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Consistent Redshift and Type
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Traditional Methods

Template Fitting
Comparison of known 

SEDs to photometry

+ physics is in templates, 
no training set required

+ more outcome: spectral 
type, reddening, etc.

- templates used as come

Empirical Methods
Pure fit for z over the 

color hyper-plane

+ fast redshift prediction

- fitting functions and 
training sets needed 
for every survey

- unreliable extrapolation
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OVERSAMPLING!
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Templates from Photometry?
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Simple Repair

For each galaxy:

1. Compute type from known redshift

2. Derive estimate spectrum

3. Correct spectrum to photometry

Build new basis from corrected spectra
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HDF/NICMOS in 1999

CWW KL5
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 Traditional ways
 Empirical methods: fitting function, k-NN, neural nets
 Template fitting: compare to model SEDs

 Very different techniques
 Approx of low dimensional subspace
 Single scalar estimates

 Many open questions

Photometric Redshifts
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 The general inversion problem

 Constrain various properties consistently

 Propagate uncertainties and correlations

 Assumption of functional relation is too simple

 Probability density functions instead

 Scientific analyses should use full PDFs

Photometric Inversion

L
type

z
etc.

F
N 
U
B
R
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 Training and Query sets with 
different observables

 Model yields observables for given parameter
 Prediction via                        and has prior
 Also folds in the photometric accuracy

 We are after 

A Unified Framework
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Mapping Observables

 The model provides the transformation rule

with

 Think empirical conversion formulas but better
 For example, from UJFN to ugriz with errors
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 Usually just assume a function

 Wrong! We know there are degeneracies:

 There is a more general relation

 Usual restriction is

 A better estimation:

Empirical Relation
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 The final distribution is

 Estimate by the mean

 If the result is unimodal (no guarantee)

Properties of Interest
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 Often we need subsamples
 Redshift slices and/or color cuts

 Complicated interaction with photo-z errors

 Variable kernel deconvolution

 Natural with the PDFs
 S

 Selection boundaries in Q

Properties of Samples
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 Measure of reliability is the prob of q making the cuts
 Using the window function

 Measured relation may be biased
 Include all observables in the selection!

 For instance
 Cannot use just colors, if there was a magnitude cut

 Cannot use just fluxes, if cut on morphology

Selection Effects

GISS
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 Artificial training set

 From a grid of model points

 No errors

 Analytic result

Template Fitting
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Empirical Estimates
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 Simplest assumption

 Generalized kernel regression
 Average

Weighting
 Local lin, RF, Wz

 Need representative training sets without x
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 Minimalist model
 Normal distributions, same quantities:                 and

 With simple prior, mapping is analytic , e.g., for flat

 Empirical relation
 Ratio: KDE of joint and marginalized

 Numerical summation            

Improved Empirics
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Red Galaxies
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Blue Galaxies
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 Mapping observables via models
 Any complete basis on wavelength range

 Physics is in the prior!

 Relation of properties
 Conditional densities

 Empirical but with templates
 Unified framework at its best

Advanced Methods
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 Measured densities in the Query set

 KDE, Voronoi?

 Consistent models should match that

 Equation

 Deconvolution yields empirical prior

 Cf. naïve repair
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Summary
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 Bayesian approach places former heuristics on a firm statistical basis

 Existing photo-z methods are special cases of the more general approach

 Enables us to properly include physical priors

 E.g., fluxes for xmatch, SEDs and positions for photoz

 Opens the door for optimal, next generation techniques

 Missing ingredients: fast algorithms, indexing, new hardware, GPUs

 Full inversion of photometry is just ahead of us
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