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Massive Data Collection
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3 Terabytes of data per day.
Storage approaching 10 Petabytes




Massive Data Collection

Solar Dynamics Observatory
1.5 Terabytes per day
0.75 Petabytes per year
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Focused Exploration

| Mars Exploratlon Rovers Splrlt and Opportunlty
128 kilobits per second / 10 Megabytes per day




Mars Exploration Rover Mission Control
a USGS '

scianca for o chasgiog world
JSGS Astrageology Research Program
astrogeology.usgs.gov

Event: MER Mission Activities
Date: Spirit Sol 4
Source: Kris Becker




Time Constraints and Human Intervention

6 to 44 minute
round-trip communication delay




Missions to Jupiter's Moons

60 to 100 minute ]
round-trip communication defay




Missions to Saturn’s Moons

N\

Enceladus Phoeba Y'mir
Telesto ljirag suttung
Epimetheus Tethys Kiviug Thrym
Janus
hMundilfari
Paliana \ lapatus Marvi
Methone ¥ Titan v Tarvos
Mimas Hyperion y Slamaq
Rheaa
Pandora Erriapo
Promeathaus Polydauces Alblorix
Atlas Dione Skad

Pan Helane * Paaliag

2.3 — 3 hour round-trip communication delay




The Scientific Method
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Inference

Perform
Update Model from Data Experiment
Estimate Uncertainties

~_

6 February 2009 Kevin H Knuth
CESS 2009




The Scientific Method
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The Scientific Method
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Describing the World




Partially Ordered Sets
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Photograph by Barbara Maddrell, National Geographic Image Collection
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Partially Ordered Sets
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Shopping Basket

Kevin H Knuth
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Partially Ordered Sets

be

a b ¢
Choosing a Piece of Fruit apple banana cherry
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State Space

apple banana cherry

States describe Systems
Antichain
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Exp and Log

<|

6 February 2009

exp

log

Kevin H Knuth
CESS 2009

2N
{a, b, c}

{a, b} {a, c} {b, c}
| >
{a} {b} {c}
\l/

¢



Exp and Log
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Exp and Log
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States
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Statements
(sets of states)
(potential states)



Three Spaces
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(sets of states)
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Questions
(sets of statements)
(potential statements)



State Space

apple banana cherry

States describe Systems
Antichain
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Hypothesis Space
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Statements are sets of States
Boolean Lattice
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Inquiry Space
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Relevance

“Is it an Apple or Cherry, or is it
a Banana or Cherry?”
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The Central Issue

This question is answered by the following set of statements:

| ={ a="ltisan Apple!”,
b= “ltis a Banana!”,
c = “ltis a Cherry!” }

| = {a,b,c}
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Some Questions Answer Others

Now consider the binary question

B =“Is it an Apple?”

B ={a ="ltis an Apple!”, ~a = "It is not an Apple!”}

B ={abvc,Db,c}

As the defining set of | is exhaustive, ~g=Dbv_C
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Ordering Questions

| =“ls it an Apple, Banana, or Cherry?”

| = {a,b,c}

B ="Is it an Apple?”

B ={abvec,Db,c}

|lcB I
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| answers B

B includes |
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Valuations

Valuations are functions
that take lattice elements to real numbers

Valuation: VvixeL —» R
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Valuations

Valuations are functions
that take lattice elements to real numbers

Valuation: VvixeL —» R

S
LVR
PN How do we ensure that the valuation assignments
L R are consistent with the lattice structure?
N
O
6 February 2009 Kevin H Knuth

CESS 2009



Local Consistency

Any general rule must hold for special cases.
Look at special cases to constrain general rule.

We enforce local consistency.

avb
N
a b v(avb) <« v(a) and v(b)
N
O
This implies that:
v(avb) = S[v(a), v(b)]
6 February 2009 Kevin H Knuth

CESS 2009



Associativity of Join V
Write the same element two different ways
av(bvec) = (avb)vc

This implies that:

S[v(a),S[v(b),v(c)]] = S[S[v(a),v(b)],v(c)]
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Associativity of Join V
Write the same element two different ways
av(bvec) = (avb)vc
This implies that:

S[v(a),S[v(b),v(c)]] = S[S[v(a),v(b)],v(c)]

The general solution (Aczel) is:
F(S[v(a),v(b)]) = F(v(a))+F(v(b))

m(avb) = m(a)+ m(b)
DERIVATION OF MEASURE THEORY!
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Sum Rule

This result is known more generally as the SUM RULE

m(xvy)=m(x)+m(y)-m(xAYy)

6 February 2009 Kevin H Knuth
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Context and Bi-Valuations
Bi-Valuation: W:X,yelL — R

Bi-Valuation Valuation

W(Xx|y) =— Vv, (X) — V(X)

Contexty Measure of x Contexty
Is explicit with respect to is implicit
Contexty

Bi-valuations generalize lattice inclusion to
degrees of inclusion.

The bi-valuation inherits meaning from the ordering relation!
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Associativity of Context

w(alt) = Plw(afc), w(c|t)]
w(alt) = Plw(@a|b), wb|t)]
PIP[w(a|b),w(b| )l w(c| )] = P[w(a|b), Plw(b]c),w(c|t)]

The Result:
b G(P[w(a|c),w(c|t)]) = G(w(a|c))+G(w(c|t))

m(a|t) = m(a|c)m(c|t)

Product Rule!
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Product Rule and Context
m(@@|t) =

Ratios of Measures

m(alc) =

m(a|c) m(c|t)

m(a

t)

m(c

t)

In General: Two Product Rules

a m(anc|t) =
m(alcvt) =
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Commutativity

Commutativity XAY=XAY
leads to a Bayes Theorem...

m(x|t) m(y|xAt)
m(y |t)

m(x|yAt) =

Note that Bayes Theorem involves a change of context.
Valuations are not sufficient... need bi-valuations.
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Inclusion-Exclusion (The Sum Rule)

w(xvy|t) = wx|t) + w(y[t) — W(xAy]t)

The Sum Rule for Lattices
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Inclusion-Exclusion (The Sum Rule)

w(xvy|t) = wx|t) + w(y[t) — W(xAy]t)

p(xv y[1)=px[1)+p(y|1)-pxAyli)

The Sum Rule for Probability

6 February 2009 Kevin H Knuth
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Inclusion-Exclusion (The Sum Rule)

w(xvy|t) = wx|t) + w(y[t) — W(xAy]t)

1(X;Y)=H(X)+H(Y)-H(X,Y)

Definition of Mutual Information
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Inclusion-Exclusion (The Sum Rule)

w(xvy|t) = wx|t) + w(y[t) — W(xAy]t)

max(X, y) = X+ y—min(x, y)

Polya’s Min-Max Rule for Integers
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Inclusion-Exclusion (The Sum Rule)

w(xvy|t) = wx|t) + w(y[t) — W(xAy]t)

log(gcd(x, y)) = log(x) +log(y) —log(lcm(X, y))
“Measuring Integers”, Knuth 2009

The Sum Rule derives from the Mobius function of the lattice,
And is related to its Zeta function
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Probability

Probabilities are degrees of implication!

w(a|t) = p(alt)

Constraint Equations!
p(xv yl1)=p(x|1)+p(y[1)—p(xAy]l)
p(XAy[1)=p(x]1) p(y|xAl)

p(x ) p(y [ xAt)
p(y|t)

p(x|yAt)=

6 February 2009 Kevin H Knuth
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Relevance
Relevance quantifies the degree to
which one question answers another
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Probability and Relevance
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The degree to which one question answers another must depend on
the probabilities of the possible answers.
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Relevance
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Relevance and Entropy
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Higher-Order Informations

d(1]|ACUBC) = d(1|BUAC)+d(l|AUBC)—d(l |(BUAC) A (AUBC))

[ d(1ACUBC) ~ I(BUAC; AUBC)
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Partition Questions
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Relevance is only a valid measure
on the sublattice of questions
iIsomorphic to partitions
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EXAMPLE




Guessing Game

apple banana cherry

Can only ask binary (YES or NO) questions!

6 February 2009 Kevin H Knuth
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Which Question to Ask?

Is it or is it not an Apple?
Is it or is it not a Banana?
Is it or is it not a Cherry?

If you believe that there is a
75% chance that it is an Apple,
and a 10% chance that it is a Banana,
which question do you ask?

6 February 2009 Kevin H Knuth
CESS 2009



Relevance Depends on Probability

Is it an Apple?

i e S i o o AT I o
a0
a0 B0
70 70
=0} 50
a- 50 a 50

| I_s i_t a Che_rry’? |

CUAB@

!!!!!!!! e e
0 10 20 30 40 a0 =] 70 a0 9

o = 0
O 0 20 3 40 G0 60 70 80 90 0102030406060

If you believe that there is a
75% chance that it is an Apple,
and a 10% chance that it is a Banana,
which question do you ask?
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Relevance Depends on Probability

Is it an Apple? Is it a Banana? Is it a Cherry?
A _ e B R A E
90 a0 B A : CUAB
&0 80 80
0 70 70
2 5O =]

A aSD aSD
a0 40 40
Y 30 30
0 20 20
e 10 10
£ L — i
S A 1w 2 3 8 B0 70 80 90 w0 2 3 60 B0 70 80 90 100

d(I|AUBC) 05623  d(I|BUAC)x0.3250  d(I|C U AB)ac0.4227

If you believe that there is a
75% chance that it is an Apple,
and a 10% chance that it is a Banana,
which question do you ask?
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Results
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EXPERIMENTAL DESIGN




Doppler Shift

PROBLEM: TP
Determine the relative radial velocity — -6.04="~Gg | 0021 &%

relative to a Sodium lamp. We can 3p1
measure light intensities near the :
doublet at 589 nm and 589.6 nm _
: ff
& 5 o
I J—
) |
We can take ONE MEASUREMENT
Which wavelength shall we examine? i
514 ——— 381

Recall, we don’t know the Doppler shift!
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What Can We Ask?

The question that can be asked is:
“What is the intensity at wavelength A ?”

Sodium Doublet
DB T T

07

06|

Relative Intensity
=] = =]
(T3] E=Y i)

=
[
T

01F

D L 1 1 1 1 1 |
als ] 588.5 ez 5859.5 850 290.5 881 881.5 592
Wavelength (nm)

There are many questions to choose from, each
corresponding to a different wavelength A
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What are the Possible Answers?

Say that the intensity can be anywhere between 0 and 1.

Sodium Doublet
0g T

= = =
i [a7] -
T T T

=
(5]
T

Relative Intensity
=
=

0.1

I:I 1 1 | 1 1 1 1
535 535.5 539 533.5 530 590.5 531 591.5 592
Wavelength (nm)
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Given Possible Doppler Shifts...

Say we have information about the velocity.
The Doppler shift is such that the shift in wavelength has zero
mean with a standard deviation of 0.1 nm.

Probable Scenarios for the Doppler Shift

6 February 2009 Kevin H Knuth
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Probable Answers for Each Question

We now look at the set of probable answers for each question

Histogram of Procabie esuts ol 566 v Probable Scenarios for the Doppler Shift

i

|

|

-l
1
L

0
588 588.5 589 589.5 590 590.5 591 591.5 592
Wavelength (nm)
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Entropy of Distribution of Probable Results

Red shows the entropy of the distribution of probable results.

Entropy of Distribution of Probable Results
1 -
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Wavelength (nm)
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Where to Measure???

Measure where the entropy is highest!

Entropy of Distribution of Probable Results
1 -

09

01

0 | 1 1 1 | 1 1 |
588 588.5 589 589.5 590 590.5 591 591.5 592
Wavelength (nm)
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Professor Keith Earle
UAlbany (SUNY)

Stask plot of absarption data
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Spectral Slice

Stack Piot of Derivative Data,

ACERT Simulation Workshop 2007
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AUTOMATED INQUIRY




Robotic Scientists

This robot is equipped
with a light sensor.

It is to locate and
characterize a white circle
on a black playing field
with as few
measurements as
possible.
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Software Engines
Preprogrammed

PN

Hypothesis
Generation

Generate New Hypotheses

<
2y %
£ %2
8 .
Implemented: & %% Implemented:
Autonomous ~ Autonomous

Inference

Perform
Update Model from Data Experiment
Estimate Uncertainties

~_
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Inference Engine

A Fully Bayesian Inference Engine
= Accommodates point spread function of light sensor
Inference
Ut B » Employs Nested Sampling (Skilling 2005) enabling

Estimate Uncertainties automatic model selection

\/ » Produces sample models from posterior probability

6 February 2009 Kevin H Knuth
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Inquiry Engine

e

% Autonomous |Inquiry Engine

= Accommodates point spread function of light sensor
» Relies on samples provided by Inference Engine

= Rapid computation of entropy of distribution of

measurements predicted by the sampled
models

6 February 2009 Kevin H Knuth
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Initial Stage

BLUE: Inference Engine generates samples from space of polygons / circles
. Inquiry Engine computes entropy map of predicted measurement results

e

A
!i!ﬁ

L

N7 b
L"A
5

|11’f’r-

With little data, the hypothesized shapes are extremely varied and it is good to
look just about anywhere
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After Several Black Measurements

With several black measurements, the hypothesized shapes become smaller
Exploration is naturally focused on unexplored regions
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After One White Measurement

A positive result naturally focuses exploration around promising region
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After Two White Measurements

A second positive result naturally focuses exploration around the edges
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After Many Measurements

Edge exploration becomes more pronounced as data accumulates.
This is all handled naturally by the entropy!

6 February 2009 Kevin H Knuth
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Current Research

Generalize the Inference and Inquiry Engine technology to a
wide array of scientific and robotic applications.

= Complex Urban Mapping

* Modeling Ephemeral Features
Sensor Web Deployment with Swarms
Autonomous Instrument Placement

Autonomous Experimental Design




'Am | already in the shadow of the Coming Race?
and will the creatures who are to transcend and
finally supersede us be steely organisms, giving out
the effluvia of the laboratory, and performing with
infallible exactness more than everything that we

have performed with a slovenly approximativeness
and self-defeating inaccuracy?"

George Eliot (Mary Anne Evans),
The Impressions of Theophrastus Such, 1 879
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